1
|
Nurmela V, Juntunen A, Selander T, Pasonen-Seppänen S, Kuittinen O, Tiainen S, Rönkä A. Poor survival of metastatic cancer patients hospitalized due to immune checkpoint inhibitor-related adverse events. Immunotherapy 2025; 17:339-346. [PMID: 40264419 PMCID: PMC12045564 DOI: 10.1080/1750743x.2025.2492541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS Immune-related adverse events (irAEs) are common side effects of immune checkpoint inhibitor (ICI) cancer therapy, affecting approximately half of ICI-treated patients. irAEs may be severe and result in hospitalization. This study examined the risk factors and outcomes of irAE-related hospitalization. METHODS We conducted a retrospective study including 202 metastatic cancer patients treated with ICIs at Kuopio University Hospital, Finland, in 2015-2022. RESULTS IrAEs occurred in 57.4% of the patients. About 26.0% of them required inpatient treatment. Hospitalization was associated with severe (grades III - IV) toxicities and need for systemic corticosteroids. Median overall survival (mOS) for hospitalized patients was 12.9 months and for outpatients with irAEs 26.9 months (p = 0.006). The duration of ICI therapy was 1.8 months in hospitalized patients and 5.0 months in outpatients (p < 0.001). The median maximum glucocorticoid doses were 52 mg and 100 mg, respectively (p < 0.001). CONCLUSIONS IrAE-related hospitalization deteriorated the survival of ICI-treated patients, likely due to decreased biological efficacy of ICIs resulting from short therapy periods and strong immunosuppression by glucocorticoids.
Collapse
Affiliation(s)
- Veera Nurmela
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anni Juntunen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Outi Kuittinen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Satu Tiainen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- The Wellbeing Services County of North Savo, Eastern Finland Cancer Center, (FICAN East)
| | - Aino Rönkä
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
3
|
Ishikawa Y, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Tokodai K, Fujishima F, Kawanabe S, Katabami T, Ikeya A, Yamashita M, Oki Y, Nanjo H, Satoh F, Ito A, Unno M, Kamei T, Sasano H, Suzuki T. Histopathological analysis of tumor microenvironment in adrenocortical carcinoma: Possible effects of in situ disorganized glucocorticoid production on tumor immunity. J Steroid Biochem Mol Biol 2024; 238:106462. [PMID: 38232786 DOI: 10.1016/j.jsbmb.2024.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Adrenocortical carcinoma (ACC) patients with glucocorticoid excess have been reported to be associated with decreased tumor-infiltrating immune cells, but the effects of in situ glucocorticoid production on tumor immunity have remained unknown. In addition, ACC was also known to harbor marked intra-tumoral heterogeneity of steroidogenesis or disorganized steroidogenesis. Therefore, in this study, we immune-profiled tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) and pivotal steroidogenic enzymes of glucocorticoid biosynthesis (CYP17A and CYP11B1) to explore the potential effects of in situ glucocorticoid production and intra-tumoral heterogeneity/disorganized steroidogenesis on tumor immunity of ACC. We also studied the correlations of the status of tumor immunity with that of angiogenesis and tumor grade to further explore the tumor tissue microenvironment of ACC. TILs (CD3, CD4, CD8, and FOXP3), TAMs (CD68 and CD163), key steroidogenic enzymes of glucocorticoid (CYP17A and CYP11B1), angiogenesis (CD31 and vasohibin-1 (VASH-1)), tumor grade (Ki-67 and Weiss score) were immunohistochemically evaluated in 34 ACCs. Increased CYP17A immunoreactivity in the whole tumor area was significantly positively correlated with FOXP3-positive TILs (p = 0.021) and negatively with CD4/CD3 ratio (p = 0.001). Increased CYP11B1 immunoreactivity in the whole tumor area was significantly positively correlated with CD8/CD3 (p = 0.039) and CD163/CD68 ratios (p = 0.006) and negatively with CD4-positive TILs (p = 0.036) and CD4/CD3 ratio (p = 0.001). There were also significant positive correlations between CYP17A and CD8 (r = 0.334, p < 0.001) and FOXP3-positive TILs (r = 0.414, p < 0.001), CD8/CD3 ratio (r = 0.421, p < 0.001), and CD68-positive TAMs (r = 0.298, p < 0.001) in randomly selected areas. Significant positive correlations were also detected between CYP11B1 and CD8/CD3 ratio (r = 0.276, p = 0.001) and negative ones detected between CYP11B1 and CD3- (r = -0.259, p = 0.002) and CD4-positive TILs (r = -0.312, p < 0.001) in those areas above. Increased micro-vessel density (MVD) -VASH-1 was significantly positively correlated with CD68- (p = 0.015) and CD163-positive TAMs (p = 0.009) and CD163/CD68 ratio and the high VASH-1 with CD163-positive TAMs (p = 0.042). Ki-67 labeling index was significantly positively correlated with MAD-VASH-1 (p = 0.006) and VASH-1 (p = 0.006) status. Results of our present study indicated that in situ glucocorticoid production did influence the status of tumor immunity in ACC. In particular, increased levels of CYP17A and CYP11B1, both involved in glucocorticoid producing immunoreactivity played different effects on tumor immunity, i.e., reflecting the involvement of intra-tumoral heterogeneity and disorganized steroidogenesis of ACC, which also did indicate the importance of in situ approaches when analyzing tumor immunity of ACC.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yuta Tezuka
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Kawanabe
- Department of Metabolism and Endocrinology, St. Marianna University Yokohama Seibu Hospital, Yokohama, Japan; Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takuyuki Katabami
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Ikeya
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Miho Yamashita
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Diabetes & Endocrinology Center, Hamamatsu-Kita Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Sakurai M, Takenaka M, Mitsui Y, Sakai Y, Morimoto M. Prednisolone improves hippocampal regeneration after trimethyltin-induced neurodegeneration in association with prevention of T lymphocyte infiltration. Neuropathology 2024; 44:21-30. [PMID: 37288771 DOI: 10.1111/neup.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
The endogenous regenerative capacity of the brain is quite weak; however, a regenerative reaction, the production of new neurons (neurogenesis), has been reported to occur in brain lesions. In addition, leukocytes are well known to infiltrate brain lesions. Therefore, leukocytes would also have a link with regenerative neurogenesis; however, their role has not been fully elucidated. In this study, we investigated leukocyte infiltration and its influence on brain tissue regeneration in a trimethyltin (TMT)-injected mouse model of hippocampal regeneration. Immunohistochemically, CD3-positive T lymphocytes were found in the hippocampal lesion of TMT-injected mice. Prednisolone (PSL) treatment inhibited T lymphocyte infiltration and increased neuronal nuclei (NeuN)-positive mature neurons and doublecortin (DCX)-positive immature neurons in the hippocampus. Investigation of bromodeoxyuridine (BrdU)-labeled newborn cells revealed the percentage of BrdU/NeuN- and BrdU/DCX-positive cells increased by PSL treatment. These results indicate that infiltrated T lymphocytes prevent brain tissue regeneration by inhibiting hippocampal neurogenesis.
