1
|
Taheri M, Seirafianpour F, Fallahian A, Hosseinzadeh A, Reiter RJ, Mehrzadi S. Exploring melatonin's signalling pathways in the protection against age-related skin deterioration. Pharmacol Rep 2025; 77:375-391. [PMID: 39883394 DOI: 10.1007/s43440-025-00699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/15/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation. The presence of melatonin receptors in diverse skin cell types and its documented ability to enhance skin tone, hydration, and texture upon topical administration underscores its promise as an anti-aging agent. Melatonin's protective effects likely emanate from its multifaceted characteristics, encompassing antioxidant, anti-inflammatory, and immunomodulatory functions, as well as its influence on collagen synthesis and mitochondrial activity. Chronic inflammation and oxidative stress initiate a detrimental feedback loop. Reactive oxygen species (ROS), notorious for damaging cellular structures, provoke immune responses by oxidizing vital molecules and activating signaling proteins. This triggers heightened expression of inflammatory genes, perpetuating the cycle. Such dysregulation significantly compromises the body's resilience against infections and other health adversities. This study embarks on an exploration of the fundamental signaling pathways implicated in skin aging. Furthermore, it delves into the therapeutic potential of melatonin and its anti-aging attributes within the realm of skin health.
Collapse
Affiliation(s)
- Maryam Taheri
- Medical School, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Amirali Fallahian
- Department of Dermatology, School of Medicine, Rasool Akram Medical Complex, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
3
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Harnessing the ubiquitin proteasome system as a key player in stem cell biology. Biofactors 2025; 51:e2157. [PMID: 39843166 DOI: 10.1002/biof.2157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins. Proteasomes have a critical role in controlling protein homeostasis in all cell types, including stem cells. We will discuss the role of UPS enzymes as well as the 26S proteasome complex in stem cell biology from several angles. First, we shall overview common trends of proteasomal activity and gene expression of different proteasomal subunits and UPS enzymes upon passaging and differentiation of stem cells toward various cell lineages. Second, we shall explore the effect of modulating proteasomal activity in stem cells and navigate through the interrelation between proteasomes' activity and various proteasome-related transcription factors. Third, we will shed light on curated microRNAs and long non-coding RNAs using various bioinformatics tools that might have a possible role in regulating UPS in stem cells and possibly, upon manipulation, can enhance the differentiation process into different lineages and/or delay senescence upon cell passaging. This will help to decipher the role played by individual UPS enzymes and subunits as well as various interrelated molecular mediators in stem cells' maintenance and/or differentiation and open new avenues in stem cell research. This can ultimately provide a leap toward developing novel therapeutic interventions related to proteasome dysregulation.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
5
|
Qiang M, Dai Z. Biomarkers of UVB radiation-related senescent fibroblasts. Sci Rep 2024; 14:933. [PMID: 38195709 PMCID: PMC10776766 DOI: 10.1038/s41598-023-51058-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Excessive exposure to ultraviolet (UV) light is known to induce photoaging in the skin, necessitating the development of effective anti-photoaging strategies to mitigate the adverse effects of UV radiation. Understanding the biofunctional characteristics of diverse skin cell types and unraveling the molecular modifications implicated in the aging process are pivotal in comprehending the intricacies of photoaging in human skin. Such insights are essential for paving the way for innovative interventions to counteract the deleterious impact of UV radiation on the skin. The single-cell RNA sequencing data of UVB-irradiated and normal control mouse skin in GSE173385 were downloaded from the Gene Expression Omniniub (GEO) database. First, cell types were identified using Seurat for normalization, dimensionality reduction and clustering. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were executed on these cell subpopulations. Using FindAllMarkers in the Seurat package to identify differential gene expression and Monocle2 cell trajectory analysis, we screened out hub genes related to the development trajectory of senescent fibroblasts during photoaging, and then combined it with 307 aging-related genes collected in the HAGR library, we finally identified two biomarkers. The efficiency of biomarkers in diagnosing UV radiation photoaging was also evaluated in the dataset. Concurrently, the immune infiltration of identified biomarkers under UV radiation has also been further explored. Moreover, we employed the Enrichr platform to conduct a comprehensive screening of drug molecules associated with the identified biomarkers. Our comprehensive analysis, employing Seurat for normalization, dimensionality reduction, and clustering, successfully identified ten distinct cell types within the samples. Then GO functional enrichment analysis showed that senescent fibroblasts are mainly involved in the regulation of immune effector processes such as cytokine-mediated signaling pathways, regulation of epithelial cell proliferation and intercellular adhesion. Afterwards, KEGG analysis determined the main biological pathways are: IL-17 signaling pathway, Cytokine-cytokine receptor interaction, Metabolism of xenobiotics by cytochrome P450. After differential gene expression and Monocle2 cell trajectory analysis, we matched the obtained hub genes with the aging-related genes collected in the HAGR library, and finally screened out two relevant biomarkers: Apoe and Gdf15 which are related to the development trajectory of senescent fibroblasts during photoaging. Meanwhile, the immune infiltration further implied that the expression of these two biomarkers was significantly correlated with immune cells. In addition, the Enrichr platform was used to screen the drug molecules related to these biomarkers. This strategic approach aimed to pinpoint effective molecular targets for the prevention and treatment of photoaging. Our investigation has effectively characterized biomarkers associated with fibroblast senescence during photoaging at the single-cell level, We have validated their correlation with cellular immune inflammation and identified potential drug targets through the utilization of the Enrichr platform. This foundational research establishes a robust basis for the development of therapeutic interventions targeting skin diseases resulting from photoaging.
