1
|
Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res 2025; 15:507-519. [PMID: 40300886 PMCID: PMC12124709 DOI: 10.4103/mgr.medgasres-d-24-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 05/01/2025] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with decreased nitric oxide bioavailability, which has significant metabolic implications, including enhanced insulin secretion and peripheral glucose utilization. Similar to metformin, nitric oxide also inhibits hepatic glucose production, mainly by suppressing gluconeogenesis. This review explores the combined effects of metformin and nitric oxide on hepatic gluconeogenesis and proposes the potential of a hybrid metformin-nitric oxide drug for managing type 2 diabetes mellitus. Both metformin and nitric oxide inhibit gluconeogenesis through overlapping and distinct mechanisms. In hepatic gluconeogenesis, mitochondrial oxaloacetate is exported to the cytoplasm via various pathways, including the malate, direct, aspartate, and fumarate pathways. The effects of nitric oxide and metformin on the exportation of oxaloacetate are complementary; nitric oxide primarily inhibits the malate pathway, while metformin strongly inhibits the fumarate and aspartate pathways. Furthermore, metformin effectively blocks gluconeogenesis from lactate, glycerol, and glutamine, whereas nitric oxide mainly inhibits alanine-induced gluconeogenesis. Additionally, nitric oxide contributes to the adenosine monophosphate-activated protein kinase-dependent inhibition of gluconeogenesis induced by metformin. The combined use of metformin and nitric oxide offers the potential to mitigate common side effects. For example, lactic acidosis, a known side effect of metformin, is linked to nitric oxide deficiency, while the oxidative and nitrosative stress caused by nitric oxide could be counterbalanced by metformin's enhancement of glutathione. Metformin also amplifies nitric oxide -induced activation of adenosine monophosphate-activated protein kinase. In conclusion, a metformin-nitric oxide hybrid drug can benefit patients with type 2 diabetes mellitus by enhancing the inhibition of hepatic gluconeogenesis, decreasing the required dose of metformin for maintaining optimal glycemia, and lowering the incidence of metformin-associated lactic acidosis.
Collapse
Affiliation(s)
- Arman Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bu J, Miao Z, Yang Q. GOT2: New therapeutic target in pancreatic cancer. Genes Dis 2025; 12:101370. [PMID: 40247913 PMCID: PMC12005923 DOI: 10.1016/j.gendis.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 04/19/2025] Open
Abstract
In recent years, the incidence and mortality rates of pancreatic cancer have been steadily increasing, and conventional therapies have shown a high degree of tolerance. Therefore, the search for new therapeutic targets remains a key issue in current research. Mitochondrial glutamic-oxaloacetic transaminase 2 (GOT2) is an important component of the malate-aspartate shuttle system, which plays an important role in the maintenance of cellular redox balance and amino acid metabolism, and has the potential to become a promising target for anti-cancer therapy. In this paper, we will elaborate on the metabolic and immune effects of GOT2 in pancreatic cancer based on existing studies, with a view to opening up new avenues for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiarui Bu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Fink BD, Som R, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI. Hepatic glutamic-oxaloacetic transaminase (GOT2) promotes mitochondrial respiration energized at complex II and alters whole body metabolism. J Biol Chem 2025:110261. [PMID: 40409551 DOI: 10.1016/j.jbc.2025.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
The mitochondrial enzyme, glutamic-oxaloacetic transaminase (GOT2), catalyzes the reaction between oxaloacetate and glutamate generating aspartate and alpha-ketoglutarate (α-KG). Glutamate can also be directly converted to α-KG by glutamate dehydrogenase. We investigated mitochondrial and systemic effects of an inducible liver specific-mouse GOT2 knockout (KO). We observed no differences in body mass or percent fat mass in KO mice, however, KO mice had lower fasting glucose and liver tissue contained more fat. Respiration by liver mitochondria energized at complex II by succinate + glutamate was decreased in KO compared to wildtype (WT) mice at low inner membrane potential (ΔΨ) as induced by titration with ADP. Metabolite studies by NMR showed that at low versus high ΔΨ, GOT2KO mitochondria energized by succinate + glutamate generated more oxaloacetate (a potent inhibitor of succinate dehydrogenase, SDH) and less aspartate. Respiration and mitochondrial metabolites energized by pyruvate + malate or palmitoyl-carnitine + malate did not differ between KO and WT mice. Respiration by GOT2KO mitochondria energized by glutamate + malate was decreased at all levels of ΔΨ. Pathway analysis of LC-MS profile data in liver tissue of KO versus WT mice revealed differential enrichment of the malate aspartate shuttle, TCA cycle, aspartate metabolism, glutamate metabolism, and gluconeogenesis. In summary, GOT2KO impaired potential-dependent complex II energized O2 flux likely due at least in part to oxaloacetate inhibition of SDH.
Collapse
Affiliation(s)
- Brian D Fink
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Ritu Som
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Liping Yu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA,; Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; NMR Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Bhattacharjee P, Fadlaoui A, Ryan CE, Carlson CB, Zhang D, Sunny NE. Induction of Fructose Mediated De Novo Lipogenesis Coexists with the Upregulation of Mitochondrial Oxidative Function in Mice Livers. J Nutr 2025:S0022-3166(25)00276-7. [PMID: 40334788 DOI: 10.1016/j.tjnut.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/11/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Dysfunctional mitochondrial metabolism and sustained de novo lipogenesis (DNL) are characteristics of metabolic dysfunction-associated steatotic liver disease (MASLD), a comorbidity of obesity and type 2 diabetes. Fructose, a common sweetener and a potent inducer of lipogenesis, contributes to the etiology of MASLD. OBJECTIVES Our goal was to determine whether higher rates of DNL, through its biochemical relationships with mitochondria, can contribute to dysfunctional induction of oxidative networks in the liver. METHODS Male C57BL/6JN mice were given a low-fat (10% fat kcal, 49.9% corn starch kcal), high-fat (HF; 60% fat kcal), or HF/high-fructose diet (HF/HFr; 25% fat kcal, 34.9% fructose kcal) for 24 wk. In a follow-up study, mice on normal feed pellets were provided either 30% fructose in drinking water (FW) to induce hepatic DNL or regular water (NW) for 14 d. Hepatic mitochondria and liver tissue were used to determine oxygen consumption, reactive oxygen species (ROS) generation, tricarboxylic acid (TCA) cycle activity, and gene/protein expression profiles. RESULTS Hepatic steatosis remained similar between HF and HF/HFr fed mice livers. However, lipogenic and lipid oxidation gene expression profiles and the induction of TCA cycle metabolism were all higher (P ≤ 0.05) in HF/HFr livers. Under fed conditions, the upregulation of DNL in FW livers occurred in concert with higher mitochondrial oxygen consumption (basal; 1.7 ± 0.21 compared with 3.3 ± 0.14 nmoles/min, P ≤ 0.05), higher ROS (0.87 ± 0.09 compared with 1.25 ± 0.12 μM, P ≤ 0.05) and higher flux through TCA cycle components P ≤0.05. Furthermore, TCA cycle activity and lipid oxidation remained higher during fasting in the FW livers P ≤ 0.05. CONCLUSIONS Our results show that fructose administration to mice led to the concurrent induction of mitochondrial oxidative networks and DNL in the liver. Sustained induction of both DNL and mitochondrial oxidative function could accelerate cellular stress and metabolic dysfunction during MASLD.