Collapse
Affiliation(s)
- Masashi Sakurai
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Miki Takenaka
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Mitsui
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Morimoto
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
5
|
Johnson KCC, Goldstein D, Tharakan J, Quiroga D, Kassem M, Grimm M, Miah A, Vargo C, Berger M, Sudheendra P, Pariser A, Gatti-Mays ME, Williams N, Stover D, Sardesai S, Wesolowski R, Ramaswamy B, Tozbikian G, Schnell PM, Cherian MA. The Immunomodulatory Effects of Dexamethasone on Neoadjuvant Chemotherapy for Triple-Negative Breast Cancer. Oncol Ther 2023; 11:361-374. [PMID: 37354381 PMCID: PMC10447758 DOI: 10.1007/s40487-023-00235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION The immunomodulatory impact of corticosteroids and concurrent chemotherapy is poorly understood within triple-negative breast cancer (TNBC). On a biochemical level, steroids have been linked to the signaling of chemotherapy-resistant pathways. However, on a clinical level, steroids play an essential role in chemotherapy tolerance through the prevention of chemotherapy-induced nausea and vomiting (CINV) and hypersensitivity reactions. Given these conflicting roles, we wanted to evaluate this interplay more rigorously in the context of early-stage TNBC. METHODS We performed a retrospective analysis of patients with operable TNBC who received neoadjuvant chemotherapy (NAC) between January 2012 and November 2018, with the primary goal of examining the dose-dependent relationship between pathological complete response (pCR) rates and corticosteroid use. Secondary endpoints included the impact of steroid dosing on overall survival (OS) and recurrence-free survival (RFS), along with a breakdown in pCR rates based on steroid doses provided during each chemotherapy phase. Further adjusted analyses were performed based on patient age, diabetic status, and anatomical stage. Finally, we explored the relationship between tumor-infiltrating lymphocytes (TILs) seen on tissue samples at baseline and dexamethasone doses in terms of pCR rates. RESULTS In total, of the 174 patients screened within this study period, 116 met full eligibility criteria. Of these eligible patients, all were female, with a median age of 51.5 years (27.0 to 74.0) and a mean body mass index (BMI) of 29.7 [standard deviation (SD) 7.04]. The majority were nondiabetic (80.2%). For cancer stage, 69.8% (n = 81) had stage 2 breast cancer. We found no statistically significant association between pCR rates and dexamethasone use, both in terms of the total dose (p = 0.55) and mean dose per NAC cycle (p = 0.74). Similarly, no difference was noted when adjusting for diabetic status, metformin use, or age at diagnosis, regardless of the total steroid dose provided (p = 0.72) or mean dose per cycle (p = 0.49). No meaningful changes to pCR rate were seen with higher mean or higher total steroid doses during the paclitaxel (T) phase (adjusted p = 0.16 and p = 0.76, respectively) or doxorubicin and cyclophosphamide (AC) phase (adjusted p = 0.83 and p = 0.77, respectively). Furthermore, we found no clinically significant association between dexamethasone dose and either RFS (p = 0.45) or OS (p = 0.89). Of the 56 patients who had available pre-treatment biopsy tissue samples, 27 achieved pCR, with higher TILs at baseline being associated with higher pCR rates, regardless of the mean dexamethasone dose used. CONCLUSION Our findings demonstrate that dexamethasone has no clinically significant impact on pCR, RFS, or OS when given concurrently with NAC in patients with curative TNBC, regardless of diabetic status.
Collapse
Affiliation(s)
- Kai Conrad Cecil Johnson
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | | | - Jasmin Tharakan
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Dionisia Quiroga
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Mahmoud Kassem
- Department of Surgery, Mercy Health West Hospital, Cincinnati, OH, USA
| | - Michael Grimm
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Abdul Miah
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Craig Vargo
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Michael Berger
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Preeti Sudheendra
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ashley Pariser
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Margaret E Gatti-Mays
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Nicole Williams
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Daniel Stover
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Sagar Sardesai
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Gary Tozbikian
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Patrick M Schnell
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, USA
| | - Mathew A Cherian
- Division of Medical Oncology, Wexner Medical Center, The OH State University Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Biomedical Research Tower, Room 888, 460 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Kramer S, van Hee K, Blokzijl H, van der Heide F, Visschedijk MC. Immune Checkpoint Inhibitor-related Pancreatitis: A Case Series, Review of the Literature and an Expert Opinion. J Immunother 2023; 46:271-275. [PMID: 37216403 PMCID: PMC10405787 DOI: 10.1097/cji.0000000000000472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various malignancies, but are associated with serious adverse events like pancreatitis. Current guidelines are limited to the first step in treating acute ICI-related pancreatitis with steroids but lack treatment advices for steroid dependent pancreatitis. We describe a case series of 3 patients who developed ICI-related pancreatitis with chronic features such as exocrine insufficiency and pancreatic atrophy at imaging. Our first case developed after treatment with pembrolizumab. The pancreatitis responded well after discontinuation of immunotherapy but imaging showed pancreatic atrophy and exocrine pancreatic insufficiency persisted. Cases 2 and 3 developed after treatment with nivolumab. In both, pancreatitis responded well to steroids. However during steroid tapering, pancreatitis recurred and the latter developed exocrine pancreatic insufficiency and pancreatic atrophy at imaging. Our cases demonstrate resemblances with autoimmune pancreatitis based on clinical and imaging findings. In line, both diseases are T-cell mediated and for autoimmune pancreatitis azathioprine is considered as maintenance therapy. Guidelines of other T-cell mediated diseases like ICI-related hepatitis suggest tacrolimus. After adding tacrolimus in case 2 and azathioprine in case 3, steroids could be completely tapered and no new episodes of pancreatitis have occurred. These findings support the idea that the treatment modalities for other T-cell mediated diseases are worthwhile options for steroid dependent ICI-related pancreatitis.
Collapse
Affiliation(s)
- Sjoerd Kramer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen van Hee
- Department of Gastroenterology and Hepatology, Jeroen Bosch Hospital, GZ ‘s-Hertogenbosch, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans van der Heide
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C. Visschedijk
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Blum SM, Rouhani SJ, Sullivan RJ. Effects of immune-related adverse events (irAEs) and their treatment on antitumor immune responses. Immunol Rev 2023; 318:167-178. [PMID: 37578634 DOI: 10.1111/imr.13262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are potentially life-saving cancer therapies that can trigger immune-related adverse events (irAEs). irAEs can impact any organ and range in their presentation from mild side effects to life-threatening complications. The relationship between irAEs and antitumor immune responses is nuanced and may depend on the irAE organ, the tumor histology, and the patient. While some irAEs likely represent an immune response against antigens shared between tumor cells and healthy tissues, other irAEs may be entirely unrelated to antitumor immune responses. Clinical observations suggest that low-grade irAEs have a positive association with responses to ICIs, but the correlation between severe irAEs and clinical benefit is less clear. Currently, severe irAEs are typically treated by interrupting or permanently discontinuing ICI treatment and administering empirically selected systemic immunosuppressive agents. However, these interventions could potentially diminish the antitumor effects of ICIs. Efforts to understand the mechanistic relationship between irAEs and the tumor microenvironment have yielded meaningful insights and nominated therapeutic targets for irAE management that may preserve or even boost ICI efficacy. We explore the clinical and molecular relationship between irAEs and antitumor immunity as well as the role that irAE treatments may play in shaping antitumor immune responses.
