1
|
Rowland RJ, Korolchuk S, Salamina M, Tatum NJ, Ault JR, Hart S, Turkenburg JP, Blaza JN, Noble MEM, Endicott JA. Cryo-EM structure of the CDK2-cyclin A-CDC25A complex. Nat Commun 2024; 15:6807. [PMID: 39122719 PMCID: PMC11316097 DOI: 10.1038/s41467-024-51135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Svitlana Korolchuk
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Fujifilm, Belasis Ave, Stockton-on-Tees, Billingham, TS23 1LH, UK
| | - Marco Salamina
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Evotec (UK) Ltd., Milton, Abingdon, OX14 4RZ, UK
| | - Natalie J Tatum
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Hart
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Johan P Turkenburg
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - James N Blaza
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Martin E M Noble
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Jane A Endicott
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
2
|
Wu J, Xu L, Liu B, Sun W, Hu Y, Yang Y, Guo K, Jia X, Sun H, Wu J, Huang Y, Ji W, Fu S, Qiao Y, Zhang X. Biomedical association analysis between G2/M checkpoint genes and susceptibility to HIV-1 infection and AIDS progression from a northern chinese MSM population. AIDS Res Ther 2023; 20:51. [PMID: 37468905 PMCID: PMC10357704 DOI: 10.1186/s12981-023-00536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND MSM are at high risk of HIV infection. Previous studies have shown that the cell cycle regulation plays an important role in HIV-1 infection, especially at the G2/M checkpoint. ATR, Chk1, Cdc25C and CDK1 are key genes of G2/M checkpoint. However, the association between SNPs of these genes and susceptibility to HIV-1 infection and AIDS progression remains unknown. METHODS In this study, 42 tSNPs from the above four G2/M checkpoint genes were genotyped in 529 MSM and 529 control subjects from northern China to analyze this association. RESULTS The results showed that rs34660854 A and rs75368165 A in ATR gene and rs3756766 A in Cdc25C gene could increase the risk of HIV-1 infection (P = 0.049, OR = 1.234, 95% CI 1.001-1.521; P = 0.020, OR = 1.296, 95% CI 1.042-1.611; P = 0.011, OR = 1.392, 95% CI 1.080-1.794, respectively), while Chk1 rs10893405 (P = 0.029, OR = 1.629, 95% CI 1.051-2.523) were significantly associated with AIDS progression. Besides, rs34660854 (P = 0.019, OR = 1.364, 95% CI 1.052-1.769; P = 0.022, OR = 1.337, 95% CI 1.042-1.716, under Codominant model and Dominant model, respectively) and rs75368165 (P = 0.006, OR = 1.445, 95% CI = 1.114-1.899; P = 0.007, OR = 1.418, 95% CI 1.099-1.831, under Codominant model and Dominant model, respectively) in ATR gene, rs12576279 (P = 0.013, OR = 0.343, 95% CI 0.147-0.800; P = 0.048, OR = 0.437, 95% CI 0.192-0.991, under Codominant model and Dominant model, respectively) and rs540436 (P = 0.012, OR = 1.407, 95% CI 1.077-1.836; P = 0.021, OR = 1.359, 95% CI 1.048-1.762, under Codominant model and Dominant model, respectively) in Chk1 gene, rs3756766 (P = 0.013, OR = 1.455, 95% CI 1.083-1.954; P = 0.009, OR = 1.460, 95% CI 1.098-1.940, under Codominant model and Dominant model, respectively) in Cdc25C gene and rs139245206 (P = 0.022, OR = 5.011, 95% CI 1.267-19.816; P = 0.020, OR = 5.067, 95% CI 1.286-19.970, under Codominant model and Recessive model, respectively) in CDK1 gene were significantly associated with HIV-1 infection under different models. CONCLUSIONS We found that genetic variants of G2/M checkpoint genes had a molecular influence on the occurrence of HIV-1 infection and AIDS progression in a northern Chinese MSM population.
Collapse
Affiliation(s)
- Jiawei Wu
- College of Basic Medicine, Harbin Medical University-Daqing Campus, Daqing, Heilongjiang Province, 163319, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Bangquan Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yuanting Hu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yi Yang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Keer Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China
| | - Yuandong Qiao
- College of Basic Medicine, Harbin Medical University-Daqing Campus, Daqing, Heilongjiang Province, 163319, China.
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China.
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, 150081, China.
| |
Collapse
|
3
|
Eight Aging-Related Genes Prognostic Signature for Cervical Cancer. Int J Genomics 2023; 2023:4971345. [PMID: 36880057 PMCID: PMC9985510 DOI: 10.1155/2023/4971345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 02/27/2023] Open
Abstract
This study searched for aging-related genes (ARGs) to predict the prognosis of patients with cervical cancer (CC). All data were obtained from Molecular Signatures Database, Cancer Genome Atlas, Gene Expression Integration, and Genotype Organization Expression. The R software was used to screen out the differentially expressed ARGs (DE-ARGs) between CC and normal tissues. A protein-protein interaction network was established by the DE-ARGs. The univariate and multivariate Cox regression analyses were conducted on the first extracted Molecular Complex Detection component, and a prognostic model was constructed. The prognostic model was further validated in the testing set and GSE44001 dataset. Prognosis was analyzed by Kaplan-Meier curves, and accuracy of the prognostic model was assessed by receiver operating characteristic area under the curve analysis. An independent prognostic analysis of risk score and some clinicopathological factors of CC was also performed. The copy-number variant (CNV) and single-nucleotide variant (SNV) of prognostic ARGs were analyzed by the BioPortal database. A clinical practical nomogram was established to predict individual survival probability. Finally, we carried out cell experiment to further verify the prognostic model. An eight-ARG prognostic signature for CC was constructed. High-risk CC patients had significantly shorter overall survival than low-risk patients. The receiver operating characteristic (ROC) curve validated the good performance of the signature in survival prediction. The Figo_stage and risk score served as independent prognostic factors. The eight ARGs mainly enriched in growth factor regulation and cell cycle pathway, and the deep deletion of FN1 was the most common CNV. An eight-ARG prognostic signature for CC was successfully constructed.