Collapse
Affiliation(s)
- Parama Bhattacharjee
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Ayeesha Fadlaoui
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Caitlin E Ryan
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Courtney B Carlson
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States.
| |
Collapse
|
5
|
Guan H, Sun C, Gu Y, Li J, Ji J, Zhu Y. GOT2 Elevation Mediated by YY1 Promotes the Tumorigenesis and Immune Escape of Lung Adenocarcinoma. J Biochem Mol Toxicol 2025; 39:e70256. [PMID: 40342193 DOI: 10.1002/jbt.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/11/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
Glutamate-oxaloacetate transaminase 2 (GOT2) has been demonstrated to contribute to lung cancer cell growth, invasion, migration and angiogenesis. Herein, we further probed the functions of GOT2 on lung adenocarcinoma (LUAD) cell ferroptosis and immune escape and its associated mechanism. qRT-PCR and Western blot analysis analyses were used to detect the levels of GOT2, and Yin Yang 1 (YY1). A mouse xenograft model was established for in vivo analysis. CCK-8, 5-ethynyl-2'-deoxyuridine, and wound healing assays were applied for the detection of cell proliferation and migration. Cell ferroptosis was evaluated by flow cytometry and the levels of malondialdehyde (MDA) and Fe2+. Immune escape was assessed by measuring CD8+ T cell apoptosis and programmed death-1 ligand 1 (PD-L1) levels. The interaction between GOT2 and YY1 was determined using Chromatin immunoprecipitation and dual luciferase reporter assays. GOT2 expression was higher in LUAD tissues and cells, and the silencing of GOT2 impeded LUAD growth in vivo. Further loss-of-function assays showed that GOT2 silencing suppressed LUAD cell proliferation, migration and immune escape, and induced ferroptosis. Mechanically, we found that YY1 activated the transcription of GOT2 and could elevate GOT2 expression. Moreover, YY1 silencing repressed LUAD cell proliferation, migration and immune escape, and evoked ferroptosis, while theses effects could be reversed by GOT2 overexpression. YY1 activated GOT2 and elevated the expression of GOT2, which then promoted LUAD cell growth, migration and immune escape, and suppressed cell ferroptosis, suggesting a novel perceptivity for the treatment of LUAD.
Collapse
Affiliation(s)
- Hongjun Guan
- Department of Thoracic surgery, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| | - Changpeng Sun
- Department of Thoracic surgery, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| | - Yinfeng Gu
- Department of Thoracic surgery, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| | - Jinjin Li
- Department of Thoracic surgery, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| | - Jie Ji
- Department of information, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| | - Yongxian Zhu
- Department of Thoracic surgery, Affiliated Jianhu Hospital of Xinglin College, Nantong University, Yancheng, China
| |
Collapse
|
6
|
Wang Y, Tan J, Li L, Liu S, Li X, Shan H, Yin H, Yang HT. Uncoupling protein 3 protects against pathological cardiac hypertrophy via downregulation of aspartate. J Mol Cell Cardiol 2025; 202:1-12. [PMID: 40037428 DOI: 10.1016/j.yjmcc.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Metabolic remodeling involving alterations in the substrate utilization is a key feature of cardiac hypertrophy. However, the molecular mechanisms underlying regulation of tricarboxylic acid cycle intermediates by mitochondrial membrane proteins during cardiac hypertrophy have not yet been fully clarified. Mitochondrial uncoupling protein 3 (UCP3), an anion transporter located on the inner mitochondrial membrane, exerts cardioprotective effects against ischemia/reperfusion injury and its insufficiency exacerbates left ventricular (LV) diastolic dysfunction during hypertension. However, its role in pressure overload-induced cardiac hypertrophy remains unknown. Here, we found that UCP3 was downregulated in the mouse LV with transverse aortic constriction (TAC)-induced pathological hypertrophy and in phenylephrine (PE)-stimulated hypertrophic neonatal rat cardiomyocytes (NRCMs). The TAC-induced hypertrophy and LV dysfunction were aggravated in global and cardiac specific knockout of UCP3 (UCP3cKO) mice but improved by cardiac specific overexpression of UCP3 (UCP3cOE). Similar alterations in hypertrophy were observed in PE-treated NRCMs with UCP3-knockdown/overexpression. Moreover, the TAC-increased aspartate and glutamic-oxaloacetic transaminase 2 (GOT2) activity were enhanced in UCP3cKO hearts but reversed in UCP3cOE ones. PE-induced increases of GOT2 activity were enhanced in the UCP3-knockdown NRCMs but attenuated in the UCP3 overexpression ones, accompanied with the downregulation of aspartate. The endogenous interaction of UCP3 and GOT2 was weakened in the PE-treated NRCMs compared with the PE-untreated cells. Furthermore, aspartate supplementation reversed the UCP3 overexpression-attenuated hypertrophy in the PE-stimulated NRCMs. In conclusion, UCP3 expression is downregulated in hypertrophic hearts and cardiomyocytes, whereas the increase of UCP3 mitigates cardiac hypertrophy by downregulation of the enhanced aspartate. These findings provide new knowledge for the function of UCP3 and therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yajun Wang
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China
| | - Jiliang Tan
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200031, PR China
| | - Shenyan Liu
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China
| | - Xuxia Li
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China; Jiading Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, PR China
| | - Huitong Shan
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200031, PR China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China.
| | - Huang-Tian Yang
- Laboratory of Molecular Cardiology, CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, PR China.
| |
Collapse
|
7
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
8
|
El Wakil A, Devos P, Abdelmegeed H, Kamel A. Mitochondria in cancer: a comprehensive review, bibliometric analysis, and future perspectives. Discov Oncol 2025; 16:517. [PMID: 40214834 PMCID: PMC11992316 DOI: 10.1007/s12672-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION Mitochondria are essential organelles for many aspects of cellular homeostasis. They play an indispensable role in the development and progression of diseases, particularly cancer which is a major cause of death worldwide. We analyzed the scientific research output on mitochondria and cancer via PubMed and Web of Science over the period 1990-2023. METHODS Bibliometric analysis was performed by extracting data linking mitochondria to cancer pathogenesis over the period 1990-2023 from the PubMed database which has a precise and specific search engine. Only articles and reviews were considered. Since PubMed does not support analyses by countries or institutions, we utilized InCites, an analytical tool developed and marketed by Clarivate Analytics. We also used the VOSviewer software developed by the Centre for Science and Technology Studies (Bibliometric Department of Leiden University, Leiden, Netherlands), which enables us to graphically represent links between countries, authors or keywords in cluster form. Finally, we used iCite, a tool developed by the NIH (USA) to access a dashboard of bibliometrics for papers associated with a portfolio. This module can therefore be used to measure whether the research carried out is still basic, translational or clinical. RESULTS In total, 169,555 publications were identified in PubMed relating to 'mitochondria', of which 34,949 (20.61%) concerned 'mitochondria' and 'dysfunction' and 22,406 (13.21%) regarded 'mitochondria' and 'cancer'. Hence, not all mitochondrial dysfunctions may lead to cancer or enhance its progression. Qualitatively, the disciplines of journals were classified into 166 categories among which cancer specialty accounts for only 4.7% of publications. Quantitatively, our analysis showed that cancer/neoplasms in the liver (2569 articles) were placed in the first position. USA occupied the first position among countries contributing the highest number of publications (5695 articles), whereas Egypt came in the thirty-eight position with 84 publications (0.46%). Importantly, USA is the first-ranked country having both the top 1% and 10% impact indicators with 207 and 1459 articles, respectively. By crossing the query 'liver neoplasms' (155,678) with the query 'mitochondria' (169,555), we identified 1336 articles in PubMed over the study period. Among these publications, research areas were classified into 65 categories with the highest percentage of documents included in biochemistry and molecular biology (28.92%), followed by oncology (23.31%). CONCLUSIONS This study underscores the crucial yet underrepresented role of mitochondria in cancer research. Despite their significance in cancer pathogenesis, the proportion of related publications remains relatively low. Our findings highlight the need for further research to deepen our understanding of mitochondrial mechanisms in cancer, which could pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| | - Patrick Devos
- Université Lille, Lillometrics, 59000, Lille, France
- CHU Lille, Direction de la Recherche et de l'Innovation, 59000, Lille, France
| | - Heba Abdelmegeed
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, Egypt
| | - Alaa Kamel
- Department of Zoology, Faulty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
