1
|
Wojtalewicz S, Shuckra J, Barger K, Erickson S, Vizmeg J, Niederauer S, Simpson A, Davis J, Schauder A, Hifi O, Castel D, Meilin S, Agarwal J, Lade C, Davis B. An injectable oleogel-based bupivacaine formulation for prolonged non-opioid post-operative analgesia. Drug Deliv Transl Res 2025; 15:1424-1443. [PMID: 39107674 DOI: 10.1007/s13346-024-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 03/03/2025]
Abstract
Opioid-based medications remain the mainstay of post-operative pain management, even though they are associated with a plethora of adverse effects including addiction, nausea, constipation, cognitive impairment, respiratory depression, and accidental death due to overdose. Local anesthetics are effective at controlling the intense pain after surgery but their short duration of effect limits their clinical utility in post-operative pain management. In this manuscript, an optimized injectable oleogel-based formulation of bupivacaine for multi-day post-operative pain management was characterized on the benchtop and assessed in two clinically-relevant porcine post-operative pain models. Benchtop characterization verified the optimized oleogel-based bupivacaine formulation design, demonstrating a homogenous stable oleogel with sufficient injectability due to shear-thinning properties, high drug loading capacity and first-order drug release kinetics over 5 days. In vivo assessment in two pig post-operative pain models demonstrated that the oleogel-based bupivacaine formulation can provide statistically significant multi-day analgesia in two routes of administration: local instillation directly into a surgical site and ultrasound-guided peripheral nerve block injection. Pharmacokinetic assessment of ALX005 found that Cmax values were not statistically different from the bupivacaine HCl control, with no clinical signs of local anesthetic systemic toxicity observed, when administering up to 2.7 and 8.1 times the control dose of bupivacaine HCl. This study demonstrates the pre-clinical safety and efficacy of an injectable oleogel-based bupivacaine formulation and explores its utility as a single-administration long-acting local anesthetic product for post-operative pain management that can be used in both local and regional anesthetic applications.
Collapse
Affiliation(s)
- Susan Wojtalewicz
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA.
| | - Jack Shuckra
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Keelah Barger
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Sierra Erickson
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Jonathon Vizmeg
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Stefan Niederauer
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Andrew Simpson
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Jordan Davis
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Avital Schauder
- MD Biosciences, 4 Eli Horovitz St., 7608810, Rehovot, Israel
| | - Orna Hifi
- MD Biosciences, 4 Eli Horovitz St., 7608810, Rehovot, Israel
| | - David Castel
- MD Biosciences, 4 Eli Horovitz St., 7608810, Rehovot, Israel
| | - Sigal Meilin
- MD Biosciences, 4 Eli Horovitz St., 7608810, Rehovot, Israel
| | - Jayant Agarwal
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Caleb Lade
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| | - Brett Davis
- Rebel Medicine Inc, 48 S Rio Grande St., Salt Lake City, UT, 84101, USA
| |
Collapse
|
2
|
Peterson CD, Larson CM, Bruce DJ, Clements BM, Pflepsen KR, Akgün E, Kitto KF, Lunzer MM, Fairbanks CA, Portoghese PS, Wilcox GL. Peripherally mediated opioid combination therapy in mouse and pig. THE JOURNAL OF PAIN 2025; 27:104735. [PMID: 39542192 PMCID: PMC11807752 DOI: 10.1016/j.jpain.2024.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The concomitant epidemics of chronic pain and opioid misuse in the United States have led to a call for novel analgesics with limited abuse potential. Previously, we have shown that co-delivery of a novel combination targeting both μ- and δ-opioid receptors in the peripheral and central nervous systems can produce synergistic analgesia. Loperamide, a peripherally restricted μ-opioid agonist, and oxymorphindole, a δ-opioid receptor partial agonist, synergize in multiple mouse models of hyperalgesia. We predicted this effect would generalize across species and therefore assessed this combination for analgesic synergy in a mouse model of post-incisional hypersensitivity. In mice, oxymorphindole and loperamide displayed significant analgesic synergy. Similar synergy was observed with N-benzyl-oxymorphindole and loperamide. In cross-bred pigs, we compared the analgesic effects of either morphine alone or the combination of oxymorphindole and loperamide or the combination of N-benzyl-oxymorphindole and loperamide. Both combinations showed increased potency as compared to morphine sulfate and effectively reduced hypersensitivity following injury without side effects. From these data we conclude that the combination of oxymorphindole and loperamide or the combination of N-benzyl-oxymorphindole and loperamide reverse incisional hyperalgesia, likely by acting in the periphery, in a large animal model without adverse effects on respiration or heart rate. PERSPECTIVE: This article presents novel opioid combinations, the μ-opioid agonist loperamide with a δ-opioid agonist, either oxymorphindole (OMI) or N-benzyl-oxymorphindole (BOMI), that relieve pain in mice and pigs without adverse side effects. These therapies could help clinicians manage pain in patients while reducing overall opioid burden and limiting side effects.