Collapse
Affiliation(s)
- Steven M Blum
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sherin J Rouhani
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Rheumatic Immune-Related Adverse Events due to Immune Checkpoint Inhibitors—A 2023 Update. Int J Mol Sci 2023; 24:ijms24065643. [PMID: 36982715 PMCID: PMC10051463 DOI: 10.3390/ijms24065643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
With the aging of the population, malignancies are becoming common complications in patients with rheumatoid arthritis (RA), particularly in elderly patients. Such malignancies often interfere with RA treatment. Among several therapeutic agents, immune checkpoint inhibitors (ICIs) which antagonize immunological brakes on T lymphocytes have emerged as a promising treatment option for a variety of malignancies. In parallel, evidence has accumulated that ICIs are associated with numerous immune-related adverse events (irAEs), such as hypophysitis, myocarditis, pneumonitis, and colitis. Moreover, ICIs not only exacerbate pre-existing autoimmune diseases, but also cause de novo rheumatic disease–like symptoms, such as arthritis, myositis, and vasculitis, which are currently termed rheumatic irAEs. Rheumatic irAEs differ from classical rheumatic diseases in multiple aspects, and treatment should be individualized based on the severity. Close collaboration with oncologists is critical for preventing irreversible organ damage. This review summarizes the current evidence regarding the mechanisms and management of rheumatic irAEs with focus on arthritis, myositis, and vasculitis. Based on these findings, potential therapeutic strategies against rheumatic irAEs are discussed.
Collapse
|
9
|
Pacholczak-Madej R, Kosałka-Węgiel J, Kuszmiersz P, Mituś JW, Püsküllüoğlu M, Grela-Wojewoda A, Korkosz M, Bazan-Socha S. Immune Checkpoint Inhibitor Related Rheumatological Complications: Cooperation between Rheumatologists and Oncologists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4926. [PMID: 36981837 PMCID: PMC10049070 DOI: 10.3390/ijerph20064926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In cancer, immune checkpoint inhibitors (ICIs) improve patient survival but may lead to severe immune-related adverse events (irAEs). Rheumatic irAEs are a distinct entity that are much more common in a real-life than in clinical trial reports due to their unspecific symptoms and them being a rare cause of hospitalization. This review focuses on an interdisciplinary approach to the management of rheumatic irAEs, including cooperation between oncologists, rheumatologists, and immunologists. We discuss the immunological background of rheumatic irAEs, as well as their unique clinical characteristics, differentiation from other irAEs, and treatment strategies. Importantly, steroids are not the basis of therapy, and nonsteroidal anti-inflammatory drugs should be administered in the front line with other antirheumatic agents. We also address whether patients with pre-existing rheumatic autoimmune diseases can receive ICIs and how antirheumatic agents can interfere with ICIs. Interestingly, there is a preclinical rationale for combining ICIs with immunosuppressants, particularly tumor necrosis factor α and interleukin 6 inhibitors. Regardless of the data, the mainstay in managing irAEs is interdisciplinary cooperation between oncologists and other medical specialties.
Collapse
Affiliation(s)
- Renata Pacholczak-Madej
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
- Department of Anatomy, Jagiellonian University Medical College, 33-332 Kraków, Poland
| | - Joanna Kosałka-Węgiel
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Piotr Kuszmiersz
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Jerzy W. Mituś
- Department of Anatomy, Jagiellonian University Medical College, 33-332 Kraków, Poland
- Department of Surgical Oncology, National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Aleksandra Grela-Wojewoda
- Department of Clinical Oncology, The Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, 31-115 Kraków, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical Kraków, 30-688 Krakow, Poland
- Division of Rheumatology and Immunology Clinical, University Hospital, 30-688 Kraków, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
10
|
Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J Clin Med 2023; 12:jcm12041630. [PMID: 36836166 PMCID: PMC9963154 DOI: 10.3390/jcm12041630] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of immunoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved: infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are also available for clinical use. Here, we will review the historical development as well as the present and potential future applications of anti-TNF-α therapies, which have led to major improvements for patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis. Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to predict responsiveness to anti-TNF-α drugs is also discussed.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
11
|
Denaro N, Garrone O, Morelli A, Pellegrino B, Merlano MC, Vacca D, Pearce J, Farci D, Musolino A, Scartozzi M, Tommasi C, Solinas C. A narrative review of the principal glucocorticoids employed in cancer. Semin Oncol 2022; 49:429-438. [PMID: 36737303 DOI: 10.1053/j.seminoncol.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
Glucocorticoids (GCs) are a pharmacological class of drugs widely used in oncology in both supportive and palliative settings. GCs differentially impact organs with immediate and long-term effects; with suppressive effect on the immune system anchoring their use to manage the toxicities of immune checkpoint inhibitors (ICIs). In addition, GCs are often used in the management of symptoms related to cancer or chemotherapy and as adjuvants in the treatment of pain in the management of other. In the palliative setting, GCs, especially administered subcutaneously can be to assist in the control of nausea, dyspnea, asthenia, and anorexia-cachexia syndrome. In this narrative review, we aim to summarize the role of GCs in the different settings (curative, supportive, and palliative) to help clinicians use these important drugs in their daily clinical practice with cancer patients.
Collapse
Affiliation(s)
- Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Benedetta Pellegrino
- Medical Oncology and Breast Unit, University Hospital of Parma, Italy; Department of Medicine and Surgery, University of Parma, Italy
| | | | - Denise Vacca
- Palliative Care Unit, Ospedale Sirai, Carbonia, ASSL Carbonia, Italy
| | - Josie Pearce
- Harvard Premedical Program, Harvard University, Cambridge, MA, USA
| | - Daniele Farci
- Medical Oncology, Nuova Casa di Cura, Decimomannu, Cagliari, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, Italy; Department of Medicine and Surgery, University of Parma, Italy
| | - Mario Scartozzi
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, Cagliari, Italy
| | - Chiara Tommasi
- Medical Oncology and Breast Unit, University Hospital of Parma, Italy; Department of Medicine and Surgery, University of Parma, Italy.