India Aldana S, Petrick L, Niedzwiecki MM, Valvi D, Just AC, Gutiérrez-Avila I, Kloog I, Barupal DK, Téllez-Rojo MM, Wright RO, Baccarelli AA, Wu H, Colicino E. Pregnancy as a Susceptible Period to Ambient Air Pollution Exposure on the Maternal Postpartum Metabolome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6400-6413. [PMID: 40129413 DOI: 10.1021/acs.est.4c10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pregnancy is a potential critical window to air pollution exposure for long-term maternal metabolic effects. However, little is known about potential early metabolic mechanisms linking air pollution to maternal metabolic health. We included 544 pregnant Mexican women with both ambient PM2.5 levels during pregnancy and untargeted serum metabolomics to examine associations between pregnancy PM2.5 exposure (overall and monthly) and postpartum metabolites, implementing FDR-adjusted robust linear regression controlling for covariates. Pathway enrichment analyses (in Reactome and MetaboAnalyst) and effect modification by fetal sex and folic acid supplementation were also evaluated. Higher PM2.5 exposure levels throughout pregnancy were associated with higher bile acids and amino acids, dysregulated glycerophospholipids, or lower fatty acyl levels (FDR < 0.05), among other metabolites. Potential critical windows of susceptibility to monthly PM2.5 on metabolites were observed in early to midpregnancy (FDR < 0.005). Main findings were consistent by strata of fetal sex and folic acid supplementation. Metabolic pathways corresponding to positive PM2.5-metabolite associations indicated enriched bile acid, dietary lipid, and transmembrane transport metabolism, whereas for negative PM2.5-metabolite associations, we identified altered pathways involving adipogenesis, incretin peptide hormone, GLP-1, PPAR-alpha, and fatty acid receptors (FDR < 0.05). PM2.5 exposures during pregnancy, especially in early gestation, altered maternal postpartum lipids as well as amino acid metabolism.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lauren Petrick
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Damaskini Valvi
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Allan C Just
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Itai Kloog
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dinesh K Barupal
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Robert O Wright
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrea A Baccarelli
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Elena Colicino
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
10
|
Deng R, Fu L, Liang H, Ai X, Liu F, Li N, Wu L, Li S, Yang X, Lin Y, Huang Y, Yun J. Inhibition of mitochondrial complex I induces mitochondrial ferroptosis by regulating CoQH2 levels in cancer. Cell Death Dis 2025; 16:254. [PMID: 40185704 PMCID: PMC11971431 DOI: 10.1038/s41419-025-07510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Ferroptosis, a novel form of regulated cell death induced by the excessive accumulation of lipid peroxidation products, plays a pivotal role in the suppression of tumorigenesis. Two prominent mitochondrial ferroptosis defense systems are glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH), both of which are localized within the mitochondria. However, the existence of supplementary cellular defense mechanisms against mitochondrial ferroptosis remains unclear. Our findings unequivocally demonstrate that inactivation of mitochondrial respiratory chain complex I (MCI) induces lipid peroxidation and consequently invokes ferroptosis across GPX4 low-expression cancer cells. However, in GPX4 high expression cancer cells, the MCI inhibitor did not induce ferroptosis, but increased cell sensitivity to ferroptosis induced by the GPX4 inhibitor. Overexpression of the MCI alternative protein yeast NADH-ubiquinone reductase (NDI1) not only quells ferroptosis induced by MCI inhibitors but also confers cellular protection against ferroptosis inducers. Mechanically, MCI inhibitors actuate an elevation in the NADH level while concomitantly diminishing the CoQH2 level. The manifestation of MCI inhibitor-induced ferroptosis can be reversed by supplementation with mitochondrial-specific analogues of CoQH2. Notably, MCI operates in parallel with mitochondrial-localized GPX4 and DHODH to inhibit mitochondrial ferroptosis, but independently of cytosolically localized GPX4 or ferroptosis suppressor protein 1(FSP1). The MCI inhibitor IACS-010759, is endowed with the ability to induce ferroptosis while concurrently impeding tumor proliferation in vivo. Our results identified a ferroptosis defense mechanism mediated by MCI within the mitochondria and suggested a therapeutic strategy for targeting ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Ru Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lingyi Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoyu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xixiong Ai
- Reproductive Medicine Center, The Affiliated Shenzhen Maternity and Child Healthcare Hospital of the South Medical University, Shenzhen, Guangdong, China
| | - Fangyi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Nai Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liyan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Chen J, Liao Y, Sheng Y, Yao H, Li T, He Z, Ye WWY, Yin M, Tang H, Zhao Y, Zhang P, Wang Y, Fu X, Ji Y. FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD + axis. Metabolism 2025; 165:156147. [PMID: 39880362 DOI: 10.1016/j.metabol.2025.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
AIMS Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism. METHODS The Lyz2-Cre-Flox model selectively deletes FSH receptor (FSHR) from osteoclast precursor cells to generate Fshrf/f; Lyz2-Cre (Fshrf/f; Cre) mice. Bone quality was assessed using micro-computed tomography, histomorphometric analysis, and dual-fluorescence labeling. The in vitro assays measured oxygen consumption rate, extracellular acidification rate, pyruvate content, and mitochondrial membrane potential to determine metabolic flux. RNA-seq, LC-MS, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) assays were used to elucidate the underlying mechanisms. RESULTS FSHR deficiency in osteoclasts protected bone from resorption under normal and ovariectomized conditions. FSHR-deficient osteoclasts have reduced nicotinamide adenine dinucleotide (NAD+) levels, impairing osteoclast activity and energy metabolism. Mechanistically, FSH influenced NAD+ levels via the CREB/MDH2 axis. Treatment with FSH monoclonal antibodies rescued bone loss in OVX mice and reduced bone marrow NAD+ levels. CONCLUSIONS Targeting FSH may be a promising metabolic modulation strategy for treating osteoporosis and other diseases associated with high osteoclast activity.
Collapse
Affiliation(s)
- Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Weng Wan Yue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Huilin Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Peiqi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Xiazhou Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
12
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF-α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- International Max Planck Research School in Physics and Medicine, Erlangen, Germany
| | - Luís Eduardo Gonçalves
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vivien Ruder
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christina James
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA
| | - Holger Wend
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Atilio Gerez
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Merel Kuijs
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maiia Shulman
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Roland Riek
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Lacabanne D, Sowton AP, Jose B, Kunji ERS, Tavoulari S. Current Understanding of Pathogenic Mechanisms and Disease Models of Citrin Deficiency. J Inherit Metab Dis 2025; 48:e70021. [PMID: 40145619 PMCID: PMC11948450 DOI: 10.1002/jimd.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
Citrin deficiency (CD) is a complex mitochondrial disease with three different age-related stages: neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and type II citrullinemia (CTLN2), recently renamed adolescent and adult CD (AACD). While highly prevalent in the Asian population, CD is pan-ethnic and remains severely underdiagnosed. The disease is caused by the dysfunction or absence of the mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also known as citrin. Citrin deficiency results in a direct impairment of the malate-aspartate shuttle and the urea cycle, with expected knock-on effects on a multitude of other metabolic pathways, leading to a complicated pathophysiology. Here, we discuss our current knowledge of the molecular mechanism of substrate transport by citrin, including recent advances suggesting against its calcium regulation. We also discuss the different types of pathogenic variants found in CD patients and new insights into their pathogenic mechanisms. Additionally, we provide a summary and assessment of the efforts to develop preclinical models as well as treatments for the disease.
Collapse
Affiliation(s)
- Denis Lacabanne
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Alice P. Sowton
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Bosco Jose
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
15
|
Garcia GS, Othonicar MF, Campos ATP, Kilbourn EA, Bicego KC, Lerchner J, Tennessen JM, Oliveira MT. The alternative oxidase reconfigures the larval mitochondrial electron transport system to accelerate growth and development in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639223. [PMID: 40027816 PMCID: PMC11870600 DOI: 10.1101/2025.02.20.639223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The alternative oxidase (AOX) is naturally present in the mitochondrial electron transfer system (ETS) of many organisms but absent in vertebrates and most insects. AOX oxidizes coenzyme Q and reduces O 2 in H 2 O, partially replacing the ETS cytochrome c segment and alleviating the oxidative stress caused by ETS overload. As successfully demonstrated in animal models, AOX shows potential in mitigating mitochondrial diseases. However, its non-proton-pumping nature may uncouple mitochondria, leading to excessive heat generation and interference with normal metabolism and physiology. Here we show that AOX from the tunicate Ciona intestinalis accelerates development of Drosophila melanogaster , elevating larval biomass accumulation (primarily due to increased fat), mobility and food intake, without increasing body heat production. AOX intensifies Leak respiration and lowers oxidative phosphorylation efficiency through functional interactions with the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). This is associated with increased complex I (CI)-driven respiration and supercomplex formation, higher cellular NAD+/NADH ratios, and an enhanced flux through the central carbon metabolism. Chemical uncouplers and rotenone confirm the roles of mitochondrial uncoupling and CI in the development of AOX-expressing larvae. Thus, AOX appears to be promoting increased growth by reinforcing the larval proliferative metabolic program via an intricate mechanism that reconfigures the larval ETS.