Collapse
Affiliation(s)
- C D Peterson
- Department of Pharmaceutics, University of Minnesota College of Pharmacy, USA; Department of Neuroscience, University of Minnesota Medical School, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, USA.
| | - C M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, USA
| | - D J Bruce
- Department of Neuroscience, University of Minnesota Medical School, USA; Department of Pharmacology, University of Minnesota Medical School, USA
| | - B M Clements
- Department of Pharmaceutics, University of Minnesota College of Pharmacy, USA
| | - K R Pflepsen
- Department of Pharmaceutics, University of Minnesota College of Pharmacy, USA
| | - E Akgün
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, USA
| | - K F Kitto
- Department of Neuroscience, University of Minnesota Medical School, USA
| | - M M Lunzer
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, USA
| | - C A Fairbanks
- Department of Pharmaceutics, University of Minnesota College of Pharmacy, USA; Department of Neuroscience, University of Minnesota Medical School, USA; Department of Pharmacology, University of Minnesota Medical School, USA
| | - P S Portoghese
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, USA
| | - G L Wilcox
- Department of Neuroscience, University of Minnesota Medical School, USA; Department of Pharmacology, University of Minnesota Medical School, USA; Department of Dermatology, University of Minnesota Medical School, USA
| |
Collapse
|
3
|
Wilson K, Sze Y, Regan A, Zhu C, Mazur K, Velichkova AN, Torsney C. Postsurgical tactile-evoked pain: a role for brain-derived neurotrophic factor-tropomyosin receptor kinase B-dependent novel tactile corpuscles. Pain Rep 2024; 9:e1169. [PMID: 39139363 PMCID: PMC11319325 DOI: 10.1097/pr9.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Millions of people undergo surgical procedures each year with many developing postsurgical pain. Dynamic allodynia can arise when, for example, clothing brushing close to the surgical site elicits pain. The allodynia circuits that enable crosstalk between afferent tactile inputs and central pain circuits have been studied, but the peripheral tactile drive has not been explored. Objective Investigate the innervation of the skin in the rat plantar hindpaw skin-muscle incision model. Results Incision increased epidermal thickness and cell layers and reduced intraepidermal nerve fibre density, identified with PGP9.5 immunostaining. Strikingly, Collagen IV immunostaining revealed the development of dermal protrusions, oriented towards the incision site, that were reminiscent of the dermal papillae that exist in glabrous footpads. S100 immunostaining for lamellar Schwann cells revealed the presence of novel tactile corpuscles (S100-positive bulb) within incision-induced putative dermal papillae. The occurrence of these novel tactile corpuscles coincided with behavioural observations of dynamic allodynia. Tactile corpuscles require brain-derived neurotrophic factor- tropomyosin receptor kinase B (BDNF-TrkB) signalling to form during development, and an increase in BDNF-immunostaining intensity was observed close to the incision site. Local acute administration of TrkB-Fc, to block BDNF-TrkB signalling, reduced, by approximately 50%, both tactile corpuscle size (S100+ bulb area) and dynamic allodynia. Conclusion Surgery induces the development of novel tactile corpuscles in the incision surround, in a BDNF-TrKB-dependent manner, that contributes to postsurgical tactile-evoked pain.
