1
|
Yao H, Cheng Y, Kong Q, Wang X, Rong Z, Quan Y, You X, Zheng H, Li Y. Variation in microbial communities and network ecological clusters driven by soil organic carbon in an inshore saline soil amended with hydrochar in Yellow River Delta, China. ENVIRONMENTAL RESEARCH 2025; 264:120369. [PMID: 39549908 DOI: 10.1016/j.envres.2024.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Char materials (e.g., hydrochar) can enhance carbon sequestration, improve soil quality and modulate soil microbial communities to recuperate soil health. However, little is known about the soil organic carbon (SOC) content, as well as the microbial communities and co-occurrence networks in response to hydrochar amendment in an inshore saline soil. Here, the effect of Sesbania cannabina (a halophyte) straw derived hydrochar (SHC) amendment on SOC and labile organic carbon (LOC) fractions and the potential associations among SOC content change, soil C-cycling enzyme activities and microbial communities were illustrated using a pot experiment. SHC effectively improved the contents of SOC and LOC, particularly particulate organic carbon (POC), and stimulated the activities of C-cycling enzymes. Furthermore, SHC induced shift in microbial community compositions and co-occurrence networks, result in decrease in relative abundance of Actinobacteriota and its corresponding ecological cluster, which may favor SOC accumulation. Functional annotation of prokaryotic taxa (FAPROTAX) analysis also revealed a decrease in microbial ecological function related to carbon degradation. These findings provided a deeper insight about the hydrochar-induced SOC enhancement and suggested an efficient approach to improve C sequestration and improve soil health in the coastal salt-affected soil.
Collapse
Affiliation(s)
- Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Ziguo Rong
- Yellow River Delta Agricultural High-Tech Industrial Demonstration Zone Salt-Alkaline Land Integrated Utilization Service Center, Dongying, 257300, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
2
|
Dong Y, Zhang X, Wang X, Xie C, Liu J, Cheng Y, Yue Y, You X, Li Y. Modified biochar affects CO 2 and N 2O emissions from coastal saline soil by altering soil pH and elemental stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176283. [PMID: 39278479 DOI: 10.1016/j.scitotenv.2024.176283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The application of biochar in degraded farmland improves soil productivity while achieving the recycling of agricultural waste. The collapse of the physical structure of coastal saline soils will greatly reduce the carbon sequestration potential of biochar. Phosphorus- and magnesium-modified biochar greatly improve the stability of biochar, which endows them with the potential to greatly improve the organic carbon pool of coastal saline soil. However, changes in the properties of modified biochar increase the uncertainty of microbial driven CO2 and N2O release by affecting soil chemistry properties. In this study, through laboratory soil microcosmic experiment, we investigated the effects of magnesium-modified biochar (BCMg) and phosphorus-modified biochar (BCP) on CO2 and N2O releases from coastal saline soils, and further uncovered their potential mechanisms. Compared with unapplied biochar (CK) and unmodified biochar (BC) treatment, BCMg reduced both the releases of CO2 and N2O, and BCP decreased N2O release but enhanced CO2 release. pH is the medium through which BCMg affects the release of CO2 and N2O. Specifically, BCMg increased soil pH above 8.5, which reduced the metabolic activity of the microbial community, and the abundance of bacteria directly or indirectly involved in N2O production, thereby decreasing the releases of CO2 and N2O. The amendment of BCP changed soil elemental stoichiometry causing microbial N-limitation. Increasing CO2 release and decreasing N2O release were strategies for microorganisms to cope with N-limitation. These findings suggested that BCMg is superior to BCP in mitigating greenhouse gas emissions, providing a basis for the application of modified biochar to improve the carbon pool and reduce greenhouse gas emissions of coastal saline soil.
Collapse
Affiliation(s)
- Yang Dong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yanmin Yue
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
3
|
Xie C, Wang X, Zhang B, Liu J, Zhang P, Shen G, Yin X, Kong D, Yang J, Yao H, You X, Li Y. Co-composting of tail vegetable with flue-cured tobacco leaves: analysis of nitrogen transformation and estimation as a seed germination agent for halophyte. Front Microbiol 2024; 15:1433092. [PMID: 39296297 PMCID: PMC11408338 DOI: 10.3389/fmicb.2024.1433092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.