Collapse
|
16
|
Alqudah MAY, Yaseen MM, Alzoubi KH, Al-Husein BA, Bardaweel SK, Abuhelwa AY, Semreen AM, Zenati RA, El-Awady R, Shara M, Bustanji Y, Soares NC, Abu-Gharbieh E, Ramadan WS, Semreen MH. Metabolomic Analysis, Antiproliferative, Anti-Migratory, and Anti-Invasive Potential of Amlodipine in Lung Cancer Cells. Drug Des Devel Ther 2025; 19:1215-1229. [PMID: 39991087 PMCID: PMC11847429 DOI: 10.2147/dddt.s484561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background and Objective Lung cancer stands as the leading cause of cancer-related fatalities worldwide. While chemotherapy remains a crucial treatment option for managing lung cancer in both early-stage and advanced cases, it is accompanied by significant drawbacks, including severe side effects and the development of chemoresistance. Overcoming chemoresistance represents a considerable challenge in lung cancer treatment. Amlodipine cytotoxicity was previously demonstrated and could make lung cancer cells more susceptible to chemotherapies. This research aims to examine the metabolomics changes that may occur due to amlodipine's anticancer effects on non-small cell lung cancer (NSCLC) cells. Methods Amlodipine's effects on A549 and H1299 NSCLC were evaluated using a colorimetric MTT assay, a scratch wound-healing assay and Matrigel invasion chambers to measure cell viability, cell migration and cell invasion. Ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) was used for the untargeted metabolomics investigation. Results Our study revealed that amlodipine significantly reduced proliferation of cancer cells in a dose-dependent fashion with IC50 values of 23 and 25.66 µM in A549 and H1299 cells, respectively. Furthermore, amlodipine reduced the invasiveness and migration of cancer cells. Metabolomics analysis revealed distinct metabolites to be significantly dysregulated (Citramalic acid, L-Proline, dGMP, L-Glutamic acid, Niacinamide, and L-Acetylcarnitine) in amlodipine-treated cells. Conclusion The present study illustrates the anticancer effects of amlodipine on lung cancer proliferation, migration, and invasion in vitro and enhance our understanding of how amlodipine exerts its anticancer potential by casting light on these mechanisms.
Collapse
Affiliation(s)
- Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud M Yaseen
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Belal A Al-Husein
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Ahmad Y Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahlam M Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A Zenati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Nelson C Soares
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Wafaa S Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Mao Z, Liu W, Zou R, Sun L, Huang S, Wu L, Chen L, Wu J, Lu S, Song Z, Li X, Huang Y, Rao Y, Huang YY, Li B, Hu Z, Li J. Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification. Signal Transduct Target Ther 2025; 10:67. [PMID: 39962087 PMCID: PMC11833132 DOI: 10.1038/s41392-025-02157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondrial metabolism-regulated epigenetic modification is a driving force of aging and a promising target for therapeutic intervention. Mitochondrial malate dehydrogenase (MDH2), an enzyme in the TCA cycle, was identified as an anti-aging target through activity-based protein profiling in present study. The expression level of MDH2 was positively correlated with the cellular senescence in Mdh2 knockdown or overexpression fibroblasts. Glibenclamide (Gli), a classic anti-glycemic drug, was found to inhibit the activity of MDH2 and relieve fibroblast senescence in an MDH2-dependent manner. The anti-aging effects of Gli were also further validated in vivo, as it extended the lifespan and reduced the frailty index of naturally aged mice. Liver specific Mdh2 knockdown eliminated Gli's beneficial effects in naturally aged mice, reducing p16INK4a expression and hepatic fibrosis. Mechanistically, MDH2 inhibition or knockdown disrupted central carbon metabolism, then enhanced the methionine cycle flux, and subsequently promoted histone methylation. Notably, the tri-methylation of H3K27, identified as a crucial methylation site in reversing cellular senescence, was significantly elevated in hepatic tissues of naturally aged mice with Mdh2 knockdown. Taken together, these findings reveal that MDH2 inhibition or knockdown delays the aging process through metabolic-epigenetic regulation. Our research not only identified MDH2 as a potential therapeutic target and Gli as a lead compound for anti-aging drug development, but also shed light on the intricate interplay of metabolism and epigenetic modifications in aging.
Collapse
Affiliation(s)
- Zhifan Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Rong Zou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shuman Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyu Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Liru Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jiale Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shijie Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhouzhi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xie Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Baoli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Zelan Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materialbiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan, Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
18
|
Chen M, He L, Liang D, Qu C. Overexpression of AspAT alleviates the inhibitory effects of ammonium on root development in Populus tomentosa. Biochem Biophys Res Commun 2025; 746:151263. [PMID: 39742792 DOI: 10.1016/j.bbrc.2024.151263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Ammonium toxicity, resulting from prolonged use of ammonium as the sole nitrogen source, can lead to physiological and morphological disorders, ultimately stunting plant growth. Enhancing ammonium assimilation efficiency has been extensively explored as a strategy to mitigate ammonium toxicity. However, the role of AspAT, a key enzyme in nitrogen assimilation, remains underexplored. This study investigates the function of AspAT in alleviating ammonium toxicity and uncovers the underlying physiological mechanisms. The results show that two Populus AspAT genes, AspAT13 and AspAT15, exhibit the highest expression levels in roots and are induced by exogenous ammonium. Overexpression of AspAT13 and AspAT15 in transgenic plants results in increased root biomass. In these plants, the activities of key nitrogen assimilation enzymes (GS and GOGAT) are significantly enhanced, along with increases in soluble protein, soluble sugar, and free amino acid contents. Additionally, the activities of antioxidant enzymes, such as SOD and CAT, are elevated, and ammonium content in the roots is significantly reduced. Moreover, the levels of hormones, including IAA, ACC, IBA, and BR, are significantly increased in the roots of transgenic plants. Our findings suggest that AspAT13 and AspAT15 play essential roles in mitigating ammonium toxicity, a process closely linked to enhanced nitrogen assimilation, antioxidant systems, and the regulation of auxin and brassinosteroid (BR) signaling.
Collapse
Affiliation(s)
- Meiji Chen
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Lang He
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Deyang Liang
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Chunpu Qu
- College of Forestry, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Price MS, Rastegari E, Gupta R, Vo K, Moore TI, Venkatachalam K. Intracellular Lactate Dynamics in Drosophila Glutamatergic Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.26.582095. [PMID: 38464270 PMCID: PMC10925175 DOI: 10.1101/2024.02.26.582095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Rates of lactate production and consumption reflect the metabolic state of many cell types, including neurons. Here, we investigate the effects of nutrient deprivation on lactate dynamics in Drosophila glutamatergic neurons by leveraging the limiting effects of the diffusion barrier surrounding cells in culture. We found that neurons constitutively consume lactate when availability of trehalose, the glucose disaccharide preferred by insects, is limited by the diffusion barrier. Acute mechanical disruption of the barrier reduced this reliance on lactate. Through kinetic modeling and experimental validation, we demonstrate that neuronal lactate consumption rates correlate inversely with their mitochondrial density. Further, we found that lactate levels in neurons exhibited temporal correlations that allowed prediction of cytosolic lactate dynamics after the disruption of the diffusion barrier from pre-perturbation lactate fluctuations. Collectively, our findings reveal the influence of diffusion barriers on neuronal metabolic preferences, and demonstrate the existence of temporal correlations between lactate dynamics under conditions of nutrient deprivation and those evoked by the subsequent restoration of nutrient availability.