Collapse
Affiliation(s)
- Kirsten Wilson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Regan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Chunyi Zhu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Katarzyna Mazur
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Atanaska N. Velichkova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Wilson is now with the School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom. Velichkova is now with the Charles River Laboratories, Groningen, Netherlands
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Overstreet DJ, Zdrale G, McLaren AC. Extended Release of Bupivacaine from Temperature-Responsive PNDJ Hydrogels Improves Postoperative Weight-Bearing in Rabbits Following Knee Surgery. Pharmaceuticals (Basel) 2024; 17:879. [PMID: 39065729 PMCID: PMC11280370 DOI: 10.3390/ph17070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Effective treatment of postoperative pain lasting for multiple days without opioids is an important clinical need. We previously reported analgesia lasting up to 96 h in a porcine soft tissue model of postoperative pain using SBG004, an extended-release formulation of bupivacaine based on the temperature-responsive polymer poly(N-isopropylacrylamide-co-dimethylbutyrolactone acrylamide-co-Jeffamine M-1000 acrylamide) [PNDJ]. Orthopaedic surgical sites such as the knee can involve complex sensory innervation which presents a distinct challenge to local anesthetic delivery. The purpose of this work was to evaluate the pharmacokinetics and efficacy of SBG004 in an orthopaedic surgical model in comparison to currently available local anesthetics. Pharmacokinetics following periarticular (PA) or intraarticular (IA) injection of SBG004 were compared against liposomal bupivacaine (Lip-Bupi) PA in New Zealand White rabbits (all doses 14.5 mg/kg). Analgesic efficacy of SBG004 (IA, PA, or IA + PA), three active comparators, and saline was evaluated following knee surgery in New Zealand White rabbits. Analgesia was assessed via weight-bearing on the operated limb during spontaneous large steps in video recordings. Systemic bupivacaine exposure lasted at least 7 days for SBG004 PA, 4 days for SBG004 IA, and 2 days for Lip-Bupi PA. In the analgesia study, weight-bearing in all active groups except SBG004 IA was more frequent versus saline through 8 h postoperatively (p < 0.05). Only SBG004 IA + PA resulted in a higher proportion of weight-bearing rabbits at 24 h versus saline (6/7 versus 2/10, p = 0.015). Analysis of pooled data from 24-72 h showed significantly greater frequency of weight-bearing in rabbits receiving SBG004 IA + PA (71%) versus saline (37%), ropivacaine cocktail (41%), and Lip-Bupi PA (36%). The results indicate that the release profile from SBG004 PA or IA coincides reasonably with the time course of postoperative pain, and SBG004 may produce longer duration of analgesia than local anesthetics currently used in knee surgery, including during the period of 24-72 h recognized as a target for extended-release local anesthetics.
Collapse
Affiliation(s)
- Derek J. Overstreet
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Sonoran Biosciences, Tempe, AZ 85284, USA
| | | | - Alex C. McLaren
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Sonoran Biosciences, Tempe, AZ 85284, USA
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
5
|
Hilgart DR, Iversen MM, Peters AY, Zabriskie MS, Hoareau GL, Vapniarsky N, Clark GA, Shah LM, Rieke V. Non-invasive central nervous system assessment of a porcine model of neuropathic pain demonstrates increased latency of somatosensory-evoked potentials. J Neurosci Methods 2023; 396:109934. [PMID: 37524248 PMCID: PMC10530261 DOI: 10.1016/j.jneumeth.2023.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The study of chronic pain and its treatments requires a robust animal model with objective and quantifiable metrics. Porcine neuropathic pain models have been assessed with peripheral pain recordings and behavioral responses, but thus far central nervous system electrophysiology has not been investigated. This work aimed to record non-invasive, somatosensory-evoked potentials (SEPs) via electroencephalography in order to quantitatively assess chronic neuropathic pain induced in a porcine model. NEW METHOD Peripheral neuritis trauma (PNT) was induced unilaterally in the common peroneal nerve of domestic farm pigs, with the contralateral leg serving as the control for each animal. SEPs were generated by stimulation of the peripheral nerves distal to the PNT and were recorded non-invasively using transcranial electroencephalography (EEG). The P30 wave of the SEP was analyzed for latency changes. RESULTS P30 SEPs were successfully recorded with non-invasive EEG. PNT resulted in significantly longer P30 SEP latencies (p < 0.01 [n = 8]) with a median latency increase of 14.3 [IQR 5.0 - 17.5] ms. Histological results confirmed perineural inflammatory response and nerve damage around the PNT nerves. COMPARISON WITH EXISTING METHOD(S) Control P30 SEPs were similar in latency and amplitude to those previously recorded invasively in healthy pigs. Non-invasive recordings have numerous advantages over invasive measures. CONCLUSIONS P30 SEP latency can serve as a quantifiable neurological measure that reflects central nervous system processing in a porcine model of chronic pain. Advancing the development of a porcine chronic pain model will facilitate the translation of experimental therapies into human clinical trials.