Collapse
Affiliation(s)
- Mingyue Qiang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
| | - Zijia Dai
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| |
Collapse
|
6
|
Quan T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023; 13:1614. [PMID: 38002296 PMCID: PMC10669284 DOI: 10.3390/biom13111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The skin is the most-extensive and -abundant tissue in the human body. Like many organs, as we age, human skin experiences gradual atrophy in both the epidermis and dermis. This can be primarily attributed to the diminishing population of epidermal stem cells and the reduction in collagen, which is the primary structural protein in the human body. The alterations occurring in the epidermis and dermis due to the aging process result in disruptions to the structure and functionality of the skin. This creates a microenvironment conducive to age-related skin conditions such as a compromised skin barrier, slowed wound healing, and the onset of skin cancer. This review emphasizes the recent molecular discoveries related to skin aging and evaluates preventive approaches, such as the use of topical retinoids. Topical retinoids have demonstrated promise in enhancing skin texture, diminishing fine lines, and augmenting the thickness of both the epidermal and dermal layers.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Sakamoto K, Fujimoto R, Nakagawa S, Kamiyama E, Kanai K, Kawai Y, Kojima H, Hirasawa A, Wakamatsu K, Masutani T. Juniper berry extract containing Anthricin and Yatein suppresses lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases spots in human skin. Int J Cosmet Sci 2023; 45:655-671. [PMID: 37317028 DOI: 10.1111/ics.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Skin brightness and spot have a significant impact on youthful and beautiful appearance. One important factor influencing skin brightness is the amount of internal reflected light from the skin. Observers recognize the total surface-reflected light and internal reflected light as skin brightness. The more internal reflected light from the skin, the more attractive and brighter the skin appears. This study aims to identify a new natural cosmetic ingredient that increases the skin's internal reflected light, decreases spot and provides a youthful and beautiful skin appearance. METHODS Lipofuscin in epidermal keratinocytes, the aggregating complex of denatured proteins and peroxidized lipids, is one factor that decreases skin brightness and causes of spot. Aggregates block light transmission, and peroxidized lipids lead to skin yellowness, dullness and age spot. Lipofuscin is known to accumulate intracellularly with ageing. Rapid removal of intracellular denatured proteins prevents lipofuscin formation and accumulation in cells. We focused a proteasome system that efficiently removes intracellular denatured proteins. To identify natural ingredients that increase proteasome activity, we screened 380 extracts derived from natural products. The extract with the desired activity was fractionated and purified to identify active compounds that lead to proteasome activation. Finally, the efficacy of the proteasome-activating extract was evaluated in a human clinical study. RESULTS We discovered that Juniperus communis fruits (Juniper berry) extract (JBE) increases proteasome activity and suppresses lipofuscin accumulation in human epidermal keratinocytes. We found Anthricin and Yatein, which belong to the lignan family, to be major active compounds responsible for the proteasome-activating effect of JBE. In a human clinical study, an emulsion containing 1% JBE was applied to half of the face twice daily for 4 weeks, resulting in increased internal reflected light, brightness improvement (L-value) and reduction in yellowness (b-value) and spot in the cheek area. CONCLUSION This is the first report demonstrating that JBE containing Anthricin and Yatein decreases lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases surface spots in human skin. JBE would be an ideal natural cosmetic ingredient for creating a more youthful and beautiful skin appearance with greater brightness and less spot.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Runa Fujimoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Satoshi Nakagawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Erina Kamiyama
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kyoko Kanai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Yuka Kawai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Hiroyuki Kojima
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Asuka Hirasawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kanae Wakamatsu
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Teruaki Masutani
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| |
Collapse
|
8
|
Simon PYR, Bus J, David R. [Alzheimer's disease, amyloid-b peptides and ubiquitin-proteasome system: Therapeutic perspectives]. Med Sci (Paris) 2023; 39:643-649. [PMID: 37695154 DOI: 10.1051/medsci/2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The Alzheimer's disease - an age-related neurodegenerative disorder leading to a progressive cognitive impairment - is characterized by an intracerebral accumulation of soluble β-amyloid (Aβ) oligomers, followed by the appearance of abnormally ubiquitinylated neurofibrillary tangles - a process associated with a chronic inflammation. The systematic presence of ubiquitinylated inclusions reflects a decrease in the proteasome activity due to (and contributing to) the presence of Aβ oligomers - a central dysfunction in the etiology of the disease. The involvement of the ubiquitin-proteasome system opens new therapeutic perspectives for both prevention and treatment.