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, Cagliari, Italy
| |
Collapse
|
12
|
De La Fuente F, Belkhir R, Henry J, Nguyen CD, Pham T, Germain V, Gavand PE, Labadie C, Briere C, Lauret A, Cardon T, Mouterde G, Bonnet I, Rouxel L, Truchetet ME, Schaeverbeke T, Richez C, Kostine M. Use of a bDMARD or tsDMARD for the management of inflammatory arthritis under checkpoint inhibitors: an observational study. RMD Open 2022; 8:rmdopen-2022-002612. [PMID: 36270747 PMCID: PMC9594531 DOI: 10.1136/rmdopen-2022-002612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE There is limited experience regarding the use of biological disease-modifying antirheumatic drug (bDMARD) and JAK inhibitor (JAKi) for the management of immune checkpoint inhibitors (ICI)-induced inflammatory arthritis. We aimed to assess their efficacy and safety in this setting. METHODS Using the Club Rhumatismes and Inflammation French network, we conducted a multicentre, retrospective, observational study of patients with cancer diagnosed with inflammatory arthritis under ICI(s) and treated with bDMARD or JAKi. Clinical data were collected using a standardised case report form. RESULTS Twenty patients (60% men, median age 69.5 years) were included, with rheumatoid arthritis (RA)-like (n=16), polymyalgia rheumatica-like (n=2) or psoriatic arthritis-like (n=2) clinical presentation. Two patients had pre-existing RA. 90% were treated with glucocorticoids as first-line therapy and 60% received methotrexate prior to bDMARD or JAKi. Anti-interleukin-6 receptor (IL-6R) therapy was used in 13/20 patients (65%), leading to clinical improvement in 11/13 patients (85%), but one patient experienced intestinal perforation and cancer progression was noticed in 6/13 patients (46%). Tumour necrosis factor inhibitors were used in 5/20 patients (25%), with improvement in 4/5 patients (80%) and cancer progression was observed in 3/5 patients (60%). Two infections (diverticulitis and pneumonitis) were reported. Anakinra, baricitinib and ustekinumab were each used in one patient. Median duration of the bDMARD or JAKi was 17 weeks. CONCLUSION Anti-IL-6R therapy is currently the most common strategy in patients with ICI-induced inflammatory arthritis and insufficient response to glucocorticoids and methotrexate, leading to improvement in >80%. Overall, cancer progression occurred in about half of patients and whether the bDMARD/JAKi impacted the tumour response remains to be determined.
Collapse
Affiliation(s)
- Fanny De La Fuente
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Rakiba Belkhir
- Department of Rheumatology, Hôpital Bicetre, Assistance Publique-Hôpitaux de Paris, FHU CARE, Le Kremlin-Bicetre, France,Inserm UMR 1184, Universite Paris-Saclay Faculte de Medecine, Le Kremlin-Bicetre, France
| | - Julien Henry
- Department of Rheumatology, Hôpital Bicetre, Assistance Publique-Hôpitaux de Paris, FHU CARE, Le Kremlin-Bicetre, France,Inserm UMR 1184, Universite Paris-Saclay Faculte de Medecine, Le Kremlin-Bicetre, France
| | - Chi Duc Nguyen
- Department of Rheumatology, Centre Hospitalier de Bethune, Bethune, France
| | - Thao Pham
- Department of Rheumatology, Sainte-Marguerite Hospital, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Vincent Germain
- Department of Rheumatology, Centre Hospitalier de Pau, Pau, France
| | | | - Céline Labadie
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Claire Briere
- Department of Internal Medicine, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | - Ambre Lauret
- Department of Internal Medicine, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | - Thierry Cardon
- Department of Rheumatology, Lille University Hospital Center, Lille, France
| | - Gael Mouterde
- Departement of Rheumatology, Lapeyronie Hospital, Montpellier, France
| | - Isabelle Bonnet
- Department of Rheumatology, Hôpital Bicetre, Assistance Publique-Hôpitaux de Paris, FHU CARE, Le Kremlin-Bicetre, France,Inserm UMR 1184, Universite Paris-Saclay Faculte de Medecine, Le Kremlin-Bicetre, France
| | - Léa Rouxel
- Department of Rheumatology, Arcachon Hospital, La Teste de Buch, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Christophe Richez
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| | - Marie Kostine
- Department of Rheumatology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, France
| |
Collapse
|
13
|
Immune-checkpoint inhibitor use in patients with cancer and pre-existing autoimmune diseases. Nat Rev Rheumatol 2022; 18:641-656. [PMID: 36198831 DOI: 10.1038/s41584-022-00841-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Immune-checkpoint inhibitors (ICIs) have dramatically changed the management of advanced cancers. Designed to enhance the antitumour immune response, they can also cause off-target immune-related adverse events (irAEs), which are sometimes severe. Although the efficacy of ICIs suggests that they could have wide-ranging benefits, clinical trials of the drugs have so far excluded patients with pre-existing autoimmune disease. However, evidence is accumulating with regard to the use of ICIs in this 'at-risk' population, with retrospective data suggesting that they have an acceptable safety profile, but that there is a risk of disease flare or other irAE occurrence. The management of immunosuppressive drugs at ICI initiation in patients with autoimmune disease (or later in instances of disease flare or irAE) remains a question of particular interest in clinical practice, in which there is always a search for the balance between protecting against autoimmunity and ensuring a good tumour response. Although temporary use of immunosuppressants seems safe, prolonged use or use at ICI initiation might hamper the antitumour immune response, prompting clinicians to use the minimal efficient immunosuppressive regimen. However, a new paradigm is emerging, in which inhibitors of TNF or IL-6 could have synergistic effects with ICIs on tumour response, while also preventing severe irAEs. If confirmed, this 'decoupling' effect on toxicity and efficacy could change therapeutic practice in this field. Knowledge of the current use of ICIs in patients with pre-existing autoimmune disease, particularly with regard to the use of immunosuppressive drugs and/or biologic DMARDs, can help to guide clinical practice.
Collapse
|
14
|
Xiong X, Chen S, Shen J, You H, Yang H, Yan C, Fang Z, Zhang J, Cai X, Dong X, Kang T, Li W, Zhou P. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct Target Ther 2022; 7:99. [PMID: 35383142 PMCID: PMC8983672 DOI: 10.1038/s41392-022-00918-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
The combination of immune checkpoint blockade (ICB) with chemotherapy significantly improves clinical benefit of cancer treatment. Since chemotherapy is often associated with adverse events, concomitant treatment with drugs managing side effects of chemotherapy is frequently used in the combination therapy. However, whether these ancillary drugs could impede immunotherapy remains unknown. Here, we showed that ∆9-tetrahydrocannabinol (THC), the key ingredient of drugs approved for the treatment of chemotherapy-caused nausea, reduced the therapeutic effect of PD-1 blockade. The endogenous cannabinoid anandamide (AEA) also impeded antitumor immunity, indicating an immunosuppressive role of the endogenous cannabinoid system (ECS). Consistently, high levels of AEA in the sera were associated with poor overall survival in cancer patients. We further found that cannabinoids impaired the function of tumor-specific T cells through CNR2. Using a knock-in mouse model expressing a FLAG-tagged Cnr2 gene, we discovered that CNR2 binds to JAK1 and inhibits the downstream STAT signaling in T cells. Taken together, our results unveiled a novel mechanism of the ECS-mediated suppression on T-cell immunity against cancer, and suggest that cannabis and cannabinoid drugs should be avoided during immunotherapy.
Collapse
Affiliation(s)
- Xinxin Xiong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510515, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, China
| | - Hua You
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Ziqian Fang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiuyu Cai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xingjun Dong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China.