Collapse
Affiliation(s)
- David R Hilgart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Marta M Iversen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Matthew S Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L Hoareau
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Natalia Vapniarsky
- Department of Pathology Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Fuller AM, Bharde S, Sikandar S. The mechanisms and management of persistent postsurgical pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1154597. [PMID: 37484030 PMCID: PMC10357043 DOI: 10.3389/fpain.2023.1154597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
An estimated 10%-50% of patients undergoing a surgical intervention will develop persistent postsurgical pain (PPP) lasting more than 3 months despite adequate acute pain management and the availability of minimally invasive procedures. The link between early and late pain outcomes for surgical procedures remains unclear-some patients improve while others develop persistent pain. The elective nature of a surgical procedure offers a unique opportunity for prophylactic or early intervention to prevent the development of PPP and improve our understanding of its associated risk factors, such as pre-operative anxiety and the duration of severe acute postoperative pain. Current perioperative pain management strategies often include opioids, but long-term consumption can lead to tolerance, addiction, opioid-induced hyperalgesia, and death. Pre-clinical models provide the opportunity to dissect mechanisms underpinning the transition from acute to chronic, or persistent, postsurgical pain. This review highlights putative mechanisms of PPP, including sensitisation of peripheral sensory neurons, neuroplasticity in the central nervous system and nociceptive signalling along the neuro-immune axis.
Collapse
|
7
|
Heffernan JM, McLaren AC, Glass CM, Overstreet DJ. Extended Release of Bupivacaine from Temperature-responsive Hydrogels Provides Multi-day Analgesia for Postoperative Pain. PAIN MEDICINE 2023; 24:113-121. [PMID: 35944219 DOI: 10.1093/pm/pnac119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A local anesthetic that provides analgesia lasting at least three days could significantly improve postoperative pain management. This study evaluated the analgesic efficacy and safety of an extended-release formulation of bupivacaine based on the injectable hydrogel carrier poly(N-isopropylacrylamide-co-dimethylbutyrolactone acrylamide-co-Jeffamine M-1000 acrylamide) (PNDJ). METHODS The efficacy of PNDJ containing 4% bupivacaine (SBG004) given by peri-incisional subcutaneous injection (SBG004 SC) or wound filling instillation (SBG004 WF) was evaluated compared to saline, liposomal bupivacaine, bupivacaine collagen sponge, bupivacaine-meloxicam polyorthoester, and bupivacaine HCl in a porcine skin and muscle incision model. Mechanical allodynia was assessed by withdrawal from application of von Frey filaments, and local tolerance was evaluated by histology. Bupivacaine pharmacokinetics for SBG004 SC were measured in rabbits (16.5 mg bupivacaine/kg). RESULTS Animals demonstrated less mechanical allodynia at incisions receiving SBG004 SC for up to 96 hours postoperatively. Incisions treated with SBG004 SC tolerated more force without a withdrawal indicative of pain compared to saline for 96 hours, and compared to SBG004 WF and all active controls at 24, 48, and 72 hours except bupivacaine-meloxicam polyorthoester at 72 hours. By 49 days, SBG004 was histologically absent and was replaced with granulation tissue infiltrated with immune cells in some areas. In rabbits, Cmax was 41.6 ± 9.7 ng/mL with t1/2 82.0 ± 35.8 hours (mean ± SD). CONCLUSIONS Peri-incisional SBG004 SC provided extended release of bupivacaine sufficient to reduce sensation of incisional pain for 96 hours, in vivo bupivacaine delivery for at least 7 days, and a favorable local and systemic toxicity profile.
