1
|
Bandekar M, Panda D. Microtubule depolymerization induces ferroptosis in neuroblastoma cells. IUBMB Life 2024; 76:1186-1198. [PMID: 39038059 DOI: 10.1002/iub.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
2
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
3
|
Massalee R, Cao X. Repurposing beta-blockers for combinatory cancer treatment: effects on conventional and immune therapies. Front Pharmacol 2024; 14:1325050. [PMID: 38264530 PMCID: PMC10803533 DOI: 10.3389/fphar.2023.1325050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Beta-adrenergic receptor signaling regulates cellular processes associated with facilitating tumor cell proliferation and dampening anti-tumor immune response. These cellular processes may lead to compromised tumor control and cancer progression. Based on this ramification, Beta-blockers (BBs) have emerged as a potential treatment by inhibiting beta-adrenergic receptor signaling. This review aimed to investigate the relationship between the use of BBs and tumor progression and treatment response. Therefore, the authors explored several aspects: the potential synergistic relationship of BBs with chemotherapy and immunotherapy in enhancing the effectiveness of chemotherapeutic and immunotherapeutic treatments and their role in boosting endogenous immunity. Further, this review explores the distinctions between the major types of BBs: Non-selective Beta Blockers (NSBBs) and Selective Beta Blockers (SBBs), and their contributions to combinatory cancer treatment. In this review, we presented a perspective interpretation of research findings and future directions. Overall, this review discusses the potential and challenge that BBs present in improving the effectiveness and outcome of cancer treatment.
Collapse
Affiliation(s)
- Rachel Massalee
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Kharb S, Yadav S, Singh A, Sarkar A, Tomar R. Molecular docking and physicochemical studies of 1,3-benzodioxole tagged Dacarbazine derivatives as an anticancer agent. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:520-530. [PMID: 37698454 DOI: 10.1080/21691401.2023.2253470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Cancer, the biggest cause of death globally, remains a tough illness despite enormous advances in therapy. In the present study, 1,3-benzodioxole-tagged dacarbazine derivates were investigated as microtubule inhibitors in order to control cancer as microtubules are involved in cell proliferation. The tubulin protein was analyzed and its structure was validated by various protein validation tools. The binding potential of 1,3-benzodioxole-based dacarbazine-tagged derivatives with tubulin was checked using molecular docking software HEX 8.0 CUDA and AutoDock Vina. Swiss ADME online Web server and pkCSM are used for studying pharmacokinetic and pharmacological studies of compounds. The docking analysis ADME studies displayed that Compounds 1 and 2 bind effectively with the tubulin protein and showed potential properties to use as a potent anticancer drug.
Collapse
Affiliation(s)
- Sonaxi Kharb
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Sangeeta Yadav
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Anjana Sarkar
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, India
| | - Ravi Tomar
- Department of Chemistry, Institute of Basic Sciences, Maharaja Surajmal Brij University, Bharatpur, Rajasthan-321201, India
| |
Collapse
|
5
|
Zhang YF, Huang J, Zhang WX, Liu YH, Wang X, Song J, Jin CY, Zhang SY. Tubulin degradation: Principles, agents, and applications. Bioorg Chem 2023; 139:106684. [PMID: 37356337 DOI: 10.1016/j.bioorg.2023.106684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Jiao Huang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Ayoub AJ, El-Achkar GA, Ghayad SE, Hariss L, Haidar RH, Antar LM, Mallah ZI, Badran B, Grée R, Hachem A, Hamade E, Habib A. Fluorinated Benzofuran and Dihydrobenzofuran as Anti-Inflammatory and Potential Anticancer Agents. Int J Mol Sci 2023; 24:10399. [PMID: 37373544 DOI: 10.3390/ijms241210399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.
Collapse
Affiliation(s)
- Abeer J Ayoub
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
- Department of Biological Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa 146404, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Faculty of Medicine, Saint George University of Beirut, Achrafieh, Beirut 1100-2807, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Sciences II, EDST, Lebanese University, Fanar 90656, Lebanon
- Center for CardioVascular and Nutrition Research (C2VN), INSERM 1263, INRAE 1260, Aix-Marseille University, 13385 Marseille, France
| | - Layal Hariss
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Razan H Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Leen M Antar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Zahraa I Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - René Grée
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Ali Hachem
- Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I, PRASE-EDST, Lebanese University, Hadath 1104, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath 1104, Lebanon
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
7
|
Manjunathan J, Shyamalagowri S, Kamaraj M, Thyagarajan SP, Kaviyarasan V, Brindhadevi K. In vitro evaluation of growth reticence and anticancer potential of 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3β-ol and ergosta-5,7,22-trien-3β-ol bioactive isolated from an edible mushroom Lentinus tuberregium (fr.). ENVIRONMENTAL RESEARCH 2023; 216:114765. [PMID: 36356661 DOI: 10.1016/j.envres.2022.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The focus point of this current work is to evaluate the anticancer and growth inhibitory efficacy of compounds 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3β-ol (LT1), and Ergosta-5,7,22-trien-3β-ol (LT2) of Lentinus tuberregium (Fr.) on three cell lines such as A673 (Rhabdomyosarcoma), MCF7 (breast cancer), and HCT116 (colorectal carcinoma) by MTT assay. LT1 and LT2 exerted maximal growth inhibition in the order as A673 > HCT116 > MCF7. Comparatively, LT1 was more potent in causing cell growth inhibition than LT2 in the A673 cancer cell line. Based on the MTT assay, A673 cells alone proceeded further as a model to evaluate the anticancer potential of LT1 and LT2 at three different semilogarithmic concentrations (3, 10, 30 μM). The cells exposed with compounds at 24 and 48 h were analyzed by flow cytometry. Exposure of LT1 at 3 and 10 μM concentrations for 24 h caused a G2-M arrest. At 10 μM concentration, cells also accumulated in the G0-G1 phase, indicating a G1 block. These effects were only transient as prolonged exposure (48 h) of LT1 treatment brought back the cell population to normalcy. Both the compounds only at 30 μM concentration have the potential to induce a hypodiploid peak (sub G0), indicating an induction of apoptosis which was explicit by nuclear condensation and fragmentation of nuclei in cells. The dose-dependent and compound-specific apoptotic induction was further confirmed by caspase activity higher in LT1 than LT2. The results highlight the significant growth inhibitory activity and anticancer potential of LT1 and LT2 which are recommended for further in-depth analysis.