Collapse
|
4
|
Yang Y, Sun X, Cui W, Liu N, Wang K, Qu L, Pan C. The detection of mutation within goat cell division cycle 25 A and its effect on kidding number. Anim Biotechnol 2022; 33:1504-1509. [PMID: 33879023 DOI: 10.1080/10495398.2021.1910519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell division cycle 25 A (CDC25A) accounts for an essential function on early folliculogenesis of female mammals, especially regulating the function of intra-ovarian, thus this gene is pinpointed as a candidate gene that influences the kidding number of goat. On this ground, the purpose of this study was to investigate whether the reported 20-nt nucleotide variants locus (rs639467625) of the CDC25A gene influences kidding number in Shaanbei white cashmere goat (SBWC). The χ2-test showed that there were more ID genotypes in mothers of multiple lambs than in mothers of single lambs. Interestingly, this indel locus was related to the first-born kidding number in the group of SBWC goats (p < 0.05). Similarly, the result of the t-test was consistent with the result of the χ2-test, showed the kidding number of ID genotype individuals was large than that of II individuals (p < 0.05). These findings proved that the different genotypes of CDC25A have impacts on goat kidding numbers. Thus, the results led us to speculate that the ID genotype of CDC25A was one of the main indel influencing goat kidding numbers. Simultaneously, this study was expected to provide useful DNA markers for superior individuals selection by marker-assisted selection (MAS) and make a contribution to goats breeding.
Collapse
Affiliation(s)
- Yuta Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Qu
- College of Life Sciences, Yulin University, Yulin, Shaanxi, PR China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Lee HM, Lee SC, He L, Kong APS, Mao D, Hou Y, Chung ACK, Xu G, Ma RCW, Chan JCN. Legacy effect of high glucose on promoting survival of HCT116 colorectal cancer cells by reducing endoplasmic reticulum stress response. Am J Cancer Res 2021; 11:6004-6023. [PMID: 35018239 PMCID: PMC8727802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023] Open
Abstract
Patients with diabetes have increased risk of cancer and poor response to anti-cancer treatment. Increased protein synthesis is associated with endoplasmic reticulum (ER) stress which can trigger the unfolded protein response (UPR) to restore homeostasis, failure of which can lead to dysregulated cellular growth. We hypothesize that hyperglycemia may have legacy effect in promoting survival of cancer cells through dysregulation of UPR. Using HCT116 colorectal cancer cells as a model, we demonstrated the effects of high glucose (25 mM) on promoting cell growth which persisted despite return to normal glucose medium (5.6 mM). Using the Affymetrix gene expression microarray in HCT116 cells programmed by high glucose, we observed activation of genes related to cell proliferation and cell cycle progression and suppression of genes implicated in UPR including BiP and CHOP. These gene expression changes were validated in HCT116 cancer cells using quantitative real-time PCR and Western blot analysis. We further examined the effects of thapsigargin, an anti-cancer prodrug, which utilized ER stress pathway to induce apoptosis. High glucose attenuated thapsigargin-induced UPR and growth inhibition in HCT116 cells, which persisted despite return to normal glucose medium. Western blot analysis showed activation of caspase-3 in thapsigargin-treated cells in both normal and high glucose medium, albeit with lower levels of cleaved caspase-3 in cells exposed to high glucose, suggesting reduced apoptosis. Flow cytometry analysis confirmed fewer apoptotic cells under thapsigargin treatment in cells exposed to high glucose. Our results suggested that hyperglycemia altered gene expression involved in UPR with increased cell proliferation and facilitated survival of HCT116 cells under thapsigargin-induced ER stress by reducing the apoptotic response.
Collapse
Affiliation(s)
- Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Shao Chin Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Department of Biological Sciences, School of Life Sciences, Shanxi UniversityTaiyuan 030006, Shanxi, China
| | - Lan He
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Dandan Mao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Yong Hou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | | | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales HospitalShatin, Hong Kong
| |
Collapse
|
6
|
Islam S, Dutta P, Chopra K, Rapole S, Chauhan R, Santra MK. FBXW8 regulates G1 and S phases of cell cycle progression by restricting β-TrCP1 function. FEBS J 2021; 288:5474-5497. [PMID: 33742524 DOI: 10.1111/febs.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Sequential alteration in the expression levels of cell cycle regulatory proteins is crucial for faithful cell cycle progression to maintain the cellular homeostasis. F-box protein β-TrCP1 is known to control the expression levels of several important cell cycle regulatory proteins. However, how the function of β-TrCP1 is regulated in spatiotemporal manner during cell cycle progression remains elusive. Here, we show that expression levels of β-TrCP1 oscillate during cell cycle progression with a minimum level at the G1 and S phases of cell cycle. Using biochemical, flow cytometry, and immunofluorescence techniques, we found that oscillation of β-TrCP1 expression is controlled by another F-box protein FBXW8. FBXW8 directs the proteasomal degradation of β-TrCP1 in MAPK pathway-dependent manner. Interestingly, we found that the attenuation of β-TrCP1 by FBXW8 is important for Cdc25A-mediated cell cycle transition from G1 phase to S phase as well as DNA damage-free progression of S phase. Overall, our study reveals the intriguing molecular mechanism and significance of maintenance of β-TrCP1 levels during cell cycle progression by FBXW8-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Sehbanul Islam
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, India.,Department of Biotechnology, Savitribai Phule Pune University, India
| | - Parul Dutta
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, India.,Department of Biotechnology, Savitribai Phule Pune University, India
| | - Kriti Chopra
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science, Pune, India
| | - Radha Chauhan
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
7
|
Guerrero Llobet S, van der Vegt B, Jongeneel E, Bense RD, Zwager MC, Schröder CP, Everts M, Fehrmann RSN, de Bock GH, van Vugt MATM. Cyclin E expression is associated with high levels of replication stress in triple-negative breast cancer. NPJ Breast Cancer 2020; 6:40. [PMID: 32964114 PMCID: PMC7477160 DOI: 10.1038/s41523-020-00181-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Replication stress entails the improper progression of DNA replication. In cancer cells, including breast cancer cells, an important cause of replication stress is oncogene activation. Importantly, tumors with high levels of replication stress may have different clinical behavior, and high levels of replication stress appear to be a vulnerability of cancer cells, which may be therapeutically targeted by novel molecularly targeted agents. Unfortunately, data on replication stress is largely based on experimental models. Further investigation of replication stress in clinical samples is required to optimally implement novel therapeutics. To uncover the relation between oncogene expression, replication stress, and clinical features of breast cancer subgroups, we immunohistochemically analyzed the expression of a panel of oncogenes (Cyclin E, c-Myc, and Cdc25A,) and markers of replication stress (phospho-Ser33-RPA32 and γ-H2AX) in breast tumor tissues prior to treatment (n = 384). Triple-negative breast cancers (TNBCs) exhibited the highest levels of phospho-Ser33-RPA32 (P < 0.001 for all tests) and γ-H2AX (P < 0.05 for all tests). Moreover, expression levels of Cyclin E (P < 0.001 for all tests) and c-Myc (P < 0.001 for all tests) were highest in TNBCs. Expression of Cyclin E positively correlated with phospho-RPA32 (Spearman correlation r = 0.37, P < 0.001) and γ-H2AX (Spearman correlation r = 0.63, P < 0.001). Combined, these data indicate that, among breast cancers, replication stress is predominantly observed in TNBCs, and is associated with expression levels of Cyclin E. These results indicate that Cyclin E overexpression may be used as a biomarker for patient selection in the clinical evaluation of drugs that target the DNA replication stress response.