Collapse
Affiliation(s)
| | - Alex C McLaren
- Sonoran Biosciences, Tempe, Arizona, USA.,Department of Orthopaedic Surgery, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Christopher M Glass
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Derek J Overstreet
- Sonoran Biosciences, Tempe, Arizona, USA.,School of Biological & Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
8
|
Toci GR, Karamian BA, Lambrechts MJ, Mao J, Mandel J, Darrach T, Canseco JA, Kaye ID, Woods BI, Rihn J, Kurd MF, Hilibrand AS, Kepler CK, Vaccaro AR, Schroeder GD. Instrumentation Across the Cervicothoracic Junction Does Not Improve Patient-reported Outcomes in Multilevel Posterior Cervical Decompression and Fusion. Clin Spine Surg 2022; 35:E667-E673. [PMID: 35383594 DOI: 10.1097/bsd.0000000000001335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
STUDY DESIGN This was a retrospective cohort. OBJECTIVE The objective of this study was to determine if instrumentation across the cervicothoracic junction (CTJ) in elective multilevel posterior cervical decompression and fusion (PCF) is associated with improved patient-reported outcome measures (PROMs). SUMMARY OF BACKGROUND DATA Fusion across the CTJ may result in lower revision rates at the expense of prolonged operative duration. However, it is unclear whether constructs crossing the CTJ affect PROMs. MATERIALS AND METHODS Standard Query Language (SQL) identified patients with PROMs who underwent elective multilevel PCF (≥3 levels) at our institution. Patients were grouped based on anatomic construct: crossing the CTJ (crossed) versus not crossing the CTJ (noncrossed). Subgroup analysis compared constructs stopping at C7 or T1. Independent t tests and χ 2 tests were utilized for continuous and categorical data, respectively. Regression analysis controlled for baseline demographics. The α was set at 0.05. RESULTS Of the 160 patients included, the crossed group (92, 57.5%) had significantly more levels fused (5.27 vs. 3.71, P <0.001), longer operative duration (196 vs. 161 min, P =0.003), greater estimated blood loss (242 vs. 160 mL, P =0.021), and a decreased revision rate (1.09% vs. 10.3%, P =0.011). Neither crossing the CTJ (vs. noncrossed) nor constructs spanning C3-T1 (vs. C3-C7) were independent predictors of ∆PROMs (change in preoperative minus postoperative patient-reported outcomes) on regression analysis. However, C3-C7 constructs had a greater revision rate than C3-T1 constructs (15.6% vs. 1.96%, P =0.030). CONCLUSION Crossing the CTJ in patients undergoing elective multilevel PCF was not an independent predictor of improvement in PROMs at 1 year, but they experienced lower revision rates. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Gregory R Toci
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Toci GR, Lambrechts MJ, Heard JC, Karamian BA, Siegel NM, Carter MV, Curran JG, Canseco JA, Kaye ID, Woods BI, Hilibrand AS, Kepler CK, Vaccaro AR, Schroeder GD. Postoperative Opioid Use Following Single-Level Transforaminal Lumbar Interbody Fusion Compared with Posterolateral Lumbar Fusion. World Neurosurg 2022; 165:e546-e554. [PMID: 35760330 DOI: 10.1016/j.wneu.2022.06.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare postoperative opioid morphine milligram equivalents (MME) prescriptions for opioid-naïve patients undergoing single-level transforaminal lumbar interbody fusion (TLIF) versus posterolateral lumbar fusion (PLF) and total postoperative MME prescribed based on operative duration. METHODS Patients undergoing single-level TLIF or PLF from September 2017 to June 2020 were identified from a single institution. Patients were first grouped based on procedure type (TLIF or PLF) and subsequently regrouped based on median operative duration. Statistical tests compared patient demographics and opioid prescription data between groups. Multivariate regressions were performed to control for demographics, operative time, and procedure type. RESULTS Of 345 patients undergoing single-level PLF or TLIF, 174 (50.4%) were opioid-naïve; 101 opioid-naïve patients (58.0%) underwent PLF and 73 (42.0%) underwent TLIF. Patients undergoing TLIF received more opioid prescriptions (1.99 vs. 1.26, P < 0.001) and total MME (91.2 vs. 66.8, P = 0.002). After regrouping patients based on operative duration, independent of procedure type, there were no differences in postoperative opioid prescriptions, and Spearman rank correlation coefficient between total MME and operative duration was r = 0.014. Multivariate analysis identified TLIF as an independent predictor of increased postoperative opioid prescriptions (β = 0.64, P < 0.001), prescribers (β = 0.49, P = 0.003), and MME (β = 24.4, P = 0.030). CONCLUSIONS Opioid-naïve patients undergoing single-level TLIF receive a greater number of postoperative opioids than patients undergoing single-level PLF, and TLIF was an independent predictor of increased postoperative opioid prescribers, prescribers, and MME. There were no differences in postoperative opioid prescriptions when assessing patients based on operative duration.