Collapse
Affiliation(s)
- J Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai-600117, Tamil Nadu, India.
| | - S Shyamalagowri
- P.G. and Research Department of Botany, Pachaiyappas College, Chennai- 600030, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai- 600089, Tamil Nadu, India
| | - S P Thyagarajan
- Avinashilingam Institute for Home Science and Higher Education for Women (Deemed to Be University), Coimbatore -641 043, Tamil Nadu, India
| | - V Kaviyarasan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
8
|
Cytostatic Activity of Combretastatin A-4 Derivatives in an In Vitro System. Bull Exp Biol Med 2022; 174:221-225. [PMID: 36600040 DOI: 10.1007/s10517-023-05677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/06/2023]
Abstract
Cytostatic activity of combretastatin A-4, its 11 analogues, and paclitaxel (Taxacad) was evaluated in vitro on human tumor cells A549 (lung adenocarcinoma) and PC-3 (prostate adenocarcinoma) in order to find the active and stable compound as a promising antitumor agent. 5-(4-Methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-isoxazole (compound 123124) and 3-(3,4,5-trimethoxyphenyl)-4-(4-methoxyphenyl)-isoxazole (compound 29310186) demonstrated the highest cytostatic activity (IC50≈8×10-9 М). The activity of two other cytotoxic compounds (2E)-1-(7-methoxy-2H-1,3-benzodioxol-5-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (compound 104815) and 4-(3-amino-4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-pyrazole hydrochloride (compound 198732) was close to that of Taxacad: IC50 65×10-9 and 80×10-9 М, respectively, and are also promising active components for the development of antitumor drugs.
Collapse
|
9
|
Diclofenac: A Nonsteroidal Anti-Inflammatory Drug Inducing Cancer Cell Death by Inhibiting Microtubule Polymerization and Autophagy Flux. Antioxidants (Basel) 2022; 11:antiox11051009. [PMID: 35624874 PMCID: PMC9138099 DOI: 10.3390/antiox11051009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation.
Collapse
|
10
|
Olalere OA, Gan C, Taiwo AE, Alenezi H, Maqsood S, Adeyi O. Investigating the Microwave Parameters Correlating Effects on Total Recovery of Bioactive Alkaloids from Sesame Leaves using Orthogonal Matrix and Artificial Neural Network Integration. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olusegun Abayomi Olalere
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia University Innovation Incubator Building Sains@USM, Lebuh Bukit Jambul Penang Malaysia
| | - Chee‐Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia University Innovation Incubator Building Sains@USM, Lebuh Bukit Jambul Penang Malaysia
| | - Abiola Ezekiel Taiwo
- Department of Chemical Engineering Landmark University Omu‐Aran Kwara State Nigeria
| | - Hamoud Alenezi
- Process Systems Engineering Centre (PROSPECT) Research Institute for Sustainable Environment School of Chemical and Energy Engineering, Universiti Teknologi Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University Al Ain United Arab Emirates
| | - Oladayo Adeyi
- Department of Chemical Engineering Michael Okpara University of Agriculture Umudike Abia State Nigeria
| |
Collapse
|
11
|
Zou L, Zhang Z, Feng J, Ding W, Li Y, Liang D, Xie T, Li F, Li Y, Chen J, Yang X, Tang L, Ding W. Case ReportPaclitaxel-loaded TPGS 2k/Gelatin-grafted Cyclodextrin/Hyaluronic acid-grafted Cyclodextrin nanoparticles for oral bioavailability and targeting enhancement. J Pharm Sci 2022; 111:1776-1784. [PMID: 35341722 DOI: 10.1016/j.xphs.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
The clinical applications of paclitaxel (PTX), a natural compound with broad-spectrum antitumor effects, have been markedly limited owing to its poor oral bioavailability and lack of targeting ability. Recently, several drug carriers, such as TPGS2k, gelatin (Gel), cyclodextrin (CD), and hyaluronic acid (HA), have been identified as promising enhancers of drug efficacy. Therefore, Gel-grafted CD (GEL-CD) and HA-grafted CD (HA-CD) were synthesized via grafting, and PTX-loaded TPGS2k/GEL-CD/HA-CD nanoparticles (TGHC-PTX-NPs) were successfully prepared using the ultrasonic crushing method. The mean particles size, polydispersity index, and Zeta potential of TGHC-PTX-NPs were 253.57 ± 2.64 nm, 0.13 ± 0.03, and 0.087 ± 0.005 mV, respectively. TGHC-PTX-NPs with an encapsulation efficiency of 61.77 ± 0.47% and a loading capacity of 6.86 ± 0.32% appeared round and uniformly dispersed based on transmission electron microscopy. In vitro release data revealed that TGHC-PTX-NPs had good sustained-release properties. Further, TGHC-PTX-NPs had increased the targeted uptake by HeLa cells as HA can specifically bind to the CD44 receptor at the cell surface, and its intestinal absorption is related to caveolin-mediated endocytosis. The pharmacokinetic results indicated that TGHC-PTX-NPs significantly enhanced the absorption of PTX in vivo compared to the PTX suspension, with a relative bioavailability of 227.21%. Such findings indicate the potential of TGHC-PTX-NPs for numerous clinical applications.
Collapse
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongbin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; South China Branch of National Engineering Research Center for Manufacturing Technology of Traditional Chinese Medicine Solid Preparation, Nanning, China
| | - Wenyou Ding
- Basic Courses Department of Wuhan Donghu University
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University
| | - Dan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinqing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China; College of Veterinary Medicine, Northeast Agricultural University; Key Laboratory of Common Technology of Chinese Medicine Preparations, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
12
|
Ashraf SM, Mahanty S, Rathinasamy K. Securinine induces mitotic block in cancer cells by binding to tubulin and inhibiting microtubule assembly: A possible mechanistic basis for its anticancer activity. Life Sci 2021; 287:120105. [PMID: 34756929 DOI: 10.1016/j.lfs.2021.120105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
AIM Analysis of the anticancer and antimitotic activity of the plant derived alkaloid securinine along with its effect on the organization of cellular microtubules as well as its binding with purified goat brain tubulin in-vitro. MATERIALS AND METHODS The cytotoxicity of securinine on different cell lines was conducted using SRB assay. The effect of securinine on the cellular microtubules was analyzed using immunofluorescence microscopy. The binding of securinine on purified goat brain tubulin was evaluated using fluorescent spectroscopy. KEY FINDINGS Securinine effectively prevented the proliferation of cervical, breast and lung cancer cells with an IC50 of 6, 10 and 11 μM respectively and induced minimal toxicity in HEK cell line. Securinine at concentrations higher than IC50 induced significant depolymerization in interphase and mitotic microtubules and it suppressed the reassembly of cold depolymerized spindle microtubules in HeLa cells. In the wound healing assay, securinine effectively suppressed the migration of HeLa cells to close the wound. Securinine bound to tubulin with a Kd of 9.7 μM and inhibited the assembly of tubulin into microtubules. The treatment with securinine induced a mitochondrial dependent ROS response in HeLa cells which enhanced the cytotoxic effect of securinine. The result from gene expression studies indicates that securinine induced apoptosis in MCF-7 cells through p53 dependent pathway. SIGNIFICANCE Considering the strong anticancer and anti-metastatic property and low toxicity in non-malignant cell lines, we suggest that securinine can be used as a chemotherapeutic drug either alone or in combination with other known anticancer molecules.