Collapse
Affiliation(s)
| | - Johanna Bus
- Communication, hôpital d'instruction des armées Sainte-Anne, 83800 Toulon, France
| | - Renaud David
- Centre hospitalier universitaire de Nice, hôpital Cimiez, 06000 Nice, France
| |
Collapse
|
9
|
Benabbes R, Ouahhoud S, Moueqqit M, Addi M, Hano C, Delporte C, Nacoulma AP, Megalizzi V. The Major Stilbene Compound Accumulated in the Roots of a Resistant Variety of Phoenix dactylifera L. Activates Proteasome for a Path in Anti-Aging Strategy. Cells 2022; 12:cells12010071. [PMID: 36611864 PMCID: PMC9818208 DOI: 10.3390/cells12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The main objective of the present study is to estimate, through differential analysis, various biological activities of total phenolics content in alcoholic extracts of three date palm varieties sensitive or resistant to Fusarium oxysporum. sp Albidinis. Here, stilbene products with antioxidant and bioactive capacities were evidenced in resistant variety Taabdount (TAAR). Furthermore, the methanolic fraction of the TAAR-resistant date palm variety contains a significant product, determined by LC-MS/MS and 1H, 13C NMR, belonging to the family of hydroxystilbenes, which exhibits antioxidant capacities, inhibits the mushroom tyrosinase activity, and activates and exerts a protective effect on hypochlorite-induced damage in 20S proteasome of human dermal fibroblast aged cells. Altogether, the present results indicate that hydroxystilbene present in resistant Phoenix dactylifera L. should be studied to understand the way that the stilbene could exert anti-aging ability.
Collapse
Affiliation(s)
- Redouane Benabbes
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohammed Moueqqit
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratory of Improvement of Agricultural Production, Biotechnology and Environment, Department of Biology, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France
- Correspondence:
| | - Cédric Delporte
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| | - Aminata P. Nacoulma
- The Unit Pharmacognosy, Bioanalysis & Drug Discovery (PBDD), Department of Drug Research and Development, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| | - Véronique Megalizzi
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
- The Unit Pharmacognosy, Bioanalysis & Drug Discovery (PBDD), Department of Drug Research and Development, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Negroni MA, Stoldt M, Oster M, Rupp AS, Feldmeyer B, Foitzik S. Social organization and the evolution of life-history traits in two queen morphs of the ant Temnothorax rugatulus. J Exp Biol 2021; 224:238088. [PMID: 33658241 DOI: 10.1242/jeb.232793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022]
Abstract
During the evolution of social insects, not only did life-history traits diverge, with queens becoming highly fecund and long lived compared with their sterile workers, but also individual traits lost their importance compared with colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here, we focused on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insight into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body, indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate for their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.
Collapse
Affiliation(s)
- Matteo A Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marie Oster
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ann-Sophie Rupp
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, 60325 Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
11
|
Cuanalo-Contreras K, Moreno-Gonzalez I. Natural Products as Modulators of the Proteostasis Machinery: Implications in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20194666. [PMID: 31547084 PMCID: PMC6801507 DOI: 10.3390/ijms20194666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
Proteins play crucial and diverse roles within the cell. To exert their biological function they must fold to acquire an appropriate three-dimensional conformation. Once their function is fulfilled, they need to be properly degraded to hamper any possible damage. Protein homeostasis or proteostasis comprises a complex interconnected network that regulates different steps of the protein quality control, from synthesis and folding, to degradation. Due to the primary role of proteins in cellular function, the integrity of this network is critical to assure functionality and health across lifespan. Proteostasis failure has been reported in the context of aging and neurodegeneration, such as Alzheimer’s and Parkinson’s disease. Therefore, targeting the proteostasis elements emerges as a promising neuroprotective therapeutic approach to prevent or ameliorate the progression of these disorders. A variety of natural products are known to be neuroprotective by protein homeostasis interaction. In this review, we will focus on the current knowledge regarding the use of natural products as modulators of different components of the proteostasis machinery within the framework of age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Karina Cuanalo-Contreras
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX 77030, USA.