Collapse
Affiliation(s)
- Gregory R Toci
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark J Lambrechts
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Jeremy C Heard
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian A Karamian
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicholas M Siegel
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael V Carter
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John G Curran
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - I David Kaye
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barrett I Woods
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alan S Hilibrand
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gregory D Schroeder
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Hellman A, Maietta T, Clum A, Byraju K, Raviv N, Staudt MD, Jeannotte E, Ghoshal G, Shin D, Neubauer P, Williams E, Heffter T, Burdette C, Qian J, Nalwalk J, Pilitsis JG. Pilot study on the effects of low intensity focused ultrasound in a swine model of neuropathic pain. J Neurosurg 2021; 135:1508-1515. [PMID: 33862597 PMCID: PMC10804417 DOI: 10.3171/2020.9.jns202962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' laboratory has previously demonstrated beneficial effects of noninvasive low intensity focused ultrasound (liFUS), targeted at the dorsal root ganglion (DRG), for reducing allodynia in rodent neuropathic pain models. However, in rats the DRG is 5 mm below the skin when approached laterally, while in humans the DRG is typically 5-8 cm deep. Here, using a modified liFUS probe, the authors demonstrated the feasibility of using external liFUS for modulation of antinociceptive responses in neuropathic swine. METHODS Two cohorts of swine underwent a common peroneal nerve injury (CPNI) to induce neuropathic pain. In the first cohort, pigs (14 kg) were iteratively tested to determine treatment parameters. liFUS penetration to the L5 DRG was verified by using a thermocouple to monitor tissue temperature changes and by measuring nerve conduction velocity (NCV) at the corresponding common peroneal nerve (CPN). Pain behaviors were monitored before and after treatment. DRG was evaluated for tissue damage postmortem. Based on data from the first cohort, a treatment algorithm was developed, parameter predictions were verified, and neuropathic pain was significantly modified in a second cohort of larger swine (20 kg). RESULTS The authors performed a dose-response curve analysis in 14-kg CPNI swine. Specifically, after confirming that the liFUS probe could reach 5 cm in ex vivo tissue experiments, the authors tested liFUS in 14-kg CPNI swine. The mean ± SEM DRG depth was 3.79 ± 0.09 cm in this initial cohort. The parameters were determined and then extrapolated to larger animals (20 kg), and predictions were verified. Tissue temperature elevations at the treatment site did not exceed 2°C, and the expected increases in the CPN NCV were observed. liFUS treatment eliminated pain guarding in all animals for the duration of follow-up (up to 1 month) and improved allodynia for 5 days postprocedure. No evidence of histological damage was seen using Fluoro-Jade and H&E staining. CONCLUSIONS The results demonstrate that a 5-cm depth can be reached with external liFUS and alters pain behavior and allodynia in a large-animal model of neuropathic pain.