Collapse
Affiliation(s)
- Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
13
|
Lin PK, Salvador J, Xie J, Aguera KN, Koller GM, Kemp SS, Griffin CT, Davis GE. Selective and Marked Blockade of Endothelial Sprouting Behavior Using Paclitaxel and Related Pharmacologic Agents. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2245-2264. [PMID: 34563512 DOI: 10.1016/j.ajpath.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Whether alterations in the microtubule cytoskeleton affect the ability of endothelial cells (ECs) to sprout and form branching networks of tubes was investigated in this study. Bioassays of human EC tubulogenesis, where both sprouting behavior and lumen formation can be rigorously evaluated, were used to demonstrate that addition of the microtubule-stabilizing drugs, paclitaxel, docetaxel, ixabepilone, and epothilone B, completely interferes with EC tip cells and sprouting behavior, while allowing for EC lumen formation. In bioassays mimicking vasculogenesis using single or aggregated ECs, these drugs induce ring-like lumens from single cells or cyst-like spherical lumens from multicellular aggregates with no evidence of EC sprouting behavior. Remarkably, treatment of these cultures with a low dose of the microtubule-destabilizing drug, vinblastine, led to an identical result, with complete blockade of EC sprouting, but allowing for EC lumen formation. Administration of paclitaxel in vivo markedly interfered with angiogenic sprouting behavior in developing mouse retina, providing corroboration. These findings reveal novel biological activities for pharmacologic agents that are widely utilized in multidrug chemotherapeutic regimens for the treatment of human malignant cancers. Overall, this work demonstrates that manipulation of microtubule stability selectively interferes with the ability of ECs to sprout, a necessary step to initiate and form branched capillary tube networks.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Jocelynda Salvador
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kalia N Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Gretchen M Koller
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
14
|
El-Shehabi F, Mansour B, Bayoumi WA, El Bialy SA, Elmorsy MA, Eisa HM, Taman A. Homology modelling, molecular dynamics simulation and docking evaluation of β-tubulin of Schistosoma mansoni. Biophys Chem 2021; 278:106660. [PMID: 34482215 DOI: 10.1016/j.bpc.2021.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Schistosomiasis is one of the neglected diseases causing considerable morbidity and mortality throughout the world. Microtubules with its main component, tubulin play a vital role in helminthes including schistosomes. Benzimidazoles represent potential drug candidates by binding β-tubulin. The study aimed to generate a homology model for the β-tubulin of S. mansoni using the crystal structure of O visaries (Sheep) β-tubulin (PDB ID: 3N2G D) as a template, then different β-tubulin models were generated and two previously reported benzimidazole derivatives (NBTP-F and NBTP-OH) were docked to the generated models, the binding results indicated that both S. mansoni, S. haematobium were susceptible to the two NBTP derivatives. Additionally, three mutated versions of S. mansoni β-tubulin wild-type were generated and the mutation (F185Y) seems to slightly enhance the ligand binding. Dynamics simulation experiments showed S. haematobium β-tubulin is highly susceptible to the tested compounds; similar to S. mansoni, moreover, mutated models of S. mansoni β-tubulin altered its NBTPs susceptibility. Moreover, additional seven new benzimidazole derivatives were synthesized and tested by molecular docking on the generated model binding site of S. mansoni β-tubulin and were found to have good interaction inside the pocket.
Collapse
Affiliation(s)
- Fouad El-Shehabi
- Department of Biological Sciences and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt.
| | - Waleed A Bayoumi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Serry A El Bialy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad A Elmorsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 11152, Mansoura, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hassan M Eisa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Taman
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
16
|
Vanadocene dichloride induces apoptosis in HeLa cells through depolymerization of microtubules and inhibition of Eg5. J Biol Inorg Chem 2021; 26:511-531. [PMID: 34057639 DOI: 10.1007/s00775-021-01872-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Vanadocene dichloride (VDC), a vanadium containing metallocene dihalide exhibits promising anticancer activity. However, its mechanism of action remains elusive as several diverse targets and pathways have been proposed for its anticancer activity. In this study, we observed that VDC inhibited the proliferation of mammalian cancer cells and induced apoptotic cell death by altering the mitochondrial membrane potential and the expression of bcl2 and bax. Probing further into its anticancer mechanism, we found that VDC caused depolymerization of interphase microtubules and blocked the cells at mitosis with considerable proportion of cells exhibiting monopolar spindles. The reassembly of cold depolymerized microtubules was strongly inhibited in the presence of 10 μM VDC. VDC perturbed the microtubule-kinetochore interactions during mitosis as indicated by the absence of cold stable spindle microtubules in the cells treated with 20 μM VDC. Using goat brain tubulin, we found that VDC inhibited the steady-state polymer mass of microtubules and bound to tubulin at a novel site with a Kd of 9.71 ± 0.19 μM and perturbed the secondary structure of tubulin dimer. In addition, VDC was also found to bind to the mitotic kinesin Eg5 and inhibit its basal as well as microtubule stimulated ATPase activity. The results suggest that disruption of microtubule assembly dynamics and inhibition of the ATPase activity of Eg5 could be a plausible mechanism for the antiproliferative and antimitotic activity of VDC.Graphic abstract.