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 28031 Madrid, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
12
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
13
|
Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing. Molecules 2018; 23:molecules23051219. [PMID: 29783751 PMCID: PMC6100286 DOI: 10.3390/molecules23051219] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022] Open
Abstract
Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.
Collapse
|
14
|
Khan TK, Nelson TJ. Protein kinase C activator bryostatin‐1 modulates proteasome function. J Cell Biochem 2018; 119:6894-6904. [PMID: 29693282 DOI: 10.1002/jcb.26887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| | - Thomas J. Nelson
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| |
Collapse
|
15
|
Abstract
In most developed countries, ageing of the population started more than a century ago and it seems to be emerged in a wide range of developing countries as well. Moreover, research into ageing has moved forward in extremely rapidly rhythms nowadays, and the scientific area is of great interest, as implications for nearly all sectors of society, including work, social, economic features, in addition to nutrition and health issues which are involved. The fragile elder population is affected and experienced more frequently infections than the younger population. Infections in elderly patients are of major medical importance because of hormonal changes, increased production of pro-inflammatory cytokines and chemokines, abnormalities of the telomeres which could cause a dysfunction of the immune system called immunosenescence and malnutrition.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- a CHUV (Centre Hospitalier Universitaire Vaudois, Service des Urgences , rue du Bugnon 46, Lausanne , Vaud , Switzerland
| | - Eugenia Bezirtzoglou
- b Faculty of Agricultural Development , Department of Food Science and Technology and Department of Chemistry and Biochemistry, Democritus University of Thrace , Orestiada , Greece
| |
Collapse
|
16
|
Kapetanou M, Chondrogianni N, Petrakis S, Koliakos G, Gonos ES. Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radic Biol Med 2017; 103:226-235. [PMID: 28034832 DOI: 10.1016/j.freeradbiomed.2016.12.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/07/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
The age-associated decline of adult stem cell function contributes to the physiological failure of homeostasis during aging. The proteasome plays a key role in the maintenance of proteostasis and its failure is associated with various biological phenomena including senescence and aging. Although stem cell biology has attracted intense attention, the role of proteasome in stemness and its age-dependent deterioration remains largely unclear. By employing both Wharton's-Jelly- and Adipose-derived human adult mesenchymal stem cells (hMSCs), we reveal a significant age-related decline in proteasome content and peptidase activities, accompanied by alterations of proteasomal complexes. Additionally, we show that senescence and the concomitant failure of proteostasis negatively affects stemness. Remarkably, the loss of proliferative capacity and stemness of hMSCs can be counteracted through proteasome activation. At the mechanistic level, we demonstrate for the first time that Oct4 binds at the promoter region of β2 and β5 proteasome subunits and thus possibly regulates their expression. A firm understanding of the mechanisms regulating proteostasis in stem cells will pave the way to innovative stem cell-based interventions to improve healthspan and lifespan.
Collapse
Affiliation(s)
- Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| | - Spyros Petrakis
- Biohellenika Biotechnology Company, 57001 Thessaloniki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, 57001 Thessaloniki, Greece; Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
17
|
Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, Chondrogianni N. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditis elegans and Neuronal Cultures. Antioxid Redox Signal 2016; 25:855-869. [PMID: 26886723 PMCID: PMC5124744 DOI: 10.1089/ars.2015.6494] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. RESULTS Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aβ deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. INNOVATION This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. CONCLUSION Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,2 Faculty of Biology and Pharmacy, Institute of Nutrition, Friedrich Schiller University of Jena , Jena, Germany
| | - Marianthi Sakellari
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Sweta Jha
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Nektarios Tavernarakis
- 5 Institute of Molecular Biology and Biotechnology , Foundation for Research and Technology-Hellas, Heraklion, Greece .,6 Faculty of Medicine, Department of Basic Sciences, University of Crete , Heraklion, Greece
| | - Carina I Holmberg
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Efstathios S Gonos
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Niki Chondrogianni
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece
| |
Collapse
|
18
|
Ma S, Upneja A, Galecki A, Tsai YM, Burant CF, Raskind S, Zhang Q, Zhang ZD, Seluanov A, Gorbunova V, Clish CB, Miller RA, Gladyshev VN. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 2016; 5:e19130. [PMID: 27874830 PMCID: PMC5148604 DOI: 10.7554/elife.19130] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Akhil Upneja
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Andrzej Galecki