Collapse
Affiliation(s)
- Matthew S. Price
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Elham Rastegari
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Richa Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Katie Vo
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| |
Collapse
|
20
|
Furuhashi T, Toda K, Weckwerth W. Review of cancer cell volatile organic compounds: their metabolism and evolution. Front Mol Biosci 2025; 11:1499104. [PMID: 39840075 PMCID: PMC11747368 DOI: 10.3389/fmolb.2024.1499104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer is ranked as the top cause of premature mortality. Volatile organic compounds (VOCs) are produced from catalytic peroxidation by reactive oxygen species (ROS) and have become a highly attractive non-invasive cancer screening approach. For future clinical applications, however, the correlation between cancer hallmarks and cancer-specific VOCs requires further study. This review discusses and compares cellular metabolism, signal transduction as well as mitochondrial metabolite translocation in view of cancer evolution and the basic biology of VOCs production. Certain cancerous characteristics as well as the origin of the ROS removal system date back to procaryotes and early eukaryotes and share commonalities with non-cancerous proliferative cells. This calls for future studies on metabolic cross talks and regulation of the VOCs production pathway.
Collapse
Affiliation(s)
- Takeshi Furuhashi
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Kanako Toda
- Department of Oral Health Sciences, Health Sciences, Saitama Prefectural University, Koshigaya-shi, Japan
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Health in Society Research Network, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Shivaprakash P, Beeraka NM, Madhunapantula SRV, Nikolenko VN, Basalingappa KM. Metformin Effects on SHIP2, AMPKs and Gut Microbiota: Recent Updates on Pharmacology. Curr Med Chem 2025; 32:1732-1754. [PMID: 38409699 DOI: 10.2174/0109298673289342240213040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Metformin, a biguanide on the WHO's list of essential medicines has a long history of 50 years or more in treating hyperglycemia, and its therapeutic saga continues beyond diabetes treatment. Glucoregulatory actions are central to the physiological effects of metformin; surprisingly, the precise mechanism with which metformin regulates glucose metabolism is not thoroughly understood yet. METHODS The main aim of this review is to explore the recent implications of metformin in hepatic gluconeogenesis, AMPKs, and SHIP2 and subsequently to elucidate the metformin action across intestine and gut microbiota. We have searched PubMed, Google scholar, Medline, eMedicine, National Library of Medicine (NLM), clinicaltrials.gov (registry), and ReleMed for the implications of metformin with its updated role in AMPKs, SHIP2, and hepatic gluoconeogenesis, and gut microbiota. In this review, we have described the efficacy of metformin as a drug repurposing strategy in modulating the role of AMPKs lysosomal-AMPKs, and also, the controversies associated with metformin. RESULTS Research suggests that biguanide exhibits hormetic effects depending on the concentrations used (micromolar to millimolar). The primary mechanism attributed to metformin action is the inhibition of mitochondrial complex I, and subsequent reduction of cellular energy state, as observed with increased AMP or ADP ratio, thereby metformin can also activate the cellular energy sensor AMPK to inhibit hepatic gluconeogenesis. However, new mechanistic models have been proposed lately to explain the pleiotropic actions of metformin; at low dose, metformin can activate lysosomal-AMPK via the AXIN-LKB1 pathway. Conversely, in an AMPK-independent mechanism, metformin-induced elevation of AMP suppresses adenylate cyclase and glucagon-activated cAMP production to inhibit hepatic glucose output by glucagon. Metformin inhibits mitochondrial glycerophosphate dehydrogenase; mGPDH, and increases the cytosolic NADH/NAD+, affecting the availability of lactate and glycerol for gluconeogenesis. Metformin can inhibit Src homology 2 domain-containing inositol 5-phosphatase 2; SHIP2 to increase the insulin sensitivity and glucose uptake by peripheral tissues. In addition, new exciting mechanisms suggest the role of metformin in promoting beneficial gut microbiome and gut health. Metformin regulates duodenal AMPK activation, incretin harmone secretion and bile acid homeostasis to improve intestinal glucose absorption and utilization. CONCLUSION The proper understanding of the key regulators of metformin actions is of utmost importance to enhance its pleotropic benefits on diabetes and beyond.
Collapse
Affiliation(s)
- Priyanka Shivaprakash
- Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Andhra Pradesh, India
- Department of Human Anatomy, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Subba Rao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia
| | - Kanthesh M Basalingappa
- Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
22
|
Shen K, Zhou H, Zuo Q, Gu Y, Cheng J, Yan K, Zhang H, Song H, Liang W, Zhou J, Liu J, Liu F, Zhai C, Fan W. GATD3A-deficiency-induced mitochondrial dysfunction facilitates senescence of fibroblast-like synoviocytes and osteoarthritis progression. Nat Commun 2024; 15:10923. [PMID: 39738099 PMCID: PMC11685659 DOI: 10.1038/s41467-024-55335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence. Mechanistically, GATD3A deficiency enhances the binding of Sirt3 to MDH2, leading to deacetylation and decreased activity of MDH2. Reduced MDH2 activity impairs tricarboxylic acid cycle flux, resulting in mitochondrial dysfunction and fibroblast-like synoviocyte senescence. Intra-articular injection of recombinant adeno-associated virus carrying GATD3A significantly alleviates the osteoarthritis phenotype in male mice. This study increases our current understanding of GATD3A function. In particular, we reveal a novel mechanism of fibroblast-like synoviocyte senescence, suggesting that targeting GATD3A is a potential therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Kai Shen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Zuo
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangqi Cheng
- Department of Orthopaedics, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Kai Yan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiwen Zhang
- The Core Facility of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanghe Song
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenwei Liang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinchun Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenjun Zhai
- Department of Orthopaedics, Yixing People's Hospital, Yixing, Jiangsu, China.
| | - Weimin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| |
Collapse
|
24
|
Peng H, Dou H, He S, Xie YA, Zhang Q, Zheng J. The role of GOT1 in cancer metabolism. Front Oncol 2024; 14:1519046. [PMID: 39777342 PMCID: PMC11703747 DOI: 10.3389/fonc.2024.1519046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
GOT1, a cytoplasmic glutamic oxaloacetic transaminase, plays a critical role in various metabolic pathways essential for cellular homeostasis and dysregulated metabolism. Recent studies have highlighted the significant plasticity and roles of GOT1 in metabolic reprogramming through participating in both classical and non-classical glutamine metabolism, glycolytic metabolism, and other metabolic pathways. This review summarizes emerging insights on the metabolic roles of GOT1 in cancer cells and emphasizes the response of cancer cells to altered metabolism when the expression of GOT1 is altered. We review how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT1 is inhibited and delineate the molecular mechanisms of GOT1's interaction with specific oncogenes and regulators at multiple levels, including transcriptional and epigenetic regulation, which govern cellular growth and metabolism. These insights may provide new directions for cancer metabolism research and novel targets for cancer treatment.
Collapse
Affiliation(s)
- Huan Peng
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huihong Dou
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng He
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu-an Xie
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianqiu Zheng
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
25
|
Park CH, Park M, Kelly ME, Cheng H, Lee SR, Jang C, Chang JS. Cold-inducible GOT1 activates the malate-aspartate shuttle in brown adipose tissue to support fuel preference for fatty acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623867. [PMID: 39605634 PMCID: PMC11601492 DOI: 10.1101/2024.11.18.623867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brown adipose tissue (BAT) simultaneously metabolizes fatty acids (FA) and glucose under cold stress but favors FA as the primary fuel for heat production. It remains unclear how BAT steer fuel preference toward FA over glucose. Here we show that the malate-aspartate shuttle (MAS) is activated by cold in BAT and plays a crucial role in promoting mitochondrial FA utilization. Mechanistically, cold stress selectively induces glutamic-oxaloacetic transaminase (GOT1), a key MAS enzyme, via the β-adrenergic receptor-PKA-PGC-1α axis. The increase in GOT1 activates MAS, transferring reducing equivalents from the cytosol to mitochondria. This process enhances FA oxidation in mitochondria while limiting glucose oxidation. In contrast, loss of MAS activity by GOT1 deficiency reduces FA oxidation, leading to increased glucose oxidation. Together, our work uncovers a unique regulatory mechanism and role for MAS in mitochondrial fuel selection and advances our understanding of how BAT maintains fuel preference for FA under cold conditions. Highlights Got1 is markedly induced by cold in BAT via a β-adrenergic receptor-PKA-PGC-1α axis The increase in cytosolic GOT1 activates the malate-aspartate shuttle (MAS)MAS activation promotes fatty acid oxidation while reducing glucose oxidation Loss of MAS activity in BAT by Got1 deletion shifts the fuel preference to glucose.