Collapse
Affiliation(s)
- Sergi Guerrero Llobet
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Jongeneel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rico D. Bense
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mieke C. Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolien P. Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H. de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Das S, Chandrasekaran AP, Jo KS, Ko NR, Oh SJ, Kim KS, Ramakrishna S. HAUSP stabilizes Cdc25A and protects cervical cancer cells from DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118835. [PMID: 32860838 DOI: 10.1016/j.bbamcr.2020.118835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Resistance to DNA-damaging agents is one of the main reasons for the low survival of cervical cancer patients. Previous reports have suggested that the Cdc25A oncoprotein significantly affects the level of susceptibility to DNA-damaging agents, but the molecular mechanism remains unclear. In this study, we used Western blot and flow cytometry analyses to demonstrate that the deubiquitinating enzyme HAUSP stabilizes Cdc25A protein level. Furthermore, in a co-immunoprecipitation assay, we found that HAUSP interacts with and deubiquitinates Cdc25A both exogenously and endogenously. HAUSP extends the half-life of the Cdc25A protein by circumventing turnover. HAUSP knockout in HeLa cells using the CRISPR/Cas9 system caused a significant delay in Cdc25A-mediated cell cycle progression, cell migration, and colony formation and attenuated tumor progression in a mouse xenograft model. Furthermore, HAUSP-mediated stabilization of the Cdc25A protein produced enhanced resistance to DNA-damaging agents. Overall, our study suggests that targeting Cdc25A and HAUSP could be a promising combinatorial approach to halt progression and minimize antineoplastic resistance in cervical cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Ki-Sang Jo
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Na Re Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, South Korea; Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
9
|
Palmer N, Kaldis P. Less-well known functions of cyclin/CDK complexes. Semin Cell Dev Biol 2020; 107:54-62. [PMID: 32386818 DOI: 10.1016/j.semcdb.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) are activated by cyclins, which play important roles in dictating the actions of CDK/cyclin complexes. Cyclin binding influences the substrate specificity of these complexes in addition to their susceptibility to inhibition or degradation. CDK/cyclin complexes are best known to promote cell cycle progression in the mitotic cell cycle but are also crucial for important cellular processes not strictly associated with cellular division. This chapter primarily explores the understudied topic of CDK/cyclin complex functionality during the DNA damage response. We detail how CDK/cyclin complexes perform dual roles both as targets of DNA damage checkpoint signaling as well as effectors of DNA repair. Additionally, we discuss the potential CDK-independent roles of cyclins in these processes and the impact of such roles in human diseases such as cancer. Our goal is to place the spotlight on these important functions of cyclins either acting as independent entities or within CDK/cyclin complexes which have attracted less attention in the past. We consider that this will be important for a more complete understanding of the intricate functions of cell cycle proteins in the DNA damage response.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore; Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Box 50332, SE-202 13, Malmö, Sweden.
| |
Collapse
|
10
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
11
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
12
|
Francipane MG, Bulanin D, Lagasse E. Establishment and Characterization of 5-Fluorouracil-Resistant Human Colorectal Cancer Stem-Like Cells: Tumor Dynamics under Selection Pressure. Int J Mol Sci 2019; 20:ijms20081817. [PMID: 31013771 PMCID: PMC6515384 DOI: 10.3390/ijms20081817] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) remains the gold standard of first-line treatment for colorectal cancer (CRC). Although it may initially debulk the tumor mass, relapses frequently occur, indicating the existence of cancer cells that are therapy-resistant and are capable of refueling tumor growth. To identify mechanisms of drug resistance, CRC stem-like cells were subjected to long-term 5-FU selection using either intermittent treatment regimen with the IC50 drug dose or continuous treatment regimen with escalating drug doses. Parental cancer cells were cultivated in parallel. Real-time PCR arrays and bioinformatic tools were used to investigate gene expression changes. We found the first method selected for cancer cells with more aggressive features. We therefore transplanted these cancer cells or parental cells in mice, and again, found that not only did the 5-FU-selected cancer cells generate more aggressive tumors with respect to their parental counterpart, but they also showed a different gene expression pattern as compared to what we had observed in vitro, with ID1 the top upregulated gene. We propose ID1 as a stemness marker pervasively expressed in secondary lesions emerging after completion of chemotherapy.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Ri.MED Foundation, 90133 Palermo, Italy.
| | - Denis Bulanin
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan.
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
13
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
14
|
Transcriptome analysis of differentially expressed genes in rabbits' ovaries by digital gene-expression profiling. Genes Genomics 2018; 40:687-700. [PMID: 29934810 DOI: 10.1007/s13258-018-0651-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/10/2017] [Indexed: 10/17/2022]
Abstract
Reproduction is a complex physiological process that is regulated by multiple genes and pathways. Compared with studies of common livestock, fewer studies of genes related to the fertility of rabbits (Oryctolagus cuniculus) have been reported, and the molecular mechanism of their high productivity is still poorly understood. To identify candidate genes associated with development and prolificacy in rabbits, we analyzed gene expression differences among the ovaries of mature Californian rabbit (LC), and mature (HH) and immature Harbin white rabbit (IH) using digital gene expression technology. We detected 885 and 321 genes that were significantly differentially expressed in comparisons between HH/IH and HH/LC, respectively. The functions of the differentially expressed genes (DEGs) were determined by GO classification and KEGG pathway analysis. The results suggest that most of the DEGs between the mature and immature developmental stages were predominantly associated with DNA replication, cell cycle, and progesterone-mediated oocyte maturation, and most were up-regulated in the IH group compared with the HH group. The DEGs involved in disparate fecundities between HH and LC were associated with reproduction, fructose and mannose metabolism, steroid hormone biosynthesis, and pyruvate metabolism. Our results will contribute to a better understanding of changes in the regulatory network in ovary at different developmental stages and in different fertility of rabbit.