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Poto R, Troiani T, Criscuolo G, Marone G, Ciardiello F, Tocchetti CG, Varricchi G. Holistic Approach to Immune Checkpoint Inhibitor-Related Adverse Events. Front Immunol 2022; 13:804597. [PMID: 35432346 PMCID: PMC9005797 DOI: 10.3389/fimmu.2022.804597] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) block inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1) and enhance antitumor T-cell activity. ICIs provide clinical benefits in a percentage of patients with advanced cancers, but they are usually associated with a remarkable spectrum of immune-related adverse events (irAEs) (e.g., rash, colitis, hepatitis, pneumonitis, endocrine, cardiac and musculoskeletal dysfunctions). Particularly patients on combination therapy (e.g., anti-CTLA-4 plus anti-PD-1/PD-L1) experience some form of irAEs. Different mechanisms have been postulated to explain these adverse events. Host factors such as genotype, gut microbiome and pre-existing autoimmune disorders may affect the risk of adverse events. Fatal ICI-related irAEs are due to myocarditis, colitis or pneumonitis. irAEs usually occur within the first months after ICI initiation but can develop as early as after the first dose to years after ICI initiation. Most irAEs resolve pharmacologically, but some appear to be persistent. Glucocorticoids represent the mainstay of management of irAEs, but other immunosuppressive drugs can be used to mitigate refractory irAEs. In the absence of specific trials, several guidelines, based on data from retrospective studies and expert consensus, have been published to guide the management of ICI-related irAEs.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | | | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
16
|
Hu X, Wei Y, Shuai X. Case Report: Glucocorticoid Effect Observation in a Ureteral Urothelial Cancer Patient With ICI-Associated Myocarditis and Multiple Organ Injuries. Front Immunol 2022; 12:799077. [PMID: 34975911 PMCID: PMC8714936 DOI: 10.3389/fimmu.2021.799077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitor (ICI)-associated immune-related adverse events (irAEs) are becoming important safety issues worthy of attention despite the exciting therapeutic prospects. The growing development of new ICIs also brings new cases of irAEs, raising more challenges to clinicians. Cardiac injury is rare but life-threatening among diverse organ injuries, and effective interventions are critical for patients. Here, we report a novel programmed cell death protein-1 (PD-1) inhibitor tislelizumab-associated severe myocarditis and myositis accompanied by liver and kidney damage in a ureteral urothelial cancer patient, who was firstly treated by cardiologists because of cardiac symptoms. Due to the lack of experience about ICI-associated irAEs, an initial low-dose (0.5 mg/kg/day) and short-term methylprednisolone therapy was used and found to be ineffective and risky to the patient; then, steroid therapy was modulated to a higher dose (1.5 mg/kg/day) with prolonged time course, and improvement of patient symptoms and laboratory markers were observed quickly and persistently. The patient did not show adverse events under this steroid dosage. This case reports a rare tislelizumab-related myocarditis and multiple organ injuries, which provides valuable experience to cardiologists like us. Early recognition of ICI-associated myocarditis and sufficient dosage and time course of glucocorticoid therapy are critical for severe cases. High-quality clinical evidence about the precise diagnosis and therapy in ICI-associated myocarditis and other organ injuries are necessary to guide our clinical works.
Collapse
Affiliation(s)
- Xiajun Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Draghi A, Chamberlain CA, Khan S, Papp K, Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, Kverneland A, Nielsen M, Westergaard MCW, Andersen MH, Csabai I, Jönsson G, Szallasi Z, Svane IM, Donia M. Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFNγ, Following Recognition of Autologous Tumor-Antigens. Front Immunol 2021; 12:705422. [PMID: 34707600 PMCID: PMC8543011 DOI: 10.3389/fimmu.2021.705422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Detecting the entire repertoire of tumor-specific reactive tumor-infiltrating lymphocytes (TILs) is essential for investigating their immunological functions in the tumor microenvironment. Current in vitro assays identifying tumor-specific functional activation measure the upregulation of surface molecules, de novo production of antitumor cytokines, or mobilization of cytotoxic granules following recognition of tumor-antigens, yet there is no widely adopted standard method. Here we established an enhanced, yet simple, method for identifying simultaneously CD8+ and CD4+ tumor-specific reactive TILs in vitro, using a combination of widely known and available flow cytometry assays. By combining the detection of intracellular CD137 and de novo production of TNF and IFNγ after recognition of naturally-presented tumor antigens, we demonstrate that a larger fraction of tumor-specific and reactive CD8+ TILs can be detected in vitro compared to commonly used assays. This assay revealed multiple polyfunctionality-based clusters of both CD4+ and CD8+ tumor-specific reactive TILs. In situ, the combined detection of TNFRSF9, TNF, and IFNG identified most of the tumor-specific reactive TIL repertoire. In conclusion, we describe a straightforward method for efficient identification of the tumor-specific reactive TIL repertoire in vitro, which can be rapidly adopted in most cancer immunology laboratories.
Collapse
Affiliation(s)
- Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Martin Lauss
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Samuele Soraggi
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Haja Dominike Radic
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Harbst
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Aishwarya Gokuldass
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
18
|
Presti M, Westergaard MCW, Draghi A, Chamberlain CA, Gokuldass A, Svane IM, Donia M. The effects of targeted immune-regulatory strategies on tumor-specific T-cell responses in vitro. Cancer Immunol Immunother 2021; 70:1771-1776. [PMID: 33165629 DOI: 10.1007/s00262-020-02760-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune-related adverse events (IrAEs) are auto-immune reactions associated with immune checkpoint inhibitor-based therapy (ICI). Steroids are currently the first-line option for irAE management; however, recent studies have raised concerns regarding their potential impairment of tumor-specific immune responses. In this study, we investigated the in vitro effects of commonly used irAE treatment drugs on the anti-tumor activity of tumor-infiltrating lymphocytes (TILs). METHODS Impairment of anti-tumor immune responses by four drugs (antibodies: vedolizumab and tocilizumab; small molecules: mycophenolate mofetil and tacrolimus) reported to be effective in treating irAEs was tested at clinically relevant doses in vitro and compared to a standard moderate dose of corticosteroids (small molecules) or infliximab (antibodies). TIL responses against autologous tumor cell lines, in the presence or absence of irAE drugs, were determined by flow cytometry (short-term tumor-specific T-cell activation) or xCELLigence (T-cell-mediated tumor killing). RESULTS None of the tested antibodies influenced T-cell activation or T-cell-mediated tumor killing. Low-dose mycophenolate and tacrolimus did not influence T-cell activation, whereas higher doses of tacrolimus (> 1 ng/ml) impaired T-cell activation comparably to dexamethasone. All tested small molecules impaired T-cell-mediated tumor killing, with high-dose tacrolimus reducing killing at levels comparable to dexamethasone-mediated inhibition. In addition, mycophenolate and tacrolimus alone also demonstrated anti-proliferative effects on tumor cells. CONCLUSIONS These data support clinical testing of targeted immune-regulatory strategies in the initial phase of irAE management, as a potential replacement for corticosteroids.