Collapse
|
17
|
Benomyl induced oxidative stress related DNA damage and apoptosis in H9c2 cardiomyoblast cells. Toxicol In Vitro 2021; 75:105180. [PMID: 33930522 DOI: 10.1016/j.tiv.2021.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Benomyl, benzimidazole group pesticide, has been prohibited in Europe and USA since 2003 due to its toxic effects and it has been still determined as food and environmental contaminant. In the present study, the toxic effect mechanisms of benomyl were evaluated in rat cardiomyoblast (H9c2) cells. Cytotoxicity was determined by MTT and NRU assay and, oxidative stress potential was evaluated by reactive oxygen species (ROS) production and glutathione levels. DNA damage was assessed by alkaline comet assay. Relative expressions of apoptosis related genes were evaluated; furthermore, NF-κB and JNK protein levels were determined. At 4 μM concentration (at which cell viability was >70%), benomyl increased 2-fold of ROS production level and 2-fold of apoptosis as well as DNA damage. Benomyl down-regulated miR21, TNF-α and Akt1 ≥ 48.75 and ≥ 97.90; respectively. PTEN, JNK and NF-κB expressions were upregulated. The dramatic changes in JNK and NF-κB expression levels were not observed in protein levels. These findings showed the oxidative stress related DNA damage and apoptosis in cardiomyoblast cells exposed to benomyl. However, further mechanistic and in vivo studies are needed to understand the cardiotoxic effects of benomyl and benzimidazol fungucides.
Collapse
|
18
|
Darweesh O, Al-Shehri E, Falquez H, Lauterwasser J, Edlich F, Patel R. Identification of a novel Bax-Cdk1 signalling complex that links activation of the mitotic checkpoint to apoptosis. J Cell Sci 2021; 134:237811. [PMID: 33722980 DOI: 10.1242/jcs.244152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, entry into and exit from mitosis is regulated, respectively, by the transient activation and inactivation of Cdk1. Taxol, an anti-microtubule anti-cancer drug, prevents microtubule-kinetochore attachments to induce spindle assembly checkpoint (SAC; also known as the mitotic checkpoint)-activated mitotic arrest. SAC activation causes mitotic arrest by chronically activating Cdk1. One consequence of prolonged Cdk1 activation is cell death. However, the cytoplasmic signal(s) that link SAC activation to the initiation of cell death remain unknown. We show here that activated Cdk1 forms a complex with the pro-apoptotic proteins Bax and Bak (also known as BAK1) during SAC-induced apoptosis. Bax- and Bak-mediated delivery of activated Cdk1 to the mitochondrion is essential for the phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-xL (encoded by BCL2L1) and the induction of cell death. The interactions between a key cell cycle control protein and key pro-apoptotic proteins identify the Cdk1-Bax and Cdk1-Bak complexes as the long-sought-after cytoplasmic signal that couples SAC activation to the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Omeed Darweesh
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| | - Eman Al-Shehri
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| | - Hugo Falquez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Lauterwasser
- Veterinary Physiology-Chemistry Institute, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Frank Edlich
- Veterinary Physiology-Chemistry Institute, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Rajnikant Patel
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| |
Collapse
|
19
|
Kubiak A, Chighizola M, Schulte C, Bryniarska N, Wesołowska J, Pudełek M, Lasota M, Ryszawy D, Basta-Kaim A, Laidler P, Podestà A, Lekka M. Stiffening of DU145 prostate cancer cells driven by actin filaments - microtubule crosstalk conferring resistance to microtubule-targeting drugs. NANOSCALE 2021; 13:6212-6226. [PMID: 33885607 DOI: 10.1039/d0nr06464e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.
Collapse
Affiliation(s)
- Andrzej Kubiak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Momtaz AZ, Ahumada Sabagh AD, Gonzalez Amortegui JG, Salazar SA, Finessi A, Hernandez J, Christensen S, Serbus LR. A Role for Maternal Factors in Suppressing Cytoplasmic Incompatibility. Front Microbiol 2020; 11:576844. [PMID: 33240234 PMCID: PMC7680759 DOI: 10.3389/fmicb.2020.576844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Wolbachia are maternally transmitted bacterial endosymbionts, carried by approximately half of all insect species. Wolbachia prevalence in nature stems from manipulation of host reproduction to favor the success of infected females. The best known reproductive modification induced by Wolbachia is referred to as sperm-egg Cytoplasmic Incompatibility (CI). In CI, the sperm of Wolbachia-infected males cause embryonic lethality, attributed to paternal chromatin segregation defects during early mitotic divisions. Remarkably, the embryos of Wolbachia-infected females “rescue” CI lethality, yielding egg hatch rates equivalent to uninfected female crosses. Several models have been discussed as the basis for Rescue, and functional evidence indicates a major contribution by Wolbachia CI factors. A role for host contributions to Rescue remains largely untested. In this study, we used a chemical feeding approach to test for CI suppression capabilities by Drosophila simulans. We found that uninfected females exhibited significantly higher CI egg hatch rates in response to seven chemical treatments that affect DNA integrity, cell cycle control, and protein turnover. Three of these treatments suppressed CI induced by endogenous wRi Wolbachia, as well as an ectopic wMel Wolbachia infection. The results implicate DNA integrity as a focal aspect of CI suppression for different Wolbachia strains. The framework presented here, applied to diverse CI models, will further enrich our understanding of host reproductive manipulation by insect endosymbionts.
Collapse
Affiliation(s)
- Ajm Zehadee Momtaz
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Abraham D Ahumada Sabagh
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian G Gonzalez Amortegui
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Samuel A Salazar
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Andrea Finessi
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Jethel Hernandez
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
21
|
El Bialy SA, Mansour B, Bayoumi WA, Taman A, Eissa HM. Novel 2-(5-Aryl)thiophen-2-yl)benzimidazoles; Design, Synthesis and In vitro Evaluation Against Cercarial Phase of Schistosoma mansoni. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200523181211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Literature survey has pointed out that Benzimidazoles represent an interesting
class of anthelmintics, of which several potent members were developed.
Objective:
Benzimidazoles hybridized with pharmacophoric moieties possessing anthelmintic activity
were designed, synthesized to be evaluated against cercaria.
Methods:
Structural modification was achieved through 2- and 5-positions. Moreover, an in vitro
cercarial assay was adopted to evaluate target compounds.
Results and Discussion:
Biological screening revealed that compound 3h showed significant activity
with a survival index of 35% at a 100 μg/mL concentration. Whereas, compounds 3a and 3c
showed moderate activity, the rest of the tested compounds exhibited low activity.
Conclusion:
The current study evidenced that the new hybrids "benzimidazole-thiophen-aryl" are
successful as cercacidal agents. Further studies of this novel tri-ring system are suggested on adult
worms of S. mansoni.