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, United States
| | - Yi-Miau Tsai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Sasha Raskind
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, United States
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, United States
| | | | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Piperigkou Z, Karamanou K, Afratis NA, Bouris P, Gialeli C, Belmiro CLR, Pavão MSG, Vynios DH, Tsatsakis AM. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol Lett 2016; 240:32-42. [PMID: 26476401 DOI: 10.1016/j.toxlet.2015.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022]
Abstract
The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Nikolaos A Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Celso L R Belmiro
- Faculdade de Medicina, disciplina de Imunologia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| | - Mauro S G Pavão
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | - Dimitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| | - Aristidis M Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
21
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
22
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
23
|
Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 2014; 29:611-22. [PMID: 25395451 DOI: 10.1096/fj.14-252189] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer's disease (AD) or Huntington's disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Nikos Kourtis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| |
Collapse
|
24
|
Ellina MI, Bouris P, Kletsas D, Aletras A, Karamanos N. Epidermal growth factor/epidermal growth factor receptor signaling axis is a significant regulator of the proteasome expression and activity in colon cancer cells. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.aac0e6.v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Colon cancer is the third most common type of cancer worldwide. Epidermal growth factor receptor (EGFR) plays a crucial role in the (patho)physiology of the disease. EGFR controls vital cellular processes, while this action is associated with poor prognosis. In addition, K-Ras mutations are associated with the promotion of the disease and the anti-EGFR resistance. The ubiquitin-proteasome system plays also a very important role in cancer, modulating cell cycle and other cellular processes such as the growth and the survival of cancer cells. Proteasome inhibition affects, in several cases, the action and the protein levels of EGFR. Nevertheless, little is known whether the reversed option is possible. In this study, we, therefore, investigated the impact of epidermal growth factor (EGF)/EGFR signaling axis on gene expression and the proteolytic activity of the proteasome subunits, as well as whether Nrf2, an activator of proteasome expression, plays a role in this process. Moreover, we evaluated whether EGF regulates the expression of its own receptor and the proliferation rate of DLD-1 (K-Ras mutated) colon cancer cells. The obtained data showed that, although EGF has no significant effect on the proliferation of DLD-1 colon cancer cells, it significantly upregulates the expression of EGFR as well as the expression and the activity of the proteasome, suggesting that the EGF-mediated proteasome activation could possibly lead to enhanced EGFR degradation leading to autoregulation of EGF–EGFR pathway. Nrf2 activation did not induce proteasome gene expression in DLD-1 colon cancer cells.
Collapse
|
25
|
Perluigi M, Di Domenico F, Buttterfield DA. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics. Proteomics Clin Appl 2014; 8:73-85. [PMID: 24259517 DOI: 10.1002/prca.201300066] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 01/17/2023]
Abstract
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.
Collapse
|
26
|
EGF/EGFR signaling axis is a significant regulator of the proteasome expression and activity in colon cancer cells. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/a2199-1006.01.sor-life.ac0e6.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Colon cancer is the third most common type of cancer worldwide. Epidermal growth factor receptor (EGFR) plays a crucial role in the (patho)physiology of the disease. EGFR controls vital cellular processes, while this action is associated with poor prognosis. In addition, K-Ras mutations are associated with the promotion of the disease and the anti-EGFR resistance. The ubiquitin-proteasome system plays also a very important role in cancer, modulating cell cycle and other cellular processes such as the growth and the survival of cancer cells. Proteasome inhibition affects, in several cases, the action and the protein levels of EGFR. Nevertheless, little is known whether the reversed option is possible. In this study, we, therefore, investigated the impact of epidermal growth factor (EGF)/EGFR signaling axis on gene expression and the proteolytic activity of the proteasome subunits, as well as whether Nrf2, an activator of proteasome expression, plays a role in this process. Moreover, we evaluated whether EGF regulates the expression of its own receptor and the proliferation rate of DLD-1 (K-Ras mutated) colon cancer cells. The obtained data showed that, although EGF has no significant effect on the proliferation of DLD-1 colon cancer cells, it significantly upregulates the expression of EGFR as well as the expression and the activity of the proteasome, suggesting that the EGF-mediated proteasome activation could possibly lead to enhanced EGFR degradation leading to autoregulation of EGF–EGFR pathway. Nrf2 activation did not induce proteasome gene expression in DLD-1 colon cancer cells.