Collapse
Affiliation(s)
- Mario Presti
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Marie Christine Wulff Westergaard
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Arianna Draghi
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Christopher Aled Chamberlain
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Aishwarya Gokuldass
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Borgmester Ib Juuls Vej 25C, 5th floor, 2730, Herlev, Denmark.
| |
Collapse
|
19
|
Chatzidionysiou K, Liapi M, Tsakonas G, Gunnarsson I, Catrina A. Treatment of rheumatic immune-related adverse events due to cancer immunotherapy with immune checkpoint inhibitors-is it time for a paradigm shift? Clin Rheumatol 2021; 40:1687-1695. [PMID: 32989505 PMCID: PMC8102438 DOI: 10.1007/s10067-020-05420-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Immunotherapy has revolutionized cancer treatment during the last years. Several monoclonal antibodies that are specific for regulatory checkpoint molecules, that is, immune checkpoint inhibitors (ICIs), have been approved and are currently in use for various types of cancer in different lines of treatment. Cancer immunotherapy aims for enhancing the immune response against cancer cells. Despite their high efficacy, ICIs are associated to a new spectrum of adverse events of autoimmune origin, often referred to as immune-related adverse events (irAEs), which limit the utility of these drugs. These irAEs are quite common and can affect almost every organ. The grade of toxicity varies from very mild to life-threatening. The pathophysiological mechanisms behind these events are not fully understood. In this review, we will summarize current evidence specifically regarding the rheumatic irAEs and we will focus on current and future treatment strategies. Treatment guidelines largely support the use of glucocorticoids as first-line therapy, when symptomatic therapy is not efficient, and for more persistent and/or moderate/severe degree of inflammation. Targeted therapies are higher up in the treatment pyramid, after inadequate response to glucocorticoids and conventional, broad immunosuppressive agents, and for severe forms of irAEs. However, preclinical data provide evidence that raise concerns regarding the potential risk of impaired antitumoral effect. This potential risk of glucocorticoids, together with the high efficacy and potential synergistic effect of newer, targeted immunomodulation, such as tumor necrosis factor and interleukin-6 blockade, could support a paradigm shift, where more targeted treatments are considered earlier in the treatment sequence.
Collapse
Affiliation(s)
- Katerina Chatzidionysiou
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden.
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.
| | - Matina Liapi
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Georgios Tsakonas
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Iva Gunnarsson
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Perdigoto AL, Kluger H, Herold KC. Adverse events induced by immune checkpoint inhibitors. Curr Opin Immunol 2021; 69:29-38. [PMID: 33640598 DOI: 10.1016/j.coi.2021.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
Immune checkpoint inhibitors have revolutionized the treatments of cancers but are also associated with immune related adverse events that can interfere with their use. The types and severity of adverse events vary with checkpoint inhibitors. A single mechanism of pathogenesis has not emerged: postulated mechanisms involve direct effects of the checkpoint inhibitor, emergence of autoantibodies or autoreactive T cells, and destruction by toxic effects of activated T cells. Several host factors such as genotypes, preexisting autoimmune disease, inflammatory responses and others may have predictive value. Ongoing investigations seek to identify ways of modulating the autoimmunity without affecting the anti-tumor response with agents that are specific for the autoimmune mechanisms.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Harriet Kluger
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
21
|
Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, Choy EH, Benesova K, Radstake TRDJ, Cope AP, Lambotte O, Gottenberg JE, Allenbach Y, Visser M, Rusthoven C, Thomasen L, Jamal S, Marabelle A, Larkin J, Haanen JBAG, Calabrese LH, Mariette X, Schaeverbeke T. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis 2021; 80:36-48. [PMID: 32327425 PMCID: PMC7788064 DOI: 10.1136/annrheumdis-2020-217139] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rheumatic and musculoskeletal immune-related adverse events (irAEs) are observed in about 10% of patients with cancer receiving checkpoint inhibitors (CPIs). Given the recent emergence of these events and the lack of guidance for rheumatologists addressing them, a European League Against Rheumatism task force was convened to harmonise expert opinion regarding their identification and management. METHODS First, the group formulated research questions for a systematic literature review. Then, based on literature and using a consensus procedure, 4 overarching principles and 10 points to consider were developed. RESULTS The overarching principles defined the role of rheumatologists in the management of irAEs, highlighting the shared decision-making process between patients, oncologists and rheumatologists. The points to consider inform rheumatologists on the wide spectrum of musculoskeletal irAEs, not fulfilling usual classification criteria of rheumatic diseases, and their differential diagnoses. Early referral and facilitated access to rheumatologist are recommended, to document the target organ inflammation. Regarding therapeutic, three treatment escalations were defined: (1) local/systemic glucocorticoids if symptoms are not controlled by symptomatic treatment, then tapered to the lowest efficient dose, (2) conventional synthetic disease-modifying antirheumatic drugs, in case of inadequate response to glucocorticoids or for steroid sparing and (3) biological disease-modifying antirheumatic drugs, for severe or refractory irAEs. A warning has been made on severe myositis, a life-threatening situation, requiring high dose of glucocorticoids and close monitoring. For patients with pre-existing rheumatic disease, baseline immunosuppressive regimen should be kept at the lowest efficient dose before starting immunotherapies. CONCLUSION These statements provide guidance on diagnosis and management of rheumatic irAEs and aim to support future international collaborations.