Collapse
Affiliation(s)
- Serry Atta El Bialy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Basem Mansour
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Waleed Abdelhakeem Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Taman
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hassan Mohammed Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
22
|
Asgharzadeh P, Birkhold AI, Trivedi Z, Özdemir B, Reski R, Röhrle O. A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Comput Struct Biotechnol J 2020; 18:2774-2788. [PMID: 33101614 PMCID: PMC7559262 DOI: 10.1016/j.csbj.2020.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their mechanical functionality by investigating their structures. Here, we present a data-driven approach employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico mechanical experiments and machine learning to investigate this relationship. Our designed image processing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour of cytoskeletal networks and the developed gradient boosting surrogate models linking network structure to its functionality. In this study, for the first time, we perform mechanical simulations of Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens. Training on synthetically produced simulation data enables predicting the mechanical characteristics of FtsZ network purely based on its structural features (R2⩾0.93), therefore allowing to extract structural principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling failure in case of large network deformation.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Zubin Trivedi
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
23
|
Ceramella J, Mariconda A, Rosano C, Iacopetta D, Caruso A, Longo P, Sinicropi MS, Saturnino C. α-ω Alkenyl-bis-S-Guanidine Thiourea Dihydrobromide Affects HeLa Cell Growth Hampering Tubulin Polymerization. ChemMedChem 2020; 15:2306-2316. [PMID: 32945626 DOI: 10.1002/cmdc.202000544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/24/2022]
Abstract
Cancer is going to be the first cause of mortality worldwide in the 21th century. It is considered a multifactorial disease that results from the combined influence of many genetic aberrations, leading to abnormal cell proliferation. As microtubules are strongly implicated in cellular growth, they represent an important target for cancer treatment. The well-known microtubule-targeting agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are commonly used in the treatment of various cancers. However, adverse effects and drug resistance are major limitations in their clinical use. To find new candidates able to induce microtubule alteration with reduced toxic effects or drug resistance, we studied a small new series of derivatives that present imidazolinic, guanidinic, thioureidic and hydrazinic groups (1-9). All the compounds were tested for their antitumor activity against a panel of six tumoral cell models. In particular, compound 8 (nonane-1,9-diyl-bis-S-amidinothiourea dihydrobromide) showed the lowest IC50 value against HeLa cells, together with a low cytotoxicity for normal cells. This compound was able to induce the apoptotic mitochondrial pathway and inhibited tubulin polymerization with a similar efficacy to vinblastine and nocodazole. Taken together, these promising biological properties make compound 8 useful for the development of novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy.,Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
24
|
Rodemer W, Gallo G, Selzer ME. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip? Front Cell Neurosci 2020; 14:177. [PMID: 32719586 PMCID: PMC7347967 DOI: 10.3389/fncel.2020.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Bashir K, Guo P, Chen G, Li Y, Ge Y, Shu H, Fu Q. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
27
|
Kao CM, Ou WJ, Lin HD, Eva AW, Wang TL, Chen SC. Toxicity of diuron in HepG2 cells and zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:432-438. [PMID: 30735975 DOI: 10.1016/j.ecoenv.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Diuron is an herbicide, which is used to control a wide variety of annual and perennial broadleaf, grassy weeds, and mosses. However, the toxicity of diuron in HepG2 cells and zebrafish embryos was unclear. In this study, HpeG2 cells and zebrafish embryos were exposed to different concentrations of diuron for 24 h and 48 h, respectively. Results reveal the diuron caused cytotoxicity and the generation of reactive oxygen species (ROS) in the treated HepG2 cells. The effects of diuron on the expression of catalase and superoxide dismutase (SOD1 and SOD2), an antioxidant enzyme, were investigated. Results showed that only SOD1 was significantly induced after treated diuron 48 h, but the expression of catalase and SOD2 was unaffected. Additionally, the cytotoxicity of diuron was not attenuated in cells pretreated with of N-acetyl-cysteine (NAC), a well-known antioxidant, indicating that oxidative stress could not contribute to cellular death in the treated HepG2 cells. In zebrafish embryos, results from proteomic analysis show that 332 differentially upregulated proteins and 199 down-regulated proteins were detected in the treated embryos (P < 0.05). In addition to the up-regulated antioxidant proteins (prdx3, cat, prdx4, txnrd1, prdx1, sod1, prdx2, and sod2), some decreased proteins were related to cytoskeleton formation, tight junction, and gap junction, which could be related to the malformation of the treated zebrafish embryos. In summary, diuron caused cytotoxicity in HepG2 cells, and the mechanisms of toxicity in zebrafish were addressed using the proteomic analysis.
Collapse
Affiliation(s)
- Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Jen Ou
- Hematology-Oncology Section, LANDSEED Hospital, Jhongli, Taiwan
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Ari Wahyuni Eva
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University, Taiwan
| | - Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|
28
|
A Survey on Tubulin and Arginine Methyltransferase Families Sheds Light on P. lividus Embryo as Model System for Antiproliferative Drug Development. Int J Mol Sci 2019; 20:ijms20092136. [PMID: 31052191 PMCID: PMC6539552 DOI: 10.3390/ijms20092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 01/18/2023] Open
Abstract
Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and β-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and β-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.
Collapse
|
29
|
Hybrid cis-stilbene Molecules: Novel Anticancer Agents. Int J Mol Sci 2019; 20:ijms20061300. [PMID: 30875859 PMCID: PMC6471163 DOI: 10.3390/ijms20061300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.
Collapse
|
30
|
Kumbhar BV, Bhandare VV, Panda D, Kunwar A. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. J Biomol Struct Dyn 2019; 38:426-438. [DOI: 10.1080/07391102.2019.1577174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Vishwambhar Vishnu Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Ashraf SM, Sebastian J, Rathinasamy K. Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 2018; 52:e12558. [PMID: 30525278 PMCID: PMC6496756 DOI: 10.1111/cpr.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/19/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives The aim of this study was to elucidate the antimitotic mechanism of zerumbone and to investigate its effect on the HeLa cells in combination with other mitotic blockers. Materials and methods HeLa cells and fluorescence microscopy were used to analyse the effect of zerumbone on cancer cell lines. Cellular internalization of zerumbone was investigated using FITC‐labelled zerumbone. The interaction of zerumbone with tubulin was characterized using fluorescence spectroscopy. The Chou and Talalay equation was used to calculate the combination index. Results Zerumbone selectively inhibited the proliferation of HeLa cells with an IC50 of 14.2 ± 0.5 μmol/L through enhanced cellular uptake compared to the normal cell line L929. It induced a strong mitotic block with cells exhibiting bipolar spindles at the IC50 and monopolar spindles at 30 μmol/L. Docking analysis indicated that tubulin is the principal target of zerumbone. In vitro studies indicated that it bound to goat brain tubulin with a Kd of 4 μmol/L and disrupted the assembly of tubulin into microtubules. Zerumbone and colchicine had partially overlapping binding site on tubulin. Zerumbone synergistically enhanced the anti‐proliferative activity of vinblastine and paclitaxel through augmented mitotic block. Conclusion Our data suggest that disruption of microtubule assembly dynamics is one of the mechanisms of the anti‐cancer activity of zerumbone and it can be used in combination therapy targeting cell division.