Collapse
|
15
|
Onur Çağlar H, Yılmaz Süslüer S, Gündüz C, Haydaroğlu A. Meme kanseri kanser kök hücrelerinde PD-0332991 uygulanmasının hücre döngüsü düzenleyici genler üzerine etkisi. EGE TIP DERGISI 2018. [DOI: 10.19161/etd.414615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Guo H, Wang Q, Li Y, Yin X, Zhang H, Shi J. Overexpression of CDC25C affects the cell cycle of ovarian granulosa cells from adult and young goats. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Zwergel C, Czepukojc B, Evain-Bana E, Xu Z, Stazi G, Mori M, Patsilinakos A, Mai A, Botta B, Ragno R, Bagrel D, Kirsch G, Meiser P, Jacob C, Montenarh M, Valente S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur J Med Chem 2017; 134:316-333. [DOI: 10.1016/j.ejmech.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023]
|
18
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Gendelman R, Xing H, Mirzoeva OK, Sarde P, Curtis C, Feiler HS, McDonagh P, Gray JW, Khalil I, Korn WM. Bayesian Network Inference Modeling Identifies TRIB1 as a Novel Regulator of Cell-Cycle Progression and Survival in Cancer Cells. Cancer Res 2017; 77:1575-1585. [PMID: 28087598 DOI: 10.1158/0008-5472.can-16-0512] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Molecular networks governing responses to targeted therapies in cancer cells are complex dynamic systems that demonstrate nonintuitive behaviors. We applied a novel computational strategy to infer probabilistic causal relationships between network components based on gene expression. We constructed a model comprised of an ensemble of networks using multidimensional data from cell line models of cell-cycle arrest caused by inhibition of MEK1/2. Through simulation of a reverse-engineered Bayesian network model, we generated predictions of G1-S transition. The model identified known components of the cell-cycle machinery, such as CCND1, CCNE2, and CDC25A, as well as revealed novel regulators of G1-S transition, IER2, TRIB1, TRIM27. Experimental validation of model predictions confirmed 10 of 12 predicted genes to have a role in G1-S progression. Further analysis showed that TRIB1 regulated the cyclin D1 promoter via NFκB and AP-1 sites and sensitized cells to TRAIL-induced apoptosis. In clinical specimens of breast cancer, TRIB1 levels correlated with expression of NFκB and its target genes (IL8, CSF2), and TRIB1 copy number and expression were predictive of clinical outcome. Together, our results establish a critical role of TRIB1 in cell cycle and survival that is mediated via the modulation of NFκB signaling. Cancer Res; 77(7); 1575-85. ©2017 AACR.
Collapse
Affiliation(s)
- Rina Gendelman
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
| | - Heming Xing
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Olga K Mirzoeva
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
| | | | - Christina Curtis
- Departments of Medicine and Genetics, School of Medicine, Stanford University, Stanford, California
| | | | | | - Joe W Gray
- Oregon Health and Sciences University, Portland, Oregon
| | - Iya Khalil
- GNS Healthcare, Cambridge, Massachusetts
| | - W Michael Korn
- Divisions of Gastroenterology and Hematology/Oncology, Department of Medicine, University of California, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California
| |
Collapse
|
20
|
Lee YU, Son M, Kim J, Shim YH, Kawasaki I. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions. Cell Cycle 2016; 15:654-66. [PMID: 27104746 DOI: 10.1080/15384101.2016.1146839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.
Collapse
Affiliation(s)
- Yong-Uk Lee
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Miseol Son
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Jiyoung Kim
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea.,b Current address: Laboratory of Genetics, BRC, National Institutes of Health, National Institute on Aging , Baltimore , MD , USA
| | - Yhong-Hee Shim
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea
| | - Ichiro Kawasaki
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , South Korea.,c Institute of KU Biotechnology, Konkuk University , Seoul , South Korea
| |
Collapse
|
21
|
Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, Wang L, Yang W, Lu Z. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun 2016; 7:12431. [PMID: 27485204 PMCID: PMC4976202 DOI: 10.1038/ncomms12431] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 12/23/2022] Open
Abstract
Many types of human tumour cells overexpress the dual-specificity phosphatase Cdc25A. Cdc25A dephosphorylates cyclin-dependent kinase and regulates the cell cycle, but other substrates of Cdc25A and their relevant cellular functions have yet to be identified. We demonstrate here that EGFR activation results in c-Src-mediated Cdc25A phosphorylation at Y59, which interacts with nuclear pyruvate kinase M2 (PKM2). Cdc25A dephosphorylates PKM2 at S37, and promotes PKM2-dependent β-catenin transactivation and c-Myc-upregulated expression of the glycolytic genes GLUT1, PKM2 and LDHA, and of CDC25A; thus, Cdc25A upregulates itself in a positive feedback loop. Cdc25A-mediated PKM2 dephosphorylation promotes the Warburg effect, cell proliferation and brain tumorigenesis. In addition, we identify positive correlations among Cdc25A Y59 phosphorylation, Cdc25A and PKM2 in human glioblastoma specimens. Furthermore, levels of Cdc25A Y59 phosphorylation correlate with grades of glioma malignancy and prognosis. These findings reveal an instrumental function of Cdc25A in controlling cell metabolism, which is essential for EGFR-promoted tumorigenesis.
Collapse
Affiliation(s)
- Ji Liang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Ruixiu Cao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Yajuan Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liwei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.,National Laboratory of Oncogene and Cancer Related Genes Foundation, Shanghai 200127, China
| | - Weiwei Yang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Chen X, Lu P, Wu Y, Wang DD, Zhou S, Yang SJ, Shen HY, Zhang XH, Zhao JH, Tang JH. MiRNAs-mediated cisplatin resistance in breast cancer. Tumour Biol 2016; 37:12905-12913. [DOI: 10.1007/s13277-016-5216-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|
23
|
A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2016; 2:16014. [PMID: 27462461 PMCID: PMC4877570 DOI: 10.1038/celldisc.2016.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
The regulation of stability is particularly crucial for unstable proteins in cells. However, a convenient and unbiased method of identifying regulators of protein stability remains to be developed. Recently, a genome-scale CRISPR-Cas9 library has been established as a genetic tool to mediate loss-of-function screening. Here, we developed a protein stability regulators screening assay (Pro-SRSA) by combining the whole-genome CRISPR-Cas9 library with a dual-fluorescence-based protein stability reporter and high-throughput sequencing to screen for regulators of protein stability. Using Cdc25A as an example, Cul4B-DDB1DCAF8 was identified as a new E3 ligase for Cdc25A. Moreover, the acetylation of Cdc25A at lysine 150, which was acetylated by p300/CBP and deacetylated by HDAC3, prevented the ubiquitin-mediated degradation of Cdc25A by the proteasome. This is the first study to report that acetylation, as a novel posttranslational modification, modulates Cdc25A stability, and we suggest that this unbiased CRISPR-Cas9 screening method at the genome scale may be widely used to globally identify regulators of protein stability.