Collapse
MESH Headings
- Advisory Committees
- Analgesics/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antirheumatic Agents/therapeutic use
- Arthralgia/chemically induced
- Arthralgia/diagnosis
- Arthralgia/immunology
- Arthralgia/therapy
- Arthritis, Psoriatic/chemically induced
- Arthritis, Psoriatic/diagnosis
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/therapy
- Arthritis, Reactive/chemically induced
- Arthritis, Reactive/diagnosis
- Arthritis, Reactive/immunology
- Arthritis, Reactive/therapy
- Autoantibodies/immunology
- Decision Making, Shared
- Deprescriptions
- Europe
- Glucocorticoids/therapeutic use
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Factors/therapeutic use
- Medical Oncology
- Methotrexate/therapeutic use
- Myalgia/chemically induced
- Myalgia/diagnosis
- Myalgia/immunology
- Myalgia/therapy
- Myocarditis/chemically induced
- Myocarditis/diagnosis
- Myocarditis/immunology
- Myocarditis/therapy
- Myositis/chemically induced
- Myositis/diagnosis
- Myositis/immunology
- Myositis/therapy
- Neoplasms/drug therapy
- Plasma Exchange
- Polymyalgia Rheumatica/chemically induced
- Polymyalgia Rheumatica/diagnosis
- Polymyalgia Rheumatica/immunology
- Polymyalgia Rheumatica/therapy
- Rheumatic Diseases/chemically induced
- Rheumatic Diseases/diagnosis
- Rheumatic Diseases/immunology
- Rheumatic Diseases/therapy
- Rheumatology
- Severity of Illness Index
- Societies, Medical
- Tumor Necrosis Factor Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Marie Kostine
- Rheumatology, University Hospital of Bordeaux, Bordeaux, France
| | - Axel Finckh
- Division of Rheumatology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Karen Visser
- Rheumatology, Haga Hospital, Den Haag, The Netherlands
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Hospital Centre, Mannheim, Germany
- Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Ernest H Choy
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | - Andrew P Cope
- Academic Department of Rheumatology, King's College London, London, UK
| | - Olivier Lambotte
- Internal Medicine and Clinical Immunology, Hopital Bicetre, Le Kremlin-Bicetre, France
| | | | - Yves Allenbach
- Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marianne Visser
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Cindy Rusthoven
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | | | - Shahin Jamal
- Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - James Larkin
- Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - John B A G Haanen
- The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | | | - Xavier Mariette
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France
- 3Université Paris-Sud, Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | |
Collapse
|
22
|
Aldea M, Orillard E, Mansi L, Marabelle A, Scotte F, Lambotte O, Michot JM. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur J Cancer 2020; 141:239-251. [DOI: 10.1016/j.ejca.2020.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
|
23
|
Zhang L, Ding J, Li HY, Wang ZH, Wu J. Immunotherapy for advanced hepatocellular carcinoma, where are we? Biochim Biophys Acta Rev Cancer 2020; 1874:188441. [PMID: 33007432 DOI: 10.1016/j.bbcan.2020.188441] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
A couple of molecular-targeting medications, such as Lenvatinib, are available for the treatment of hepatocellular carcinoma (HCC) in addition to Sorafenib in an advanced stage. Approval for the use of immune check-point inhibitors, such as Nivolumab and Pembrolizumab has shifted the paradigm of current HCC treatment, and the monotherapy or in combination with Lenvatinib or Sorafenib has significantly extended overall survival or progression-free survival in a large portion of patients. A combination of programmed cell death ligand-1 (PD-L1) inhibitor Atezolizumab with a vascular endothelial growth factor (VEGF) inhibitor, Bevacizumab, has recently achieved promising outcome in unresectable HCC patients. Other immunotherapy, such as chimeric antigen receptor T (CAR-T) cell therapy has achieved an evolutional success in hematologic malignancies, and has extended its use in deadly solid tumors, such as HCC. Although there exist various barriers, novel approaches are developed to move potential adoptive T cell therapy strategies, including cytokine-induced killer (CIK) cells, tumor-infiltrating lymphocytes (TIL), T cell receptor (TCR) T cells, CAR-T cells, to clinical application.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhong-Hua Wang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
24
|
Sengul Samanci N, Cikman DI, Oruc K, Bedir S, Çelik E, Degerli E, Derin S, Demirelli FH, Özgüroğlu M. Immune-related adverse events associated with immune checkpoint inhibitors in patients with cancer. TUMORI JOURNAL 2020; 107:304-310. [PMID: 32935638 DOI: 10.1177/0300891620953468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION With the widespread use of immune checkpoint inhibitors (ICIs), we are facing challenges in the management of immune-related adverse events (irAEs). We aimed to characterize the spectrum of toxicity, management, and outcomes for irAEs. METHODS Patients who were treated with at least one ICI in clinical trials, expanded access programs, or routine clinical practice were included. Clinical and laboratory parameters were collected retrospectively to determine the incidence of irAEs, methods of management, and treatment outcomes. RESULTS A total of 255 patients were screened retrospectively. Of these, 71 (27.8%) patients developed irAEs. More than 2 different types of irAEs were detected in 16 (6.2%) out of 255 patients. A total of 3177 doses were given to 255 patients. In 93 (2.9%) of the 3177 doses, 1 episode of irAEs was experienced. A total of 22 out of 93 (23.7%) episodes were reported as grade 1, 49 (52.7%) as grade 2, 19 (20.4%) as grade 3, and 3 (3.2%) as grade 4. The most frequently seen irAEs were pneumonitis, hepatitis, and hypothyroidism. With regard to treatment, 39 out of 93 episodes (42%) of any grade irAEs occurred after anti-programmed cell death-1 therapy, 47 (50.5%) occurred following administration of anti-programmed death-ligand 1, and 7 (7.5%) occurred after combination treatments. CONCLUSION With the increased use of immunotherapeutic agents, increased awareness and early recognition are required for effective management of irAEs. Our experience as a single institution might be of use for health care providers in oncology.
Collapse
Affiliation(s)
- Nilay Sengul Samanci
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Ilke Cikman
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kerem Oruc
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sahin Bedir
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Emir Çelik
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ezgi Degerli
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sumeyra Derin
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fuat Hulusi Demirelli
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Özgüroğlu
- Division of Medical Oncology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
25
|
Fan Y, Geng Y, Shen L, Zhang Z. Advances on immune-related adverse events associated with immune checkpoint inhibitors. Front Med 2020; 15:33-42. [PMID: 32779094 DOI: 10.1007/s11684-019-0735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy has recently led to a paradigm shift in cancer therapy, in which immune checkpoint inhibitors (ICIs) are the most successful agents approved for multiple advanced malignancies. However, given the nature of the non-specific activation of effector T cells, ICIs are remarkably associated with a substantial risk of immune-related adverse events (irAEs) in almost all organs or systems. Up to 90% of patients who received ICIs combination therapy experienced irAEs, of which majority were low-grade toxicity. Cytotoxic lymphocyte antigen-4 and programmed cell death protein-1/programmed cell death ligand 1 inhibitors usually display distinct features of irAEs. In this review, the mechanisms of action of ICIs and how they may cause irAEs are described. Some unsolved challenges, however really engrossing issues, such as the association between irAEs and cancer treatment response, tumor response to irAEs therapy, and ICIs in challenging populations, are comprehensively summarized.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China
| | - Yan Geng
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
26
|
Richter MD, Hughes GC, Chung SH, Ezeanuna M, Singh N, Thompson JA. Immunologic adverse events from immune checkpoint therapy. Best Pract Res Clin Rheumatol 2020; 34:101511. [DOI: 10.1016/j.berh.2020.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Mahata B, Pramanik J, van der Weyden L, Polanski K, Kar G, Riedel A, Chen X, Fonseca NA, Kundu K, Campos LS, Ryder E, Duddy G, Walczak I, Okkenhaug K, Adams DJ, Shields JD, Teichmann SA. Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nat Commun 2020; 11:3588. [PMID: 32680985 PMCID: PMC7368057 DOI: 10.1038/s41467-020-17339-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.
Collapse
Affiliation(s)
- Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gozde Kar
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Angela Riedel
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Nuno A Fonseca
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Lia S Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Izabela Walczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline D Shields
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
28
|
Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, Lambotte O, Mariette X, Prat A, Suárez-Almazor ME. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 2020; 6:38. [PMID: 32382051 PMCID: PMC9728094 DOI: 10.1038/s41572-020-0160-6] [Citation(s) in RCA: 844] [Impact Index Per Article: 168.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies have changed the landscape of cancer treatment during the past few decades. Among them, immune checkpoint inhibitors, which target PD-1, PD-L1 and CTLA-4, are increasingly used for certain cancers; however, this increased use has resulted in increased reports of immune-related adverse events (irAEs). These irAEs are unique and are different to those of traditional cancer therapies, and typically have a delayed onset and prolonged duration. IrAEs can involve any organ or system. These effects are frequently low grade and are treatable and reversible; however, some adverse effects can be severe and lead to permanent disorders. Management is primarily based on corticosteroids and other immunomodulatory agents, which should be prescribed carefully to reduce the potential of short-term and long-term complications. Thoughtful management of irAEs is important in optimizing quality of life and long-term outcomes.