Collapse
|
26
|
Chapman S, Brunet T, Mourier A, Habermann BH. MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism. BIOINFORMATICS ADVANCES 2024; 5:vbae172. [PMID: 39758828 PMCID: PMC11696703 DOI: 10.1093/bioadv/vbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/07/2025]
Abstract
Motivation Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available. Results Building upon the similarity between human and mouse mitochondrial metabolism, we present mitoMammal, a genome-scale metabolic model that contains human and mouse specific gene-product reaction rules. MitoMammal is able to model mouse and human mitochondrial metabolism. To demonstrate this, using an adapted E-Flux algorithm, we integrated proteomic data from mitochondria of isolated mouse cardiomyocytes and mouse brown adipocyte tissue, as well as transcriptomic data from in vitro differentiated human brown adipocytes and modelled the context specific metabolism using flux balance analysis. In all three simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy metabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in research in cardiac disease and diabetes in both mouse and human contexts. Availability and implementation The MitoMammal Jupyter Notebook is available at: https://gitlab.com/habermann_lab/mitomammal.
Collapse
Affiliation(s)
- Stephen Chapman
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Theo Brunet
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| | - Arnaud Mourier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux 33077, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
27
|
Fermaintt CS, Wacker SA. Malate dehydrogenase as a multi-purpose target for drug discovery. Essays Biochem 2024; 68:147-160. [PMID: 38818725 DOI: 10.1042/ebc20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Malate dehydrogenase (MDH) enzymes play critical roles in cellular metabolism, facilitating the reversible conversion of malate to oxaloacetate using NAD+/NADH as a cofactor. The two human isoforms of MDH have roles in the citric acid cycle and the malate-aspartate shuttle, and thus both are key enzymes in aerobic respiration as well as regenerating the pool of NAD+ used in glycolysis. This review highlights the potential of MDH as a therapeutic drug target in various diseases, including metabolic and neurological disorders, cancer, and infectious diseases. The most promising molecules for targeting MDH have been examined in the context of human malignancies, where MDH is frequently overexpressed. Recent studies have led to the identification of several antagonists, some of which are broad MDH inhibitors while others have selectivity for either of the two human MDH isoforms. Other promising compounds have been studied in the context of parasitic MDH, as inhibiting the function of the enzyme could selectively kill the parasite. Research is ongoing with these chemical scaffolds to develop more effective small-molecule drug leads that would have great potential for clinical applications.
Collapse
Affiliation(s)
- Charles S Fermaintt
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, U.S.A
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, The Bronx, NY, U.S.A
| |
Collapse
|
28
|
Parente AD, Bolland DE, Huisinga KL, Provost JJ. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays Biochem 2024; 68:121-134. [PMID: 38962852 DOI: 10.1042/ebc20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Malate dehydrogenase (MDH) is pivotal in mammalian tissue metabolism, participating in various pathways beyond its classical roles and highlighting its adaptability to cellular demands. This enzyme is involved in maintaining redox balance, lipid synthesis, and glutamine metabolism and supports rapidly proliferating cells' energetic and biosynthetic needs. The involvement of MDH in glutamine metabolism underlines its significance in cell physiology. In contrast, its contribution to lipid metabolism highlights its role in essential biosynthetic processes necessary for cell maintenance and proliferation. The enzyme's regulatory mechanisms, such as post-translational modifications, underscore its complexity and importance in metabolic regulation, positioning MDH as a potential target in metabolic dysregulation. Furthermore, the association of MDH with various pathologies, including cancer and neurological disorders, suggests its involvement in disease progression. The overexpression of MDH isoforms MDH1 and MDH2 in cancers like breast, prostate, and pancreatic ductal adenocarcinoma, alongside structural modifications, implies their critical role in the metabolic adaptation of tumor cells. Additionally, mutations in MDH2 linked to pheochromocytomas, paragangliomas, and other metabolic diseases emphasize MDH's role in metabolic homeostasis. This review spotlights MDH's potential as a biomarker and therapeutic target, advocating for further research into its multifunctional roles and regulatory mechanisms in health and disease.
Collapse
Affiliation(s)
- Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Danielle E Bolland
- Department of Biology, University of Minnesota Morris, Morris, MN 56267, U.S.A
| | - Kathryn L Huisinga
- Department of Chemistry and Biochemistry, Malone University, Canton, OH 44709, U.S.A
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
29
|
Provost JJ, Parente AD, Slade KM, Wiese TJ. Exploring the uncharted territory of the potential protein-protein interactions of cytosolic malate dehydrogenase. Essays Biochem 2024; 68:83-97. [PMID: 38868916 DOI: 10.1042/ebc20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| | - Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY 14456, U.S.A
| | - Thomas J Wiese
- Department of Chemistry, Tabor College, 400 South Jefferson, Hillsboro, KS 67063, U.S.A
| |
Collapse
|
30
|
Kuhn ML, Rakus JF, Quenet D. Acetylation, ADP-ribosylation and methylation of malate dehydrogenase. Essays Biochem 2024; 68:199-212. [PMID: 38994669 PMCID: PMC11451102 DOI: 10.1042/ebc20230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco
State University, San Francisco, CA, U.S.A
| | - John F. Rakus
- School of Sciences, University of Louisiana at Monroe,
Monroe, LA, U.S.A
| | - Delphine Quenet
- Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, U.S.A
| |
Collapse
|
31
|
Pissas G, Tziastoudi M, Divani M, Poulianiti C, Konsta MAP, Lykotsetas E, Liakopoulos V, Stefanidis I, Eleftheriadis T. Malate dehydrogenase-2 inhibition shields renal tubular epithelial cells from anoxia-reoxygenation injury by reducing reactive oxygen species. J Biochem Mol Toxicol 2024; 38:e23854. [PMID: 39287333 DOI: 10.1002/jbt.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury. In experiments involving primary human renal proximal tubular epithelial cells (RPTECs) exposed to anoxia-reoxygenation, we explored the hypothesis that mitochondrial malate dehydrogenase-2 (MDH-2) inhibition redirects malate metabolism from the mitochondria to the cytoplasm, towards the malate-pyruvate cycle and reversed malate-aspartate shuttle. Colorimetry, fluorometry, and western blotting showed that MDH2 inhibition accelerates the malate-pyruvate cycle enhancing cytoplasmic NADPH, thereby regenerating the potent antioxidant reduced glutathione. It also reversed the malate-aspartate shuttle and potentially diminished mitochondrial reactive oxygen species (ROS) production by transferring electrons, in the form of NADH, from the mitochondria to the cytoplasm. The excessive ROS production induced by anoxia-reoxygenation led to DNA damage and protein modification, triggering DNA damage and unfolded protein response, ultimately resulting in apoptosis and senescence. Additionally, ROS induced lipid peroxidation, which may contribute to the process of ferroptosis. Inhibiting MDH-2 proved effective in mitigating ROS overproduction during anoxia-reoxygenation, thereby rescuing RPTECs from death or senescence. Thus, targeting MDH-2 holds promise as a pharmaceutical strategy against I-R injury.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
32
|
Fang C, Ren P, He Y, Wang Y, Yao S, Zhao C, Li X, Zhang X, Li J, Li M. Spinster homolog 2/S1P signaling ameliorates macrophage inflammatory response to bacterial infections by balancing PGE 2 production. Cell Commun Signal 2024; 22:463. [PMID: 39350143 PMCID: PMC11440679 DOI: 10.1186/s12964-024-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear. METHODS Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2flox/floxLyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model. RESULTS In this study, we unveil prostaglandin E2 (PGE2) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE2 production to support malate-aspartate shuttle activity. Conversely, excessive PGE2 resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE2 due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE2 in inflammation throughout infections. The regulation of PGE2 production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one. CONCLUSIONS These findings emphasize PGE2 as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Pan Ren
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yejun He
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yitian Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuting Yao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Congying Zhao
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xueyong Li
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jinqing Li
- Department of Burns, Plastic and Wound Repair Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
33
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
34
|
Esteban-Amo MJ, Jiménez-Cuadrado P, Serrano-Lorenzo P, de la Fuente MÁ, Simarro M. Succinate Dehydrogenase and Human Disease: Novel Insights into a Well-Known Enzyme. Biomedicines 2024; 12:2050. [PMID: 39335562 PMCID: PMC11429145 DOI: 10.3390/biomedicines12092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Succinate dehydrogenase (also known as complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Owing to the privileged position of SDH/CII, its dysfunction leads to TCA cycle arrest and altered respiration. This review aims to elucidate the widely documented profound metabolic effects of SDH/CII deficiency, along with the newly unveiled survival mechanisms in SDH/CII-deficient cells. Such an understanding reveals exploitable vulnerabilities for strategic targeting, which is crucial for the development of novel and more precise therapies for primary mitochondrial diseases, as well as for familial and sporadic cancers associated with SDH/CII mutations.