Collapse
|
24
|
Huber-Villaume S, Revelant G, Sibille E, Philippot S, Morabito A, Dunand S, Chaimbault P, Bagrel D, Kirsch G, Hesse S, Schohn H. 2-(Thienothiazolylimino)-1,3-thiazolidin-4-ones inhibit cell division cycle 25 A phosphatase. Bioorg Med Chem 2016; 24:2920-2928. [PMID: 27178385 DOI: 10.1016/j.bmc.2016.04.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/26/2022]
Abstract
Cell division cycle dual phosphatases (CDC25) are essential enzymes that regulate cell progression in cell cycle. Three isoforms exist as CDC25A, B and C. Over-expression of each CDC25 enzyme is found in cancers of diverse origins. Thiazolidinone derivatives have been reported to display anti-proliferative activities, bactericidal activities and to reduce inflammation process. New 2-(thienothiazolylimino)-1,3-thiazolidin-4-ones were synthesized and evaluated as inhibitors of CDC25 phosphatase. Among the molecules tested, compound 6 inhibited CDC25A with an IC50 estimated at 6.2±1.0μM. The binding of thiazolidinone derivative 6 onto CDC25A protein was reversible. In cellulo, compound 6 treatment led to MCF7 and MDA-MB-231 cell growth arrest. To our knowledge, it is the first time that such 4-thiazolidinone derivatives are characterized as CDC25 potential inhibitor.
Collapse
Affiliation(s)
- Sophie Huber-Villaume
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Germain Revelant
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Estelle Sibille
- Université de Lorraine, EA 4632-Laboratoire de Chimie et Physique Approche Multi-échelle des Milieux Complexes, 1 boulevard Arago, 57078 Metz Cedex 3, France
| | - Stéphanie Philippot
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Angelica Morabito
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Sandrine Dunand
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Patrick Chaimbault
- Université de Lorraine, EA 4632-Laboratoire de Chimie et Physique Approche Multi-échelle des Milieux Complexes, 1 boulevard Arago, 57078 Metz Cedex 3, France
| | - Denyse Bagrel
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France
| | - Gilbert Kirsch
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France
| | - Stéphanie Hesse
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 3 (HECRIN), 1 Boulevard Arago, 57078 Metz Technopôle, France.
| | - Hervé Schohn
- Université de Lorraine, UMR CNRS 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Equipe 5 (MIC), Campus Bridoux, rue du Général Delestraint, 57070 Metz Cedex, France.
| |
Collapse
|
25
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
26
|
Gabrielli B, Burgess A. Cdc25 Family Phosphatases in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:283-306. [DOI: 10.1007/978-1-4939-3649-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Ahmadivand S, Farahmand H, Teimoori-Toolabi L, Mirvaghefi A, Eagderi S, Geerinckx T, Shokrpoor S, Rahmati-Holasoo H. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor. Gen Comp Endocrinol 2016; 225:235-241. [PMID: 26027538 DOI: 10.1016/j.ygcen.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 02/03/2023]
Abstract
Boule, the ancestor of the DAZ (Deleted in AZoospermia) gene family, in most organisms is mainly involved in male meiosis. The present study investigates the effects of the plasticizer DEHP (50mg/kg body weight) and herbicide butachlor (0.39mg/L) on male rainbow trout (Oncorhynchus mykiss) for a 10-day period in two independent experiments. The results showed that plasma testosterone (T) concentrations were significantly lower in fish exposed to either DEHP or butachlor compared to the control fish (P<0.05). Fish showed a significantly elevated hepatosomatic index (HSI) in the butachlor treatment (P<0.05). However, no significant difference was observed in HSI values in the DEHP treatment (P>0.05). In addition, no significant differences were found in the gonadosomatic index (GSI) in both DEHP and butachlor treatments (P>0.05). Histologically, testes of male trout in the control groups were well differentiated and filled with large numbers of cystic structures containing spermatozoa. In contrast, the testes of male trout contained mostly spermatocytes with few spermatozoa in both treated group, suggesting that DEHP and butachlor may inhibit the progression of meiosis. Also, boule gene expression was significantly lower in the testes of male trout affected by DEHP and butachlor in comparison with their control groups (P<0.05), which confirmed the meiotic arrest in affected trout. Based on the results, the present study demonstrated that DEHP and butachlor can inhibit the progression of spermatogenesis in male trout, potentially by causing an arrest of meiosis, maybe due to down-regulation of boule gene expression through T and/or IGF1 via ERK1/2 signaling in T-independent pathways. In addition, these results confirmed that boule can be considered as a predictive marker to assess meiotic efficiency.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, P.O. Box: 13169-43551, Tehran, Iran
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Soheil Eagderi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, Iran
| | - Tom Geerinckx
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University (UGent), 9000 Ghent, Belgium
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| |
Collapse
|
28
|
Hsieh WT, Lin HY, Chen JH, Lin WC, Kuo YH, Wood WG, Lu HF, Chung JG. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:1205-1215. [PMID: 24706497 DOI: 10.1002/tox.21992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Latex of Euphorbia antiquorum (EA) has demonstrated great chemotherapeutic potential for cancer. However, the mechanisms of anti-proliferation of EA on cancer cell remain to be further investigated. The purpose of this study was to explore the influence of EA in human cervical cancer cells. Here, the cell cycle distribution by flow cytometry was examined and the protein expression by the western blotting methods was analyzed. From the cytometric results it was shown that EA-induced S-phase arrest in a concentration manner both in human cervical cancer HeLa and CaSki cells. According the western blot results it was illustrated that EA could downregulate early cyclin E1-Cdk2; and cyclin A-Cdc2 provides a significant additional quantity of S-phase promotion, that in turn promoted the expression of p21(waf1/cip1) and p27(kip1) which were the inhibitors in the complex of cyclin A and Cdc2 that led to cell cycle arrest. Moreover, EA promoted the activation of ataxia telangiectasia mutated (ATM) and check-point kinase-2 (Chk2); however, it negatively regulated the expression of Topoisomerases I and II, Cdc25A, and Cdc25C signaling. Caffeine, an ATM/ATR inhibitor significantly reversed EA downregulation in the levels of Cdc25A. Furthermore, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 both could reverse the EA upregulation of the protein of Chk2 level, significantly. This study, therefore, revealed that EA could downregulate topoisomerase, and activate ATM kinase, which then induce parallel Chk 1/2 and MAPK signaling pathways to promote the degradation of Cdc25A to induced S-phase arrest in human cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Wen-Tsong Hsieh
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jou-Hsuan Chen
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Wen-Chung Lin
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Tsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - W Gibson Wood
- Department of Pharmacology, School of Medicine, Geriatric Research, Education and Clinical Center, VA Medical Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. RECENT FINDINGS In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. SUMMARY At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.