Collapse
Affiliation(s)
- Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Barcelona, Spain. .,Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain. .,Department of Medicine, University of Barcelona, Hospital Clínic, Barcelona, Spain.
| | - Julie R. Brahmer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Margaret K. Callahan
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Weill Cornell Medical College, New York, NY, USA,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Niamh Keegan
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Weill Cornell Medical College, New York, NY, USA
| | - Munther A. Khamashta
- Lupus Clinic, Rheumatology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Olivier Lambotte
- APHP Médecine Interne/Immunologie Clinique, Hôpital Bicêtre, Paris, France,Université Paris-Saclay – INSERM U1184 - CEA, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses and Le Kremlin-Bicêtre, France
| | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de recherche en Immunologie des infections virales et des maladies auto-immunes ; AP-HP.Université Paris-Saclay, Hôpital Bicêtre, Rheumatology Department, Le Kremlin Bicêtre, France
| | - Aleix Prat
- Translational Genomic and Targeted Therapeutics in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Maria E. Suárez-Almazor
- Section of Rheumatology/Clinical Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1), and lead to immune activation in the tumor micro-environment. ICIs can induce durable treatment responses in patients with advanced cancers, but they are commonly associated with immune related adverse events (irAEs) such as rash, colitis, hepatitis, pneumonitis, and endocrine and musculoskeletal disorders. Almost all patients experience some form of irAE, but high grade irAEs occur in approximately half of those on combination therapy (eg, anti-CTLA-4 plus anti-PD-1), and up to one quarter receiving ICI monotherapy. Fatal irAEs occur in approximately 1.2% of patients on CTLA-4 blockade and 0.4% of patients receiving PD-1 or PD-L1 blockade, and case fatality rates are highest for myocarditis and myositis. IrAEs typically occur in the first three months after ICI initiation, but can occur as early as one day after the first dose to years after ICI initiation. The mainstay of treatment is with corticosteroids, but tumor necrosis factor inhibitors are commonly used for refractory irAEs. Although ICIs are generally discontinued when high grade irAEs occur, ICI discontinuation alone is rarely adequate to resolve irAEs. Consensus guidelines have been published to help guide management, but will likely be modified as our understanding of irAEs grows.
Collapse
Affiliation(s)
- Karmela K Chan
- Weill Cornell Medicine, Hospital for Special Surgery, New York, USA
| | - Anne R Bass
- Weill Cornell Medicine, Hospital for Special Surgery, New York, USA
| |
Collapse
|
31
|
Gaudy-Marqueste C. Quoi de neuf en oncodermatologie ? Ann Dermatol Venereol 2019; 146:12S39-12S45. [DOI: 10.1016/s0151-9638(20)30105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ma Y, Yang H, Kroemer G. Endogenous and exogenous glucocorticoids abolish the efficacy of immune-dependent cancer therapies. Oncoimmunology 2019; 9:1673635. [PMID: 32002285 PMCID: PMC6959448 DOI: 10.1080/2162402x.2019.1673635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids mediate potent anti-inflammatory and immunosuppressive effects. A chronic elevation of the endogenous glucocorticoid tonus subsequent to mental stress, as well as continuous treatment with exogenous glucocorticoids, activate an immunosuppressive transcription factor, TSC22D3, in dendritic cells, causing the subversion of cancer therapy-elicited antineoplastic immune responses and subsequent therapeutic failure.
Collapse
Affiliation(s)
- Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Guido Kroemer
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Hughes MS, Zheng H, Zubiri L, Molina GE, Chen ST, Mooradian MJ, Allen IM, Reynolds KL, Dougan M. Colitis after checkpoint blockade: A retrospective cohort study of melanoma patients requiring admission for symptom control. Cancer Med 2019; 8:4986-4999. [PMID: 31286682 PMCID: PMC6718531 DOI: 10.1002/cam4.2397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (CPIs) have revolutionized oncologic therapy but can lead to immune-related adverse events (irAEs). Corticosteroids are first-line treatment with escalation to biologic immunosuppression in refractory cases. CPI-related gastroenterocolitis (GEC) affects 20%-50% of patients receiving CPIs and can carry significant morbidity and mortality. Severe CPI-related GEC is not well-described. We present the clinical characterization of all CPI-related GEC requiring admission at a single institution. METHODS Clinical, laboratory, radiographic, and endoscopic data were extracted from charts of all melanoma patients ≥18 years of age admitted to one institution for CPI-related GEC, from February 5, 2011 to December 13, 2016. Patients were followed until December 31, 2017 for further admissions. Survival, outcomes, and pharmaceutical-use analyses were performed. RESULTS Median time-to-admission from initial CPI exposure was 73.5 days. Median length of stay was 4.5 days. About 50.0% required second-line immunosuppression. Readmission for recrudescence occurred in 33.3%. Common Terminology Criteria for Adverse Events (CTCAE) grade was not significantly associated with outcomes. Hypoalbuminemia (P = 0.005), relative lymphopenia (P = 0.027), and decreased lactate dehydrogenase (P = 0.026) were associated with second-line immunosuppression. There was no difference in progression-free survival (PFS) or OS (P = 0.367, 0.400) for second-line immunosuppression. Subgroup analysis showed that early corticosteroid administration (P = 0.045) was associated with decreased PFS. CONCLUSIONS Severe CPI-related GEC typically manifests within 3 months of immunotherapy exposure. Rates of second-line immunosuppression and readmission for recrudescence were high. CTCAE grade did not capture the degree of severity in our cohort. Second-line immunosuppression was not associated with poorer oncologic outcomes; however, early corticosteroid exposure was associated with decreased PFS. Further investigation is warranted.
Collapse
Affiliation(s)
- Michael S. Hughes
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Hui Zheng
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Leyre Zubiri
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Gabriel E. Molina
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Steven T. Chen
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Department of DermatologyMassachusetts General HospitalBostonMassachusetts
| | - Meghan J. Mooradian
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Massachusetts General Hospital Cancer CenterBostonMassachusetts
| | - Ian M. Allen
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
| | - Kerry L. Reynolds
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Massachusetts General Hospital Cancer CenterBostonMassachusetts
| | - Michael Dougan
- Harvard Medical SchoolBostonMassachusetts
- Department of MedicineMassachusetts General HospitalBostonMassachusetts
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusetts
| |
Collapse
|
34
|
Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The TNF Paradox in Cancer Progression and Immunotherapy. Front Immunol 2019; 10:1818. [PMID: 31417576 PMCID: PMC6685295 DOI: 10.3389/fimmu.2019.01818] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | | | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Dermatologie, Institut Universitaire du Cancer (IUCT-O) et CHU de Toulouse, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|