Collapse
Affiliation(s)
- Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
32
|
Mikstacka R, Zielińska-Przyjemska M, Dutkiewicz Z, Cichocki M, Stefański T, Kaczmarek M, Baer-Dubowska W. Cytotoxic, tubulin-interfering and proapoptotic activities of 4'-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol. Cytotechnology 2018; 70:1349-1362. [PMID: 29808373 PMCID: PMC6214853 DOI: 10.1007/s10616-018-0227-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxicity of a series of seven 4'-methylthio-trans-stilbene derivatives against cancer cells: MCF7 and A431 in comparison with non-tumorigenic MCF12A and HaCaT cells. The mechanism of anti-proliferative activity of the most cytotoxic trans-resveratrol analogs: 3,4,5-trimethoxy-4'-methylthio-trans-stilbene (3,4,5-MTS) and 2,4,5-trimethoxy-4'-methylthio-trans-stilbene (2,4,5-MTS) was analyzed and compared with the effect of trans-resveratrol. All the compounds that were studied exerted a stronger cytotoxic effect than trans-resveratrol did. MCF7 cells were the most sensitive to the cytotoxic effect of trans-resveratrol analogs with IC50 in the range of 2.1-6.0 µM. Comparing the cytotoxicity of 3,4,5-MTS and 2,4,5-MTS, a significantly higher cytotoxic activity of these compounds against MCF7 versus MCF12A was observed, whereas no significant difference was observed in cytotoxicity against A431 and HaCaT. In the series of 4'-methylthio-trans-stilbenes, 3,4,5-MTS and 2,4,5-MTS were the most promising compounds for further mechanistic studies. The proapoptotic activity of 3,4,5-MTS and 2,4,5-MTS, estimated with the use of annexin-V/propidium iodide assay, was comparable to that of trans-resveratrol. An analysis of cell cycle distribution showed a significant increase in the percentage of apoptotic cells and G2/M phase arrest in MCF7 and A431 as a result of treatment with 3,4,5-MTS, whereas trans-resveratrol tended to increase the percentage of cells in S phase, particularly in epithelial breast cells MCF12A and MCF7. Both trans-stilbene derivatives enhanced potently tubulin polymerization in a dose-dependent manner with sulfur atom participating in the interactions with critical residues of the paclitaxel binding site of β-tubulin.
Collapse
Affiliation(s)
- Renata Mikstacka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Dr A. Jurasza 2, 85-089, Bydgoszcz, Poland.
| | | | - Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs, Poznań University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Michał Cichocki
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Święcickiego 4, 60-781, Poznań, Poland
| | - Tomasz Stefański
- Department of Chemical Technology of Drugs, Poznań University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznań University of Medical Sciences, Rokietnicka 5d, 60-806, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Święcickiego 4, 60-781, Poznań, Poland
| |
Collapse
|
33
|
Secondary Metabolites of the Endophytic Fungi Penicillium polonicum and Their Monoamine Oxidase Inhibitory Activity. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2540-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D. Combretastatin-Inspired Heterocycles as Antitubulin Anticancer Agents. ACS OMEGA 2018; 3:9754-9769. [PMID: 31459105 PMCID: PMC6644768 DOI: 10.1021/acsomega.8b00996] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Combretastatin (CA-4) and its analogues are undergoing several clinical trials for treating different types of tumors. In this work, the antiproliferative activity of a series of 2-aminoimidazole-carbonyl analogs of clinically relevant combretastatins A-4 (CA-4) and A-1 was evaluated using a cell-based assay. Among the compounds tested, C-13 and C-21 displayed strong antiproliferative activities against HeLa cells. C-13 inhibited the proliferation of lung carcinoma (A549) cells more potently than combretastatin A-4. C-13 also retarded the migration of A549 cells. Interestingly, C-13 displayed much stronger antiproliferative effects against breast carcinoma and skin melanoma cells compared to noncancerous breast epithelial and skin fibroblast cells. C-13 strongly disassembled cellular microtubules, perturbed the localization of EB1 protein, inhibited mitosis in cultured cells, and bound to tubulin at the colchicine site and inhibited the polymerization of reconstituted microtubules in vitro. C-13 treatment increased the level of reactive oxygen species and induced apoptosis via poly(ADP-ribose) polymerase-cleavage in HeLa cells. The results revealed the importance of the 2-aminoimidazole-carbonyl motif as a double bond replacement in combretastatin and indicated a pharmacodynamically interesting pattern of H-bond acceptors/donors and requisite syn-templated aryls.
Collapse
Affiliation(s)
- Neha Hura
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Anuradha Kumari
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Sankar K. Guchhait
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, Punjab 160062, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
35
|
Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 2018; 105:506-517. [PMID: 29883946 DOI: 10.1016/j.biopha.2018.05.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023] Open
Abstract
Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC50 of 40 μM and induced a mitotic block. At concentrations higher than its IC50, indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ± 3 μM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-β tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin.
Collapse
Affiliation(s)
- Lakshmi Mohan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Jomon Sebastian
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
36
|
Lin HD, Hsu LS, Chien CC, Chen SC. Proteomic analysis of ametryn toxicity in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2018; 33:579-586. [PMID: 29427468 DOI: 10.1002/tox.22546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Ametrym (AMT) is the most widely used herbicide and frequently detected in the aquatic environment. AMT also represent a potential health risk to aquatic organisms and animals, including humans. However, little data are available on their toxicity to zebrafish (Danio rerio). The aim of the present study was to evaluate the toxicological effects of AMT exposure on zebrafish embryos. In the acute toxicity test, 6 hpf embryos were exposed to various concentrations of AMT for 24 or 48 h. The results indicated that AMT induced malformation in larvae. To investigate the toxicological mechanism on the protein expression level. A proteomic approach was employed to investigate the proteome alterations of zebra fish embryos exposed to 20 mg/L AMT for 48 h. Among 2925 unique proteins identified, 298 differential proteins (> or <1.3-fold, P < 0.05) were detected in the treated embryos as compared to the corresponding proteins in the untreated embryos. Gene ontology analysis showed that these up-regulated proteins were most involved in glycolysis, lipid transport, protein polymerization, and nucleotide binding, and the down-regulated proteins were related to microtubule-based process, protein polymerization, oxygen transport. Moreover, KEGG pathway analysis indicated that tight junction, ribosome, and oxidative phosphorylation were inhibited in the treated embryos. These findings provide new insight into the mechanisms of toxicity induced by AMT.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| |
Collapse
|
37
|
Fan X, Cheng H, Wang X, Ye E, Loh XJ, Wu YL, Li Z. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance. Adv Healthc Mater 2018; 7:e1701143. [PMID: 29280358 DOI: 10.1002/adhm.201701143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Indexed: 02/05/2023]
Abstract
Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm)7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer.