Collapse
|
30
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
31
|
Cho YC, Park JE, Park BC, Kim JH, Jeong DG, Park SG, Cho S. Cell cycle-dependent Cdc25C phosphatase determines cell survival by regulating apoptosis signal-regulating kinase 1. Cell Death Differ 2015; 22:1605-17. [PMID: 25633196 DOI: 10.1038/cdd.2015.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/16/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
Cdc25C (cell division cycle 25C) phosphatase triggers entry into mitosis in the cell cycle by dephosphorylating cyclin B-Cdk1. Cdc25C exhibits basal phosphatase activity during interphase and then becomes activated at the G2/M transition after hyperphosphorylation on multiple sites and dissociation from 14-3-3. Although the role of Cdc25C in mitosis has been extensively studied, its function in interphase remains elusive. Here, we show that during interphase Cdc25C suppresses apoptosis signal-regulating kinase 1 (ASK1), a member of mitogen-activated protein (MAP) kinase kinase kinase family that mediates apoptosis. Cdc25C phosphatase dephosphorylates phospho-Thr-838 in the activation loop of ASK1 in vitro and in interphase cells. In addition, knockdown of Cdc25C increases the activity of ASK1 and ASK1 downstream targets in interphase cells, and overexpression of Cdc25C inhibits ASK1-mediated apoptosis, suggesting that Cdc25C binds to and negatively regulates ASK1. Furthermore, we showed that ASK1 kinase activity correlated with Cdc25C activation during mitotic arrest and enhanced ASK1 activity in the presence of activated Cdc25C resulted from the weak association between ASK1 and Cdc25C. In cells synchronized in mitosis following nocodazole treatment, phosphorylation of Thr-838 in the activation loop of ASK1 increased. Compared with hypophosphorylated Cdc25C, which exhibited basal phosphatase activity in interphase, hyperphosphorylated Cdc25C exhibited enhanced phosphatase activity during mitotic arrest, but had significantly reduced affinity to ASK1, suggesting that enhanced ASK1 activity in mitosis was due to reduced binding of hyperphosphorylated Cdc25C to ASK1. These findings suggest that Cdc25C negatively regulates proapoptotic ASK1 in a cell cycle-dependent manner and may play a role in G2/M checkpoint-mediated apoptosis.
Collapse
Affiliation(s)
- Y-C Cho
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - J E Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - B C Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - J-H Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | - D G Jeong
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - S G Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - S Cho
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
32
|
Zhang J, Storey KB. Cell cycle regulation in the freeze tolerant wood frog,Rana sylvatica. Cell Cycle 2014; 11:1727-42. [DOI: 10.4161/cc.19880] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Zhang H, Lee SJ, Richardson CC. Essential protein interactions within the replisome regulate DNA replication. Cell Cycle 2014; 10:3413-4. [DOI: 10.4161/cc.10.20.17523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Gonzalez CR, Dorfman VB, Vitullo AD. IGF1 regulation of BOULE and CDC25A transcripts via a testosterone-independent pathway in spermatogenesis of adult mice. Reprod Biol 2014; 15:48-55. [PMID: 25726377 DOI: 10.1016/j.repbio.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/20/2022]
Abstract
The Deleted in AZoospermia (DAZ) gene family plays an essential role in spermatogenesis and fertility in mammals. This gene family contains two autosomal genes, BOULE and DAZL (DAZ-Like), and the DAZ gene cluster in the Y chromosome. CDC25A (a cell cycle regulator) has been proposed as a putative substrate for the RNA-binding proteins of DAZ family. However, mechanisms regulating DAZ gene expression have been poorly investigated. We analyzed immunohistochemical localization of DAZL, BOULE and CDC25A, as well as the involvement of testosterone (T) and insulin-like growth factor 1 (IGF1) in the modulation of mRNA expression for DAZL, BOULE and CDC25A in the adult mouse testes. It was found that DAZL was mostly immunolocalized in spermatogonia, while BOULE and CDC25A were detected in spermatocytes and round spermatids. Three-color immunofluorescence showed that DAZL-positive cells also expressed proliferating cell nuclear antigen (PCNA). In vitro incubation of the testes showed that neither T nor IGF1 affected DAZL mRNA expression. However, either T or IGF1 increased BOULE mRNA expression. Antiandrogen flutamide abolished the T-induced increase in BOULE mRNA, but had no effect on the IGF1 induced increase in the mouse testes. Extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor, U0126, prevented IGF1-induction of BOULE mRNA. It was found that IGF1 increased CDC25A mRNA expression and that U0126 - but not flutamide - abolished the IGF1-induced CDC25A mRNA expression. These results showed that IGF1 regulated the expression of BOULE and CDC25A mRNAs via ERK1/2 signaling and in T-independent pathway during spermatogenesis in the adult mouse testes.
Collapse
Affiliation(s)
- Candela R Gonzalez
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina(1).
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina(1)
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina(1)
| |
Collapse
|
35
|
Singh L, Pushker N, Sen S, Singh MK, Bakhshi S, Chawla B, Kashyap S. Expression of CDC25A and CDC25B phosphatase proteins in human retinoblastoma and its correlation with clinicopathological parameters. Br J Ophthalmol 2014; 99:457-63. [PMID: 25326518 DOI: 10.1136/bjophthalmol-2014-305830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND CDC25 proteins play a pivotal role in controlling cell proliferation during development and tumorigenesis. The aim of the study is to elucidate the role of CDC25A and CDC25B proteins in retinoblastoma and their association with the clinical and histopathological parameters. METHODS One hundred and nine prospective cases of primary enucleated retinoblastomas were included in the present study. Expression of CDC25A and CDC25B proteins was investigated by immunohistochemistry, western blotting and mRNA expression by reverse-transcriptase PCR. RESULTS Immunohistochemistry showed CDC25A expression in (57/109) 52.29%, whereas CDC25B expressed in (69/109) 63.30% cases. Western blotting confirmed the immunoreactivity results on representative cases. mRNA expression of CDC25A and CDC25B was found in 29/60 (48.33%) and 35/60 (58.33%) cases, respectively. Expression of CDC25A and CDC25B showed significant correlation with poor tumour differentiation and tumour invasion (p<0.05). There was a statistically significant difference in the overall survival of patients with CDC25B expression (p=0.0270). CONCLUSIONS Our results suggest that expression of CDC25B may be used as a potential prognostic marker in the pathogenesis of retinoblastoma. These findings demonstrate an important role of CDC25 phosphatase proteins and inhibition of these proteins may have therapeutic potential in retinoblastoma.
Collapse
Affiliation(s)
- Lata Singh
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Pushker
- Department of Ophthalmology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Mithalesh Kumar Singh
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavna Chawla
- Department of Ophthalmology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
37
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
38
|
Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. Eur J Med Chem 2014; 82:293-307. [PMID: 24922544 DOI: 10.1016/j.ejmech.2014.05.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation via the interactions with CDK/Cyclin complexes. Overexpression of CDC25 proteins is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, inhibiting CDC25 activity in cancer treatment appears a good therapeutic strategy. In this article, refinement of the initial hit XDW-1 by synthesis and screening of a focused compound library led to the identification of a novel set of imidazopyridine derivatives as potent CDC25 inhibitors. Among them, the most potent molecule was CHEQ-2, which could efficiently inhibit the activities of CDC25A/B enzymes as well as the proliferation of various different types of cancer cell lines in vitro assay. Moreover, CHEQ-2 triggered S-phase cell cycle arrest in MCF-7, HepG2 and HT-29 cell lines, accompanied by generation of ROS, mitochondrial dysfunction and apoptosis. Besides, oral administration of CHEQ-2 (10 mg/kg) significantly inhibited xenografted human liver tumor growth in nude mice, while demonstrated extremely low toxicity (LD50 > 2000 mg/kg). These findings make CHEQ-2 a good starting point for further investigation and structure modification.