Collapse
Affiliation(s)
- Abigail Hellman
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Teresa Maietta
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Alicia Clum
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Kanakaharini Byraju
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D. Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Erin Jeannotte
- Department of Animals Resources Facility, Albany Medical College, Albany, New York
| | | | - Damian Shin
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | | | | | | | | | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, New York
| | - Julia Nalwalk
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G. Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York
- Departments of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
11
|
A systematic review of porcine models in translational pain research. Lab Anim (NY) 2021; 50:313-326. [PMID: 34650279 DOI: 10.1038/s41684-021-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Translating basic pain research from rodents to humans has proven to be a challenging task. Efforts have been made to develop preclinical large animal models of pain, such as the pig. However, no consistent overview and comparison of pig models of pain are currently available. Therefore, in this review, our primary aim was to identify the available pig models in pain research and compare these models in terms of intensity and duration. First, we systematically searched Proquest, Scopus and Web of Science and compared the duration for which the pigs were significantly sensitized as well as the intensity of mechanical sensitization. We searched models within the specific field of pain and adjacent fields in which pain induction or assessment is relevant, such as pig production. Second, we compared assessment methodologies in surrogate pain models in humans and pigs to identify areas of overlap and possible improvement. Based on the literature search, 23 types of porcine pain models were identified; 13 of which could be compared quantitatively. The induced sensitization lasted from hours to months and intensities ranged from insignificant to the maximum attainable. We also found a near to complete overlap of assessment methodologies between human and pig models within the area of peripheral neurophysiology, which allows for direct comparison of results obtained in the two species. In spite of this overlap, further development of pain assessment methodologies is still needed. We suggest that central nervous system electrophysiology, such as electroencephalography, electrocorticography or intracortical recordings, may pave the way for future objective pain assessment.
Collapse
|
12
|
Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. NEUROBIOLOGY OF PAIN 2021; 10:100070. [PMID: 34409198 PMCID: PMC8361255 DOI: 10.1016/j.ynpai.2021.100070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Poorly controlled postoperative pain remains a major unresolved challenge globally. The gut microbiome impacts on inflammatory pain and neuropathic pain. Microbiota metabolites can regulate peripheral and central sensitisation. Stress is linked to both postoperative pain and an altered gut microbiome.
In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications. As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - George D Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Parra S, Thanawala VJ, Rege A, Giles H. A novel excisional wound pain model for evaluation of analgesics in rats. Korean J Pain 2021; 34:165-175. [PMID: 33785668 PMCID: PMC8019955 DOI: 10.3344/kjp.2021.34.2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 11/05/2022] Open
Abstract
Background Management of pain from open wounds is a growing unmet healthcare need. However, the models available to study pain from wounds or to develop analgesics for the patients suffering from them have primarily relied on incisional models. Here, we present the first characterized and validated model of open wound pain. Methods Unilateral full-skin excisional punch biopsy wounds on rat hind paws were evaluated for evoked pain using withdrawal responses to mechanical and thermal stimulation, and spontaneous pain was measured using hind paw weight distribution and guarding behavior. Evaluations were done before wounding (baseline) and 2-96 hours post-wounding. The model was validated by testing the effects of buprenorphine and carprofen. Results Pain responses to all tests increased within 2 hours post-wounding and were sustained for at least 4 days. Buprenorphine caused a reversal of all four pain responses at 1 and 4 hours post-treatment compared to 0.9% saline (P < 0.001). Carprofen decreased the pain response to thermal stimulation at 1 (P ≤ 0.049) and 4 hours (P < 0.011) post-treatment compared to 0.9% saline, but not to mechanical stimulation. Conclusions This is the first well-characterized and validated model of pain from open wounds and will allow study of the pathophysiology of pain in open wounds and the development of wound-specific analgesics.