Collapse
Affiliation(s)
- María J. Esteban-Amo
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - Patricia Jiménez-Cuadrado
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - Pablo Serrano-Lorenzo
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Á. de la Fuente
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - María Simarro
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
35
|
Nam Y, Kim S, Park YH, Kim B, Shin SJ, Leem SH, Park HH, Jung G, Lee J, Kim H, Yoo D, Kim HS, Moon M. Investigating the impact of environmental enrichment on proteome and neurotransmitter-related profiles in an animal model of Alzheimer's disease. Aging Cell 2024; 23:e14231. [PMID: 38952076 PMCID: PMC11488327 DOI: 10.1111/acel.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aβ accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Sujin Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Yong Ho Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Byeong‐Hyeon Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | | | | | | | - Doo‐Han Yoo
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
- Department of Occupational TherapyKonyang UniversityDaejeonSouth Korea
| | - Hak Su Kim
- Veterans Medical Research InstituteVeterans Health Service Medical CenterSeoulSouth Korea
| | - Minho Moon
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| |
Collapse
|
36
|
Jiang Z. SLC25A19 is required for NADH homeostasis and mitochondrial respiration. Free Radic Biol Med 2024; 222:317-330. [PMID: 38944213 DOI: 10.1016/j.freeradbiomed.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Mitochondrial transporters facilitate the translocation of metabolites between the cytoplasm and mitochondria and are critical for mitochondrial functional integrity. Although many mitochondrial transporters are associated with metabolic diseases, how they regulate mitochondrial function and their metabolic contributions at the cellular level are largely unknown. Here, we show that mitochondrial thiamine pyrophosphate (TPP) transporter SLC25A19 is required for mitochondrial respiration. SLC25A19 deficiency leads to reduced cell viability, increased integrated stress response (ISR), enhanced glycolysis and elevated cell sensitivity to 2-deoxyglucose (2-DG) treatment. Through a series of biochemical assays, we found that the depletion of mitochondrial NADH is the primary cause of the impaired mitochondrial respiration in SLC25A19 deficient cells. We also showed involvement of SLC25A19 in regulating the enzymatic activities of complexes I and III, the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle and amino acid metabolism. Consistently, addition of idebenone, an analog of coenzyme Q10, restores mitochondrial respiration and cell viability in SLC25A19 deficient cells. Together, our findings provide new insight into the functions of SLC25A19 in mitochondrial and cellular physiology, and suggest that restoring mitochondrial respiration could be a novel strategy for treating SLC25A19-associated disorders.
Collapse
Affiliation(s)
- Zongsheng Jiang
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
37
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
38
|
Hellweg L, Pfeifer M, Tarnawski M, Thing-Teoh S, Chang L, Bergner A, Kress J, Hiblot J, Wiedmer T, Superti-Furga G, Reinhardt J, Johnsson K, Leippe P. AspSnFR: A genetically encoded biosensor for real-time monitoring of aspartate in live cells. Cell Chem Biol 2024; 31:1529-1541.e12. [PMID: 38806058 DOI: 10.1016/j.chembiol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Heidelberg University, Heidelberg, Germany
| | - Martin Pfeifer
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Shao Thing-Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Chang
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Kress
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Reinhardt
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
39
|
Koch J, Broeks MH, Gautschi M, Jans J, Laemmle A. Inborn errors of the malate aspartate shuttle - Update on patients and cellular models. Mol Genet Metab 2024; 142:108520. [PMID: 38945121 DOI: 10.1016/j.ymgme.2024.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.
Collapse
Affiliation(s)
- Jasmine Koch
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melissa H Broeks
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
41
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
42
|
Zhang MQ, Huang LH, Gong MC, Hong WM, Xie R, Wang J, Zhou LL, Chen ZH. Dual targeting total saponins of Pulsatilla of natural polymer crosslinked gel beads with multiple therapeutic effects for ulcerative colitis. Eur J Pharm Biopharm 2024; 199:114309. [PMID: 38704102 DOI: 10.1016/j.ejpb.2024.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.
Collapse
Affiliation(s)
- Min-Quan Zhang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Hui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Min-Cheng Gong
- Jiangxi Pharmaceutical School, Nanchang 330001, PR China
| | - Wei-Man Hong
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Rong Xie
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Liang Zhou
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Zhen-Hua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
43
|
Mathis D, Koch J, Koller S, Sauter K, Flück C, Uldry AC, Forny P, Froese DS, Laemmle A. Induced pluripotent stem cell-derived hepatocytes reveal TCA cycle disruption and the potential basis for triheptanoin treatment for malate dehydrogenase 2 deficiency. Mol Genet Metab Rep 2024; 39:101066. [PMID: 38425868 PMCID: PMC10900122 DOI: 10.1016/j.ymgmr.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondrial malate dehydrogenase 2 (MDH2) is crucial to cellular energy generation through direct participation in the tricarboxylic acid (TCA) cycle and the malate aspartate shuttle (MAS). Inherited MDH2 deficiency is an ultra-rare metabolic disease caused by bi-allelic pathogenic variants in the MDH2 gene, resulting in early-onset encephalopathy, psychomotor delay, muscular hypotonia and frequent seizures. Currently, there is no cure for this devastating disease. We recently reported symptomatic improvement of a three-year-old girl with MDH2 deficiency following treatment with the triglyceride triheptanoin. Here, we aimed to better characterize this disease and improve our understanding of the potential utility of triheptanoin treatment. Using fibroblasts derived from this patient, we generated induced pluripotent stem cells (hiPSCs) and differentiated them into hepatocytes (hiPSC-Heps). Characterization of patient-derived hiPSCs and hiPSC-Heps revealed significantly reduced MDH2 protein expression. Untargeted proteotyping of hiPSC-Heps revealed global dysregulation of mitochondrial proteins, including upregulation of TCA cycle and fatty acid oxidation enzymes. Metabolomic profiling confirmed TCA cycle and MAS dysregulation, and demonstrated normalization of malate, fumarate and aspartate following treatment with the triheptanoin components glycerol and heptanoate. Taken together, our results provide the first patient-derived hiPSC-Hep-based model of MDH2 deficiency, confirm altered TCA cycle function, and provide further evidence for the implementation of triheptanoin therapy for this ultra-rare disease. Synopsis This study reveals altered expression of mitochondrial pathways including the tricarboxylic acid cycle and changes in metabolite profiles in malate dehydrogenase 2 deficiency and provides the molecular basis for triheptanoin treatment in this ultra-rare disease.