Collapse
|
39
|
Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel) 2014; 5:147-75. [PMID: 24705291 PMCID: PMC3978517 DOI: 10.3390/genes5010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.
Collapse
|
40
|
Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, Dicato M, Diederich M, Bagrel D. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog 2013; 54:229-41. [PMID: 24155226 DOI: 10.1002/mc.22094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure.
Collapse
Affiliation(s)
- Emilie Bana
- Laboratoire "Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, Metz, France; Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vogel S, Herzinger T. The epithelium specific cell cycle regulator 14-3-3sigma is required for preventing entry into mitosis following ultraviolet B. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2013; 29:300-10. [PMID: 24102700 DOI: 10.1111/phpp.12071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deoxyribonucleic acid damage activates cell cycle checkpoints in order to maintain genomic stability. We assessed the role of different checkpoint genes in response to ultraviolet B irradiation. METHODS Cell lines expressing a dominant negative mutant of ataxia telangiectasia and Rad3 related (Atr) protein or overexpressing Cdc25A, cells deficient for 14-3-3σ, Nijmegen breakage syndrome (Nbs), or Ataxia telangiectasia mutated (Atm) were treated with ultraviolet B (UVB) and harvested after 12 h, 24 h, or 48 h for analysis by flow cytometry. RESULTS Functional loss of Atm, Atr, or Nbs did not result in a significant alteration of the cell cycle profile. Overexpression of Cdc25A led to a delayed arrest at the G1/S transition in response to low doses of UVB. Loss of 14-3-3σ, a negative cell cycle regulator and downstream target of p53, caused a transient arrest at the G2/M boundary. CONCLUSIONS Loss of 14-3-3σ sensitizes cells to UVB. After a transient cell cycle arrest, 14-3-3σ-deficient cells die by undergoing mitotic catastrophe. Cdc25A overexpression causes a delayed arrest in response to low doses of UVB. After higher doses, Cdc25A is no longer able to overrun the checkpoint. Atm, Atr, or Nbs are not essential for the checkpoint response to UVB, suggesting the existence of redundant signaling pathways.
Collapse
Affiliation(s)
- Sandra Vogel
- Department of Dermatology and Allergy, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
42
|
Murray MM, Bui T, Smith M, Bagheri-Yarmand R, Wingate H, Hunt KK, Keyomarsi K. Staurosporine is chemoprotective by inducing G1 arrest in a Chk1- and pRb-dependent manner. Carcinogenesis 2013; 34:2244-52. [PMID: 23722650 DOI: 10.1093/carcin/bgt186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chemotherapeutic agents have been the mainstay of cancer therapy for years. However, their effectiveness has been limited by toxicities they impart on normal cells. Staurosporine (ST) has been shown to arrest normal, but not breast cancer, cells in G1. Therefore, ST may become a chemoprotective agent, arresting normal cells while allowing tumor cells to enter cell cycle phases where they are sensitive to chemotherapeutic agents. Understanding the mechanism of ST-mediated G1 arrest may allow for a beneficial chemoprotective treatment strategy for patients. We utilized 76NE6 (pRb+/p53-), 76NF2V (pRb+/p53+) and 76NE7 (pRb-/P53+) non-tumorigenic human mammary epithelial cell lines to understand the role of the Rb and p53 pathways in ST-directed G1 arrest. CDK4 was downregulated by ST in Rb+ cells, but its presence could not reverse the arrest, neither did its stable downregulation alter ST-mediated cellular response. ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4. Further assessment of this pathway revealed that Chk1 expression and activity were required for the Rb-dependent arrest. For example, pRb+ cells with small interfering RNA to Chk1 had approximately 60% less cells in G1 phase compared with controls and pRb- cells do not arrest upon ST. Furthermore, Chk1 expression facilitates the release of the Rb+ cells from G1 arrest. Collectively, our data suggest that pRb cooperates with Chk1 to mediate a G1 arrest only in pRb+ cells. The elucidation of this pathway can help identify novel agents to protect cancer patients against the debilitating effects of chemotherapy.
Collapse
|
43
|
Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, Li X. Novel interactions between FOXM1 and CDC25A regulate the cell cycle. PLoS One 2012; 7:e51277. [PMID: 23240008 PMCID: PMC3519786 DOI: 10.1371/journal.pone.0051277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/31/2012] [Indexed: 01/03/2023] Open
Abstract
FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gene transcription via direct promoter binding and indirect activation of E2F-dependent pathways. Prior literature reported that CDC25B and CDC25C activate CDK1/cyclinB complexes in order to enable phosphorylation of FOXM1. It was unknown if CDC25A functions in a similar manner. We report that FOXM1 transcriptional activity is synergistically enhanced when co-expressed with CDC25A. The increase is dependent upon CDK1 phosphorylation of FOXM1 at T600, T611 and T620 residues. We also report a novel protein interaction between FOXM1 and CDC25A via the C-terminus of FOXM1. We demonstrate that the phosphorylation of Thr 600 and Thr 611 residues of FOXM1 enhanced this interaction, and that the interaction is dependent upon CDC25A phosphatase activity. Our work provides novel insight into the underlying mechanisms by which FOXM1 controls the cell cycle through its association with CDC25A.
Collapse
Affiliation(s)
- Con Sullivan
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- The University of Maine, Orono, Maine, United States of America
| | - Youhong Liu
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jingjing Shen
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Adam Curtis
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Christina Newman
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Janet M. Hock
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Xiong Li
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
44
|
Albert H, Battaglia E, Monteiro C, Bagrel D. Genotoxic stress modulates CDC25C phosphatase alternative splicing in human breast cancer cell lines. Mol Oncol 2012; 6:542-52. [PMID: 22871320 DOI: 10.1016/j.molonc.2012.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022] Open
Abstract
CDC25 (cell division cycle 25) phosphatases are essential for cell cycle control under normal conditions and in response to DNA damage. They are represented by three isoforms, CDC25A, B and C, each of them being submitted to an alternative splicing mechanism. Alternative splicing of many genes is affected in response to genotoxic stress, but the impact of such a stress on CDC25 splicing has never been investigated. In this study, we demonstrate that genotoxic agents (doxorubicin, camptothecin, etoposide and cisplatin), alter the balance between CDC25C splice variants in human breast cancer cell lines both at the mRNA and protein levels. This modulation occurs during the response to moderate, sub-lethal DNA damage. Our results also suggest that the CDC25C splice variants expression shift induced by a genotoxic stress is dependent on the ATM/ATR signaling but not on p53. This study highlights the modulation of CDC25C alternative splicing as an additional regulatory event involved in cellular response to DNA damage in breast cancer cells.