Collapse
Affiliation(s)
- Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | | | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guangcai Shen
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Xingsheng Yin
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Decai Kong
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Junjie Yang
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
4
|
Souza T, Araujo DJ, Cassimiro CAL, Batista DS. Chemodiversity of Dissolved Soil Organic Matter from Amazon Rainforest as Influenced by Deforestation. Metabolites 2024; 14:144. [PMID: 38535304 PMCID: PMC10972443 DOI: 10.3390/metabo14030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 11/12/2024] Open
Abstract
Many biogeochemical processes are modulated by dissolved organic matter (DOM), but the drivers influencing the chemodiversity of DOM compounds in Amazonian soils are poorly understood. It has also been theorized whether deforestation controls the decline of DOM. In this study, we collected soil samples from thirty sites across different regions of Brazil's Legal Amazon, and we investigated the trade-offs among soil physical-chemical properties and DOM chemodiversity. We employed optical spectroscopy, Fourier transform ion cyclotron resonance, and multivariate analysis. Our results indicated that, despite variations in land use and soil physical-chemical properties, factors such as the deforested site, geometric mean diameter, weighted average diameter, and soil organic carbon were the main influencers of DOM chemodiversity variation. These findings highlight the importance of considering DOM chemodiversity as closely related to land use and its potential use in developing deforestation models for predicting soil quality decline in Brazil's Legal Amazon.
Collapse
Affiliation(s)
- Tancredo Souza
- Postgraduate Program in Agroecology, Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Brazil; (T.S.); (D.J.A.); (C.A.L.C.)
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Damiana Justino Araujo
- Postgraduate Program in Agroecology, Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Brazil; (T.S.); (D.J.A.); (C.A.L.C.)
| | - Carlos Alberto Lins Cassimiro
- Postgraduate Program in Agroecology, Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Brazil; (T.S.); (D.J.A.); (C.A.L.C.)
| | - Diego Silva Batista
- Postgraduate Program in Agroecology, Department of Agriculture, Federal University of Paraiba, Bananeiras 58220-000, Brazil; (T.S.); (D.J.A.); (C.A.L.C.)
| |
Collapse
|
5
|
Wang X, Kong Q, Cheng Y, Xie C, Yuan Y, Zheng H, Yu X, Yao H, Quan Y, You X, Zhang C, Li Y. Cattle manure hydrochar posed a higher efficiency in elevating tomato productivity and decreasing greenhouse gas emissions than plant straw hydrochar in a coastal soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168749. [PMID: 38007120 DOI: 10.1016/j.scitotenv.2023.168749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.
Collapse
Affiliation(s)
- Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Xueyang Yu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, Jilin 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
6
|
Yan L, Riaz M, Li S, Cheng J, Jiang C. Harnessing the power of exogenous factors to enhance plant resistance to aluminum toxicity; a critical review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108064. [PMID: 37783071 DOI: 10.1016/j.plaphy.2023.108064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Aluminum (Al) is the most prevalent element in the earth crust and is toxic to plants in acidic soils. However, plants can address Al toxicity through external exclusion (which prevents Al from entering roots) and internal detoxification (which counterbalances the toxic-Al absorbed by roots). Nowadays, certain categories of exogenously added regulatory factors (EARF), such as nutritional elements, organic acids, amino acids, phytohormones, or biochar, etc. play a critical role in reducing the bioavailability/toxicity of Al in plants. Numerous studies suggest that regulating factors against Al toxicity mediate the expression of Al-responsive genes and transcription factors, thereby regulating the secretion of organic acids, alkalizing rhizosphere pH, modulating cell wall (CW) modifications, improving antioxidant defense systems, and promoting the compartmentalization of non-toxic Al within intracellular. This review primarily discusses recent and older published papers to demonstrate the basic concepts of Al phytotoxicity. Furthermore, we provide a comprehensive explanation of the crucial roles of EARF-induced responses against Al toxicity in plants. This information may serve as a foundation for improving plant resistance to Al and enhancing the growth of susceptible species in acidic soils. And this review holds significant theoretical significance for EARF to improve the quality of acidic soils cultivated land, increase crop yield and quality, and ensure food security.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Shuang Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jin Cheng
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|