Collapse
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 China
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Enyi Ye
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| |
Collapse
|
38
|
Hura N, Naaz A, Prassanawar SS, Guchhait SK, Panda D. Drug-Clinical Agent Molecular Hybrid: Synthesis of Diaryl(trifluoromethyl)pyrazoles as Tubulin Targeting Anticancer Agents. ACS OMEGA 2018; 3:1955-1969. [PMID: 30023819 PMCID: PMC6044759 DOI: 10.1021/acsomega.7b01784] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 05/28/2023]
Abstract
Twenty-three combretastatin A-4 (CA-4) analogues were synthesized by judiciously incorporating a functional N-heterocyclic motif present in Celecoxib (a marketed drug) while retaining essential pharmacophoric features of CA-4. Combretastatin-(trifluoromethyl)pyrazole hybrid analogues, i.e., 5-trimethoxyphenyl-3-(trifluoromethyl)pyrazoles with a variety of relevantly substituted aryls and heteroaryls at 1-position were considered as potential tubulin polymerization inhibitors. The cytotoxicity of the compounds was evaluated using MCF-7 cells. Analog 23 (C-23) was found to be the most active among the tested compounds. It showed pronounced cytotoxicity against HeLa, B16F10, and multidrug-resistant mammary tumor cells EMT6/AR1. Interestingly, C-23 displayed significantly lower toxicity toward noncancerous cells, MCF10A and L929, than their cancerous counterparts, MCF-7 and B16F10, respectively. C-23 depolymerized interphase microtubules, disrupted mitotic spindle formation, and arrested MCF-7 cells at mitosis, leading to cell death. C-23 inhibited the assembly of tubulin in vitro. C-23 bound to tubulin at the colchicine binding site and altered the secondary structures of tubulin. The data revealed the importance of (trimethoxyphenyl)(trifluoromethyl)pyrazole as a cis-restricted double bond-alternative bridging motif, and carboxymethyl-substituted phenyl as ring B for activities and interaction with tubulin. The results indicated that the combretastatin-(trifluoromethyl)pyrazole hybrid class of analogues has the potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Neha Hura
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Afsana Naaz
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shweta S. Prassanawar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sankar K. Guchhait
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
39
|
Onguéné PA, Simoben CV, Fotso GW, Andrae-Marobela K, Khalid SA, Ngadjui BT, Mbaze LM, Ntie-Kang F. In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties. Comput Biol Chem 2018; 72:136-149. [DOI: 10.1016/j.compbiolchem.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
40
|
Das S, Paul S. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein. PLoS One 2018; 13:e0190209. [PMID: 29324869 PMCID: PMC5764265 DOI: 10.1371/journal.pone.0190209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023] Open
Abstract
The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS) cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.
Collapse
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- * E-mail:
| |
Collapse
|
41
|
Lakshmi RB, Nair VM, Manna TK. Regulators of spindle microtubules and their mechanisms: Living together matters. IUBMB Life 2018; 70:101-111. [DOI: 10.1002/iub.1708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 12/23/2022]
Affiliation(s)
- R. Bhagya Lakshmi
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Vishnu M. Nair
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Tapas K. Manna
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| |
Collapse
|
42
|
Kumari P, Gupta S, Narayana C, Ahmad S, Vishnoi N, Singh S, Sagar R. Stereoselective synthesis of carbohydrate fused pyrano[3,2- c]pyranones as anticancer agents. NEW J CHEM 2018. [DOI: 10.1039/c8nj01395k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Efficient synthesis of pyrano[3,2-c]pyranones motif as fused carbohybrids and their anticancer activities reported.
Collapse
Affiliation(s)
- Priti Kumari
- Department of Chemistry
- Shiv Nadar University
- NH-91 Dadri
- India
| | - Sonal Gupta
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
- India
| | | | - Shakeel Ahmad
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
- India
| | - Nidhi Vishnoi
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
- India
| | - Shailja Singh
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
- India
| | - Ram Sagar
- Department of Chemistry
- Shiv Nadar University
- NH-91 Dadri
- India
- Department of Chemistry
| |
Collapse
|
43
|
Sun Z, Li A, Yu Z, Li X, Guo X, Chen R. MicroRNA-497-5p Suppresses Tumor Cell Growth of Osteosarcoma by Targeting ADP Ribosylation Factor-Like Protein 2. Cancer Biother Radiopharm 2017; 32:371-378. [PMID: 29265919 DOI: 10.1089/cbr.2017.2268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Zhibo Sun
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Anjun Li
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zhihong Yu
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiangwei Li
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xiao Guo
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Rong Chen
- Department of Traumatic Orthopaedics Surgery, Remin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| |
Collapse
|
44
|
AGBL2 promotes cancer cell growth through IRGM-regulated autophagy and enhanced Aurora A activity in hepatocellular carcinoma. Cancer Lett 2017; 414:71-80. [PMID: 29126912 DOI: 10.1016/j.canlet.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
AGBL2 has been reported to catalyze α-tubulin detyrosination, by which it promotes tumorigenesis and cancer progression. However, its potential role in the pathogenesis of hepatocellular carcinoma (HCC) has not been revealed yet. In the present study, AGBL2 was frequently found being overexpressed in HCC tissues and cell lines. In a large cohort of clinical HCC tissues, high expression of AGBL2 was positively associated with tumor size, tumor multiplicity and advanced clinical stage (p < 0.05), and it was an independent prognostic factor for HCC patients. In HCC cell lines, ectopic overexpression of AGBL2 substantially enhanced HCC cells survival and proliferation in vitro and promoted tumor growth in vivo. In addition, we demonstrated that overexpression of AGBL2 in HCC cells notably inhibited apoptosis by enhancing IRGM-regulated autophagy. Meanwhile, AGBL2 could up-regulate the expression of TPX2 and Aurora A activity to promote cell proliferation in HCC cells. In summary, our findings suggest that up-regulation of AGBL2 plays a critical oncogenic role in the pathogenesis of HCC through modulation on autophagy and Aurora A activity, and it could be a candidate for prognostic marker and therapeutic target in HCC.