Collapse
Affiliation(s)
- Hélène Albert
- Université de Lorraine, LIMBP-SRSMC, Rue du Général Delestraint, EA 3940, Metz F-57070, France
| | | | | | | |
Collapse
|
45
|
Lavecchia A, Di Giovanni C, Pesapane A, Montuori N, Ragno P, Martucci NM, Masullo M, De Vendittis E, Novellino E. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening. J Med Chem 2012; 55:4142-58. [PMID: 22524450 DOI: 10.1021/jm201624h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell division cycle 25 (Cdc25) proteins are highly conserved dual specificity phosphatases that regulate cyclin-dependent kinases and represent attractive drug targets for anticancer therapies. To discover more potent and diverse inhibitors of Cdc25 biological activity, virtual screening was performed by docking 2.1 million compounds into the Cdc25B active site. An initial subset of top-ranked compounds was selected and assayed, and 15 were found to have enzyme inhibition activity at micromolar concentration. Among these, four structurally diverse inhibitors with a different inhibition profile were found to inhibit human MCF-7, PC-3, and K562 cancer cell proliferation and significantly affect the cell cycle progression. A subsequent hierarchical similarity search with the most active reversible Cdc25B inhibitor found led to the identification of an additional set of 19 ligands, three of which were confirmed as Cdc25B inhibitors with IC(50) values of 7.9, 4.2, and 9.9 μM, respectively.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Drug Discovery Laboratory, Università di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoon S, Kawasaki I, Shim YH. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans. Cell Cycle 2012; 11:1354-63. [PMID: 22421141 DOI: 10.4161/cc.19755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.
Collapse
Affiliation(s)
- Sunghee Yoon
- Department of Bioscience and Biotechnology, Institute of Functional Genomics, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
47
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
48
|
Zhang QH, Qi ST, Wang ZB, Yang CR, Wei YC, Chen L, Ouyang YC, Hou Y, Schatten H, Sun QY. Localization and function of the Ska complex during mouse oocyte meiotic maturation. Cell Cycle 2012; 11:909-16. [PMID: 22336914 DOI: 10.4161/cc.11.5.19384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ska (spindle and kinetochore-associated) complex is composed of three proteins: Ska1, Ska2 and Ska3. It is required for stabilizing kinetochore-microtubule (KT-MT) interactions and silencing spindle checkpoint during mitosis. However, its roles in meiosis remain unclear. The present study was designed to investigate the localization and function of the Ska complex during mouse oocyte meiotic maturation. Our results showed that the localization and function of Ska complex in mouse oocyte meiosis differ in part from those in mitosis. Injection of low dose exogenous Myc-Ska mRNA showed that, instead of localizing to the kinetochores (KTs) and mediating KT-MT interactions from pro-metaphase to mid-anaphase stages as in mitosis, the members of the Ska complex were only localized on spindle microtubules from the Pro-MI to MII stages in mouse oocyte meiosis. Time-lapse live imaging analysis showed that knockdown of any member of the Ska complex by Morpholino injection into mouse oocytes resulted in spindle movement defects and enlarged polar bodies. Depletion of the whole Ska complex disrupted the stability of the anaphase spindle and influenced the extrusion of the first polar body. Taken together, these results show that the Ska complex plays an important role in meiotic spindle migration and anaphase spindle stability during mouse oocyte maturation.
Collapse
Affiliation(s)
- Qing-Hua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication. Mol Cell Biol 2012; 32:1421-32. [PMID: 22331465 DOI: 10.1128/mcb.06721-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) inhibitory phosphorylation controls the onset of mitosis and is essential for the checkpoint pathways that prevent the G(2)- to M-phase transition in cells with unreplicated or damaged DNA. To address whether CDK2 inhibitory phosphorylation plays a similar role in cell cycle regulation and checkpoint responses at the start of the S phase, we constructed a mouse strain in which the two CDK2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, were changed to alanine and phenylalanine, respectively (CDK2AF). This approach showed that inhibitory phosphorylation of CDK2 had a major role in controlling cyclin E-associated kinase activity and thus both determined the timing of DNA replication in a normal cell cycle and regulated centrosome duplication. Further, DNA damage in G(1) CDK2AF cells did not downregulate cyclin E-CDK2 activity when the CDK inhibitor p21 was also knocked down. We were surprised to find that this was insufficient to cause cells to bypass the checkpoint and enter the S phase. This led to the discovery of two previously unrecognized pathways that control the activity of cyclin A at the G(1) DNA damage checkpoint and may thereby prevent S-phase entry even when cyclin E-CDK2 activity is deregulated.
Collapse
|
50
|
Baer A, Austin D, Narayanan A, Popova T, Kainulainen M, Bailey C, Kashanchi F, Weber F, Kehn-Hall K. Induction of DNA damage signaling upon Rift Valley fever virus infection results in cell cycle arrest and increased viral replication. J Biol Chem 2012; 287:7399-410. [PMID: 22223653 DOI: 10.1074/jbc.m111.296608] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus infecting a wide range of vertebrate hosts. Of particular interest is the nonstructural NSs protein, which forms large filamentous fibril bundles in the nucleus. Past studies have shown NSs to be a multifaceted protein important for virulence through modulation of the interferon response as well acting as a general inhibitor of transcription. Here we investigated the regulation of the DNA damage signaling cascades by RVFV infection and found virally inducted phosphorylation of the classical DNA damage signaling proteins, ataxia-telangiectasia mutated (ATM) (Ser-1981), Chk.2 (Thr-68), H2A.X (Ser-139), and p53 (Ser-15). In contrast, ataxia-telangiectasia mutated and Rad3-related kinase (ATR) (Ser-428) phosphorylation was decreased following RVFV infection. Importantly, both the attenuated vaccine strain MP12 and the fully virulent strain ZH548 showed strong parallels in their up-regulation of the ATM arm of the DNA damage response and in the down-regulation of the ATR pathway. The increase in DNA damage signaling proteins did not result from gross DNA damage as no increase in DNA damage was observed following infection. Rather the DNA damage signaling was found to be dependent on the viral protein NSs, as an NSs mutant virus was not found to induce the equivalent signaling pathways. RVFV MP12-infected cells also displayed an S phase arrest that was found to be dependent on NSs expression. Use of ATM and Chk.2 inhibitors resulted in a marked decrease in S phase arrest as well as viral production. These results indicate that RVFV NSs induces DNA damage signaling pathways that are beneficial for viral replication.
Collapse
Affiliation(s)
- Alan Baer
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|