Collapse
Affiliation(s)
- Déborah Mathis
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jasmine Koch
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Koller
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Pharmacy, Medical Faculty, University of Bern, Bern, Switzerland
| | - Kay Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christa Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - D. Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Alexander Laemmle
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
45
|
Wang J, Hong M, Cheng Y, Wang X, Li D, Chen G, Bao B, Song J, Du X, Yang C, Zheng L, Tong Q. Targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for malate-aspartate shuttle and tumour progression. Clin Transl Med 2024; 14:e1680. [PMID: 38769668 PMCID: PMC11106511 DOI: 10.1002/ctm2.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.
Collapse
Affiliation(s)
- Jianqun Wang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Mei Hong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Yang Cheng
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Xiaojing Wang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
- Department of GeriatricsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Dan Li
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Guo Chen
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Banghe Bao
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Jiyu Song
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Xinyi Du
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Chunhui Yang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Liduan Zheng
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| | - Qiangsong Tong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceP. R. China
| |
Collapse
|
46
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
47
|
Catussi BLC, Ferreira JR, Lo Turco EG, Morgulis SCF, Baruselli PS. Metabolic imprinting in beef calves supplemented with creep feeding on performance, reproductive efficiency and metabolome profile. Sci Rep 2024; 14:9702. [PMID: 38678099 PMCID: PMC11055875 DOI: 10.1038/s41598-024-60216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
This experiment evaluated the influence of creep feeding supplementation on productive and reproductive performance and on serum metabolome profile in Nelore (Bos indicus) heifers. Female calves were assigned to treatments: Creep (n = 190), with ad libitum access to a nutritional supplement from 70 to 220 days after birth, or Control (n = 140), without supplementation. After weaning (Day 220), both groups followed the same pasture and nutritional management. Body weight (BW) and backfat thickness (BFAT) were measured over time. Blood samples were collected at 220 and 360 days for LC-MS/MS targeted metabolomics. On day 408, during the synchronization timed artificial insemination (TAI) protocol, reproductive status (RS: diameter of uterine horn and largest follicle, and presence of CL) was assessed. Creep feeding increased BW and BFAT at weaning, but no differences in BW, BFAT, or RS after weaning were observed. Nonetheless, the pregnancy per AI (P/AI) for 1st service was 28.9% higher in the Creep group. On day 220, 11 significant metabolites influenced five metabolic pathways: Glucose-alanine cycle, alanine, glutathione, phenylalanine and tyrosine metabolism, and urea cycle. On day 360, 14 significant metabolites influenced eight metabolic pathways: Malate-aspartate shuttle, arginine and proline metabolism, urea cycle, aspartate, beta-alanine, glutamate metabolism, ammonia recycling and citric acid cycle. In conclusion, creep feeding supplementation improved calf performance and induced metabolic changes at weaning and 360 days of age. Although heifers had similar productive performance and reproductive status, when submitted to TAI, those supplemented with creep feeding had greater P/AI.
Collapse
Affiliation(s)
- Bruna Lima Chechin Catussi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
48
|
Luo Y, Qi X, Zhang Z, Zhang J, Li B, Shu T, Li X, Hu H, Li J, Tang Q, Zhou Y, Wang M, Fan T, Guo W, Liu Y, Zhang J, Pang J, Yang P, Gao R, Chen W, Yan C, Xing Y, Du W, Wang J, Wang C. Inactivation of Malic Enzyme 1 in Endothelial Cells Alleviates Pulmonary Hypertension. Circulation 2024; 149:1354-1371. [PMID: 38314588 DOI: 10.1161/circulationaha.123.067579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.
Collapse
Affiliation(s)
- Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.L.)
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jiawei Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Xiaona Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Huiyuan Hu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Qihao Tang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Yitian Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Mingyao Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
| | - Tianfei Fan
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjun Guo
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China (J.Z.)
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ran Gao
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China (W.C.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (C.Y.)
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
- Chinese Academy of Engineering, Beijing, China (C.W.)
| |
Collapse
|
49
|
Rangan P, Furtado A, Chinnusamy V, Henry R. A multi-cell model for the C 4 photosynthetic pathway in developing wheat grains based upon tissue-specific transcriptome data. Biosystems 2024; 238:105195. [PMID: 38555052 DOI: 10.1016/j.biosystems.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A non-Kranz C4 photosynthesis of the NAD-ME subtype, specifically in developing wheat grains (14 dpa, days post-anthesis) was originally demonstrated using transcriptome-based RNA-seq. Here we present a re-examination of evidence for C4 photosynthesis in the developing grains of wheat and, more broadly, the Pooideae and an investigation of the evolutionary processes and implications. The expression profiles for the genes associated with C4 photosynthesis (C4- and C3-specific) were evaluated using published transcriptome data for the outer pericarp, inner pericarp, and endosperm tissues of the developing wheat grains. The expression of the C4-specific genes across these three tissues revealed the involvement of all three tissues in an orderly fashion to accomplish the non-Kranz NAD-ME-dependent C4 photosynthesis. Based on their expression levels in RPKM (reads per kilobase per million mapped reads) values, a model involving multiple cell- and tissue-types is proposed for C4 photosynthesis involved in the refixation of the respired CO2 from the endosperm tissues in the developing wheat grains. This multi-cell C4 model, proposed to involve more than two cell types, requires further biochemical validation.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| | | | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
50
|
Çapan ÖY, Türkdoğan D, Atalay S, Çağlayan HS. Developmental and epileptic encephalopathy 82 (DEE82) with novel compound heterozygous mutations of GOT2 gene. Seizure 2024; 116:126-132. [PMID: 37977948 DOI: 10.1016/j.seizure.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Developmental and Epileptic Encephalopathies (DEEs) are rare neurological disorders characterized by early-onset medically resistant epileptic seizures, structural brain malformations, and severe developmental delays. These disorders can arise from mutations in genes involved in vital metabolic pathways, including those within the brain. Recent studies have implicated defects in the mitochondrial malate aspartate shuttle (MAS) as potential contributors to the clinical manifestation of infantile epileptic encephalopathy. Although rare, mutations in MDH1, MDH2, AGC1, or GOT2 genes have been reported in patients exhibiting neurological symptoms such as global developmental delay, epilepsy, and progressive microcephaly. METHOD In this study, we employed exome data analysis of a patient diagnosed with DEE, focusing on the screening of 1896 epilepsy-related genes listed in the HPO and ClinVar databases. Sanger sequencing was subsequently conducted to validate and assess the inheritance pattern of the identified variants within the family. The evolutionary conservation scores of the mutated residues were evaluated using the ConSurf Database. Furthermore, the impacts of the causative variations on protein stability were analyzed through I-Mutant and MuPro bioinformatic tools. Structural comparisons between wild-type and mutant proteins were performed using PyMOL, and the physicochemical effects of the mutations were assessed using Project Hope. RESULTS Exome data analysis unveiled the presence of novel compound heterozygous mutations in the GOT2 gene coding for mitochondrial glutamate aspartate transaminase. Sanger sequencing confirmed the paternal inheritance of the p.Asp257Asn mutation and the maternal inheritance of the p.Arg262Cys mutation. The affected individual exhibited plasma metabolic disturbances, including hyperhomocysteinemia, hyperlactatemia, and reduced levels of methionine and arginine. Detailed bioinformatic analysis indicated that the mutations were located within evolutionarily conserved domains of the enzyme, resulting in disruptions to protein stability and structure. CONCLUSION Herein, we describe a case with DEE82 (MIM: # 618721) with pathologic novel biallelic mutations in the GOT2 gene. Early genetic diagnosis of metabolic epilepsies is crucial for long-term neurodevelopmental improvements and seizure control as targeted treatments can be administered based on the affected metabolic pathways.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Dilşad Türkdoğan
- Marmara University, Medical Faculty, Department of Pediatric Neurology, Turkey
| | - Sertaç Atalay
- Central Research Laboratory, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|