Collapse
|
45
|
Paguigan ND, Al-Huniti MH, Raja HA, Czarnecki A, Burdette JE, González-Medina M, Medina-Franco JL, Polyak SJ, Pearce CJ, Croatt MP, Oberlies NH. Chemoselective fluorination and chemoinformatic analysis of griseofulvin: Natural vs fluorinated fungal metabolites. Bioorg Med Chem 2017; 25:5238-5246. [PMID: 28802670 PMCID: PMC5632135 DOI: 10.1016/j.bmc.2017.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Griseofulvin is a fungal metabolite and antifungal drug used for the treatment of dermatophytosis in both humans and animals. Recently, griseofulvin and its analogues have attracted renewed attention due to reports of their potential anticancer effects. In this study griseofulvin (1) and related analogues (2-6, with 4 being new to literature) were isolated from Xylaria cubensis. Six fluorinated analogues (7-12) were synthesized, each in a single step using the isolated natural products and Selectflour, so as to examine the effects of fluorine incorporation on the bioactivities of this structural class. The isolated and synthesized compounds were screened for activity against a panel of cancer cell lines (MDA-MB-435, MDA-MB-231, OVCAR3, and Huh7.5.1) and for antifungal activity against Microsporum gypseum. A comparison of the chemical space occupied by the natural and fluorinated analogues was carried out by using principal component analysis, documenting that the isolated and fluorinated analogues occupy complementary regions of chemical space. However, the most active compounds, including two fluorinated derivatives, were centered around the chemical space that was occupied by the parent compound, griseofulvin, suggesting that modifications must preserve certain attributes of griseofulvin to conserve its activity.
Collapse
Affiliation(s)
- Noemi D Paguigan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Austin Czarnecki
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mariana González-Medina
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98104, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Cedric J Pearce
- Mycosynthetix Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, NC 27278, USA
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
46
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
47
|
Mahanty S, Raghav D, Rathinasamy K. In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide. CHEMOSPHERE 2017; 183:339-352. [PMID: 28554018 DOI: 10.1016/j.chemosphere.2017.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Triphenyltin hydroxide (TPTH) is a widely used pesticide that is highly toxic to a variety of organisms including humans and a potential contender for the environmental pollutant. In the present study, the cytotoxic mechanism of TPTH on mammalian cells was analyzed using HeLa cells and the antibacterial activity was analyzed using B. subtilis and E. coli cells. TPTH inhibited the growth of HeLa cells with a half-maximal inhibitory concentration of 0.25 μM and induced mitotic arrest. Immunofluorescence microscopy analysis showed that TPTH caused strong depolymerization of interphase microtubules and spindle abnormality with the appearance of colchicine type mitosis and condensed chromosome. TPTH exhibited high affinity for tubulin with a dissociation constant of 2.3 μM and inhibited the in vitro microtubule assembly in the presence of glutamate as well as microtubule-associated proteins. Results from the molecular docking and in vitro experiments implied that TPTH may have an overlapping binding site with colchicine on tubulin with a distance of about 11 Å between them. TPTH also binds to DNA at the A-T rich region of the minor groove. The data presented in the study revealed that the toxicity of TPTH in mammalian cells is mediated through its interactions with DNA and its strong depolymerizing activity on tubulin. However, its antibacterial activity was not through FtsZ, the prokaryotic homolog of tubulin but perhaps through its interactions with DNA.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
48
|
Lindamulage IK, Vu HY, Karthikeyan C, Knockleby J, Lee YF, Trivedi P, Lee H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci Rep 2017; 7:10298. [PMID: 28860494 PMCID: PMC5578999 DOI: 10.1038/s41598-017-10972-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 12/04/2022] Open
Abstract
Agents targeting colchicine-binding pocket usually show a minimal drug-resistance issue, albeit often associated with high toxicity. Chalcone-based compounds, which may bind to colchicine-binding site, are found in many edible fruits, suggesting that they can be effective drugs with less toxicity. Therefore, we synthesized and examined 24 quinolone chalcone compounds, from which we identified ((E)-3-(3-(2-Methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-17) and ((E)-6-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-20) as promising leads. In particular, CTR-20 was effective against 65 different cancer cell lines originated from 12 different tissues, largely in a cancer cell-specific manner. We found that both CTR-17 and CTR-20 reversibly bind to the colchicine-binding pocket on β-tubulin. Interestingly however, both the CTRs were highly effective against multidrug-resistant cancer cells while colchicine, paclitaxel and vinblastine were not. Our study with CTR-20 showed that it overcomes multidrug-resistance through its ability to impede MRP1 function while maintaining strong inhibition against microtubule activity. Data from mice engrafted with the MDA-MB-231 triple-negative breast cancer cells showed that both CTR-17 and CTR-20 possess strong anticancer activity, alone or in combination with paclitaxel, without causing any notable side effects. Together, our data demonstrates that both the CTRs can be effective and safe drugs against many different cancers, especially against multidrug-resistant tumors.
Collapse
Affiliation(s)
- I Kalhari Lindamulage
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada.,Biomolecular Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| | - Hai-Yen Vu
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Rd, Gandhi Nagar, Bhopal, M.P, India
| | - James Knockleby
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Yi-Fang Lee
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Rd, Gandhi Nagar, Bhopal, M.P, India
| | - Hoyun Lee
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada. .,Biomolecular Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada. .,Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, K1H 5M8, Canada.
| |
Collapse
|
49
|
Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Sci Rep 2017; 7:10209. [PMID: 28860487 PMCID: PMC5579042 DOI: 10.1038/s41598-017-09491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in β-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.
Collapse
|
50
|
Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signaling. Cell Tissue Res 2017; 370:379-390. [PMID: 28815294 DOI: 10.1007/s00441-017-2678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling leads to increased cell proliferation and survival and promotes the development of various human tumors, including glioma, one of the most common primary brain tumors. The treatment efficacy of many anticancer drugs remains limited or unsatisfactory and it is urgently necessary to develop effective and low-toxicity anticancer drugs or strategies, especially for glioma. Here, we report that diallyl trisulfide suppresses survival, migration, invasion and angiogenesis in glioma cells. These effects were associated with inhibition of the Wnt/β-catenin signaling cascade, which was accompanied by decreased expression of LRP6, TRIM29 and Pygo2. A dual-luciferase reporter assay confirmed that DATS treatment decreased TCF/LEF-mediated transcription. Finally, a nude mouse tumorigenicity model was used to examine the biological effect of diallyl trisulfide in vivo. Consistent with the previous results, diallyl trisulfide inhibited proliferation, invasion and angiogenesis in glioma cells by suppressing Wnt/β-catenin signaling.
Collapse
|