Collapse
|
27
|
Dal Vechio FH, Cerqueira F, Augusto O, Lopes R, Demasi M. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic Biol Med 2014; 67:304-13. [PMID: 24291399 DOI: 10.1016/j.freeradbiomed.2013.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
The proteasome is a multicatalytic protease that is responsible for the degradation of the majority of intracellular proteins. Its role is correlated with several major regulatory pathways that are involved in cell cycle control, signaling, and antigen presentation, as well as in the removal of oxidatively damaged proteins. Although several proteasomal catalytic inhibitors have been described, very few activators have been reported to date. Some reports in the literature highlight the cellular protective effects of proteasome activation against oxidative stress and its effect on increased life span. In this work, we describe a peptide named proteasome-activating peptide 1 (PAP1), which increases the chymotrypsin-like proteasomal catalytic activity and, consequently, proteolytic rates both in vitro and in culture. PAP1 proteasomal activation is mediated by the opening of the proteasomal catalytic chamber. We also demonstrate that the observed proteasomal activation protected cells from oxidative stress; further, PAP1 prevented protein aggregation in a cellular model of amyotrophic lateral sclerosis. The role of 20SPT gate opening underlying protection against oxidative stress was also explored in yeast cells. The present data indicate the importance of proteasomal activators as potential drugs for the treatment of pathologies associated with the impaired removal of damaged proteins, which is observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco H Dal Vechio
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP 05503-001, Brazil
| | - Fernanda Cerqueira
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP 05503-001, Brazil
| | - Ohara Augusto
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP 05503-001, Brazil
| | - Robson Lopes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP 05503-001, Brazil.
| |
Collapse
|
28
|
Qi L, Zhang XD. Role of chaperone-mediated autophagy in degrading Huntington's disease-associated huntingtin protein. Acta Biochim Biophys Sin (Shanghai) 2014; 46:83-91. [PMID: 24323530 DOI: 10.1093/abbs/gmt133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutant N-terminal huntingtin (Htt) protein resulting from Huntington's disease (HD) with expanded polyglutamine accumulates and forms aggregates in vulnerable neurons. Both ubiquitin proteasomal and autophagic pathways contribute to the degradation of mutant Htt. Here, we focus on the involvement of chaperone-mediated autophagy (CMA), a selective form of autophagy in the clearance of Htt. Selective catabolism in CMA is conferred by the presence of a KFERQ-like targeting motif in the substrates, by which molecular chaperones recognize the hydrophobic surfaces of the misfolded substrates, and transfer them to the lysosomal membrane protein type-2A, LAMP-2A. The substrates are taken into the lysosomes through LAMP-2A and are rapidly degraded by the lysosomal enzymes. Taken together, we summarize the recent evidence to elucidate that Htt is also a potential substrate of CMA. We propose that the manipulation of CMA could be a therapeutic strategy for HD.
Collapse
Affiliation(s)
- Lin Qi
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | | |
Collapse
|
29
|
Lu L, Song HF, Wei JL, Liu XQ, Song WH, Yan BY, Yang GJ, Li A, Yang WL. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression. Biochem Biophys Res Commun 2014; 443:1182-1188. [PMID: 24393841 DOI: 10.1016/j.bbrc.2013.12.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 02/08/2023]
Abstract
Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.
Collapse
Affiliation(s)
- Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China.
| | - Hui-Fang Song
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiao-Long Wei
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Xue-Qin Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Wen-Hui Song
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ba-Yi Yan
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Gui-Jiao Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Ang Li
- Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong, China; Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong, China
| | - Wu-Lin Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A∗STAR), Singapore.
| |
Collapse
|
30
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
32
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
33
|
Sharanova NE, Vasilyev AV, Gapparov MMG. Effect of taurine on the proteomic profile of the cytosolic and microsomal fractions of rat hepatocytes during ontogeny. Bull Exp Biol Med 2012; 153:194-7. [PMID: 22816081 DOI: 10.1007/s10517-012-1674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proteomic features of the cytosolic and microsomal fractions of rat hepatocytes were studied during long-term dietary consumption of taurine (12 months) as a modulator of energy homeostasis. We identified proteomic markers of the effect of taurine on regulation of cell homeostasis. A protein with unknown biological function was revealed.
Collapse
Affiliation(s)
- N E Sharanova
- Institute of Nutrition, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
34
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Chen PH, Wang CY, Hsia CW, Ho MY, Chen A, Tseng MJ, Wu YF, Chen HM, Huang TH, Liu HT, Shui HA. Impact of taxol on dermal papilla cells — A proteomics and bioinformatics analysis. J Proteomics 2011; 74:2760-73. [DOI: 10.1016/j.jprot.2011.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/16/2011] [Accepted: 09/25/2011] [Indexed: 12/23/2022]
|
36
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Abstract
The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In Huntington's Disease (HD), a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein Huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease. We have recently found that Htt is phosphorylated by the kinase IKK on serine (S) 13, activating its phosphorylation on S16 and its acetylation and poly-SUMOylation, modifications that modulate its clearance by the proteasome and lysosome in cells. In the discussion here I suggest that Htt may have a normal function in the lysosomal mechanism of selective macroautophagy involved in its own degradation which may share some similarity with the yeast cytoplasm to vacuole targeting (Cvt) pathway. Pharmacologic activation of this pathway may be useful early in disease progression to treat HD and other neurodegenerative diseases characterized by the accumulation of disease proteins.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
38
|
Bakondi E, Catalgol B, Bak I, Jung T, Bozaykut P, Bayramicli M, Ozer NK, Grune T. Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity. Free Radic Biol Med 2011; 50:86-92. [PMID: 20977936 DOI: 10.1016/j.freeradbiomed.2010.10.700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 01/27/2023]
Abstract
Changes in protein turnover are among the dominant metabolic changes during aging. Of special importance is the maintenance of nuclear protein homeostasis to ensure a coordinated cellular metabolism. Therefore, in the nucleus a special PARP-1-mediated mechanism of proteasomal activation exists to ensure a rapid degradation of oxidized nuclear proteins. It was already demonstrated earlier that the cytosolic proteasomal system declines dramatically with aging, whereas the nuclear proteasome remains less affected. We demonstrate here that the stress-mediated proteasomal activation in the nucleus declines during replicative senescence of human fibroblasts. Furthermore, we clearly show that this decline in the PARP-1-mediated proteasomal activation is due to a decline in the expression and activity of PARP-1 in senescent fibroblasts. In a final study we show that this process also happens in vivo, because the protein expression level of PARP-1 is significantly lower in the skin of aged donors compared to that of young ones. Therefore, we conclude that the rate-limiting factor in poly(ADP-ribose)-mediated proteasomal activation in oxidative stress is PARP-1 and not the nuclear proteasome itself.
Collapse
Affiliation(s)
- Edina Bakondi
- Institute of Biological Chemistry and Nutrition, Department of Biofunctionality and Food Safety, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guest WC, Silverman JM, Pokrishevsky E, O'Neill MA, Grad LI, Cashman NR. Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1433-1459. [PMID: 22043906 DOI: 10.1080/15287394.2011.618967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein misfolding diseases have been classically understood as diffuse errors in protein folding, with misfolded protein arising autonomously throughout a tissue due to a pathologic stressor. The field of prion science has provided an alternative mechanism whereby a seed of pathologically misfolded protein, arising exogenously or through a rare endogenous structural fluctuation, yields a template to catalyze misfolding of the native protein. The misfolded protein may then spread intercellularly to communicate the misfold to adjacent areas and ultimately infect a whole tissue. Mounting evidence implicates a prion-like process in the propagation of several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and the tauopathies. However, the parallels between the events observed in these conditions and those in prion disease are often incomplete. The aim of this review was to examine the current state of knowledge concerning the mechanisms of protein misfolding and aggregation for neurodegeneration-associated proteins. In addition, possible methods of intercellular spread are described that focus on the hypothesis that released microvesicles function as misfolded protein delivery vehicles, and the therapeutic options enabled by viewing these diseases from the prion perspective.
Collapse
Affiliation(s)
- Will C Guest
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2010; 2:a006734. [PMID: 21068151 DOI: 10.1101/cshperspect.a006734] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells maintain a healthy proteome through continuous evaluation of the quality of each of their proteins. Quality control requires the coordinated action of chaperones and proteolytic systems. Chaperones identify abnormal or unstable conformations in proteins and often assist them to regain stability. However, if repair is not possible, the aberrant protein is eliminated from the cellular cytosol to prevent undesired interactions with other proteins or its organization into toxic multimeric complexes. Autophagy and the ubiquitin/proteasome system mediate the complete degradation of abnormal protein products. In this article, we describe each of these proteolytic systems and their contribution to cellular quality control. We also comment on the cellular consequences resulting from the dysfunction of these systems in common human protein conformational disorders and provide an overview on current therapeutic interventions based on the modulation of the proteolytic systems.
Collapse
Affiliation(s)
- Esther Wong
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
41
|
|
42
|
Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O'Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. ACTA ACUST UNITED AC 2009; 187:1083-99. [PMID: 20026656 PMCID: PMC2806289 DOI: 10.1083/jcb.200909067] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species.
Collapse
|
43
|
Zhang L, Ebenezer PJ, Dasuri K, Bruce-Keller AJ, Liu Y, Keller JN. Proteasome inhibition modulates kinase activation in neural cells: relevance to ubiquitination, ribosomes, and survival. J Neurosci Res 2009; 87:3231-8. [PMID: 19565657 PMCID: PMC2875064 DOI: 10.1002/jnr.22147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we examined whether established signal transduction cascades, p44/42 mitogen-activated protein kinase (ERK1/2) and Jun N-terminal kinases (JNK) pathways, are altered in N2a neural cells in response to proteasome inhibition. Additionally, we sought to elucidate the relative contribution of these signal transduction pathways to the multiple downstream effects of proteasome inhibition. Our data indicate that ERK1/2 and JNK are activated in response to proteasome inhibition. Washout of proteasome inhibitor (MG132) results in an enhancement of ERK1/2 activation and amelioration of JNK activation. Treatment with an established MAPK inhibitor resulted in an increase in proteasome inhibitor toxicity, and incubation with JNK inhibitor was observed to attenuate proteasome inhibitor toxicity significantly. Subsequent studies demonstrated that inhibition of ERK1/2 and JNK activity does not alter the gross increase in ubiquitinated protein following proteasome inhibitor administration. Similarly, ERK1/2 and JNK activity do not appear to play a role in the disruption of polysomes following proteasome inhibitor administration in neural cells. Together these data indicate that ERK1/2 and JNK activation may play differential roles in modulating neurochemical disturbances and neurotoxicity induced by proteasome inhibition.
Collapse
Affiliation(s)
- Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | | | - Ying Liu
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
44
|
Cullen SJ, Ponnappan S, Ponnappan U. Proteasome inhibition up-regulates inflammatory gene transcription induced by an atypical pathway of NF-kappaB activation. Biochem Pharmacol 2009; 79:706-14. [PMID: 19835847 DOI: 10.1016/j.bcp.2009.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 12/21/2022]
Abstract
Proteasome inhibition has become synonymous with inhibition of NF-kappaB activity. However, hyperactive NF-kappaB responses often accompany physiological conditions marked by proteasomal defects, i.e. advancing age, geriatric diseases, and bortezomib resistance. These paradoxical NF-kappaB responses are likely to be impervious to proteasomal defects because they stem from atypical NF-kappaB signaling induced by upstream mechanisms which are proteasome-independent. While this atypical pathway does not require proteasome for NF-kappaB nuclear translocation, a role for proteasome in regulating nuclear NF-kappaB remains unexplored. We now demonstrate that proteasome stringently controls transcription of inflammatory mediators regulated by this atypical NF-kappaB pathway. Proteolytic activity of the proteasome mediates the removal of the NF-kappaB subunit, p65/RelA, from inflammatory genes, thereby terminating atypical NF-kappaB-dependent transcriptional responses. For the first time, we demonstrate that both 19S and 20S components of the 26S proteasome complex are recruited to an inflammatory gene promoter; additionally, the 19S and 20S complexes appear to play distinct roles in the negative regulation of NF-kappaB-dependent transcription. By demonstrating that proteasome regulates the termination of atypical NF-kappaB-dependent transcriptional responses, these studies clearly indicate a novel, regulatory role for proteasome in atypical NF-kappaB signaling. Moreover, these results signal a potential interplay between lowered proteasomal function and increased inflammation and may explain why inflammation accompanies physiological conditions under which proteasomal function is compromised, such as during advancing age or following bortezomib treatment. Given this role for proteasome in inflammation resolution, restoration of proteasome function may constitute a novel mechanism for intervening in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Sarah J Cullen
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
45
|
Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps. Apoptosis 2009; 14:478-500. [PMID: 19165601 PMCID: PMC2754154 DOI: 10.1007/s10495-008-0309-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. Neuronal cell death in PD is still poorly understood, despite a wealth of potential pathogenic mechanisms and pathways. Defects in several cellular systems have been implicated as early triggers that start cells down the road toward neuronal death. These include abnormal protein accumulation, particularly of alpha-synuclein; altered protein degradation via multiple pathways; mitochondrial dysfunction; oxidative stress; neuroinflammation; and dysregulated kinase signaling. As dysfunction in these systems mounts, pathways that are more explicitly involved in cell death become recruited. These include JNK signaling, p53 activation, cell cycle re-activation, and signaling through bcl-2 family proteins. Eventually, neurons become overwhelmed and degenerate; however, even the mechanism of final cell death in PD is still unsettled. In this review, we will discuss cell death triggers and effectors that are relevant to PD, highlighting important unresolved issues and implications for the development of neuroprotective therapies.
Collapse
Affiliation(s)
- Oren A Levy
- Department of Neurology, Columbia University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|