Collapse
|
14
|
Assessment of nociception and related quality-of-life measures in a porcine model of neurofibromatosis type 1. Pain 2020; 160:2473-2486. [PMID: 31246731 DOI: 10.1097/j.pain.0000000000001648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder resulting from germline mutations in the NF1 gene, which encodes neurofibromin. Patients experience a variety of symptoms, but pain in the context of NF1 remains largely underrecognized. Here, we characterize nociceptive signaling and pain behaviors in a miniswine harboring a disruptive NF1 mutation (exon 42 deletion). We present the first characterization of pain-related behaviors in a pig model of NF1, identifying unchanged agitation scores, lower tactile thresholds (allodynia), and decreased response latencies to thermal laser stimulation (hyperalgesia) in NF1 (females only) pigs. Male NF1 pigs with tumors showed reduced sleep quality and increased resting, 2 health-related quality-of-life symptoms found to be comorbid in people with NF1 pain. We explore these phenotypes in relationship to suppression of the increased activity of the N-type voltage-gated calcium (CaV2.2) channel by pharmacological antagonism of phosphorylation of a regulatory protein-the collapsin response mediator protein 2 (CRMP2), a known interactor of neurofibromin, and by targeting the interface between the α subunit of CaV2.2 and the accessory β-subunits with small molecules. Our data support the use of NF1 pigs as a large animal model for studying NF1-associated pain and for understanding the pathophysiology of NF1. Our findings demonstrate the translational potential of 2 small molecules in reversing ion channel remodeling seen in NF1. Interfering with CaV2.2, a clinically validated target for pain management, might also be a promising therapeutic strategy for NF1-related pain management.
Collapse
|
15
|
|
16
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Ottoboni T, Quart B, Pawasauskas J, Dasta JF, Pollak RA, Viscusi ER. Mechanism of action of HTX-011: a novel, extended-release, dual-acting local anesthetic formulation for postoperative pain. Reg Anesth Pain Med 2019; 45:rapm-2019-100714. [PMID: 31843865 DOI: 10.1136/rapm-2019-100714] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/07/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Obtaining consistent efficacy beyond 12-24 hours with local anesthetics, including extended-release formulations, has been a challenging goal. Inflammation resulting from surgery lowers the pH of affected tissues, reducing neuronal penetration of local anesthetics. HTX-011, an investigational, nonopioid, extended-release dual-acting local anesthetic combining bupivacaine and low-dose meloxicam, was developed to reduce postsurgical pain through 72 hours using novel extended-release polymer technology. Preclinical studies and a phase II clinical trial were conducted to confirm the mechanism of action of HTX-011. METHODS In a validated postoperative pain pig model and a phase II bunionectomy trial, the analgesic effects of HTX-011, oral meloxicam (preclinical only), liposomal bupivacaine (preclinical only) and saline placebo were evaluated. The optimal meloxicam:bupivacaine ratio for HTX-011 and the effect of HTX-011 on incisional tissue pH were also evaluated preclinically. RESULTS Preclinical data demonstrate the ability of HTX-011 to address local tissue inflammation as demonstrated by a less acidic tissue pH, which was associated with potentiated and prolonged analgesic activity. In the phase II bunionectomy study, HTX-011 achieved superior and sustained pain relief through 72 hours after surgery compared with each component in the polymer. CONCLUSIONS Preclinical animal and clinical results confirm that the low-dose meloxicam in HTX-011 normalizes the local pH in the incision, resulting in superior and synergistic analgesic activity compared with extended-release bupivacaine. HTX-011 represents an extended-release local anesthetic with a dual-acting mechanism of action that may provide an important advancement in the treatment of postoperative pain. TRIAL REGISTRATION NUMBER NCT02762929.
Collapse
Affiliation(s)
| | - Barry Quart
- Heron Therapeutics, San Diego, California, USA
| | - Jayne Pawasauskas
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph F Dasta
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
- College of Pharmacy, University of Texas, Austin, Texas, USA
| | | | - Eugene R Viscusi
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Goto T, Nakagami G, Minematsu T, Shinoda M, Sanada H. Measurement of mechanical withdrawal threshold on full-thickness cutaneous wounds in rats using the von Frey test. J Wound Care 2019; 28:762-772. [PMID: 31721662 DOI: 10.12968/jowc.2019.28.11.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A method for measuring mechanical withdrawal threshold of full-thickness cutaneous wound pain in animal models is lacking. This study aimed to confirm the validity and reactivity of the von Frey test in full-thickness cutaneous wounds in rats. METHOD A 1.5cm-diameter wound was established on the dorsal areas of male Sprague-Dawley rats and subcutaneously injected with either morphine hydrochloride (5.0mg/kg) or indomethacin (2.5mg/kg) with a 27-gauge needle on day three post-wounding. On day five post-wounding, an injection of morphine hydrochloride, indomethacin or lambda-carrageenan (1.0%) into the granulation tissue was also administered. The withdrawal threshold of mechanical stimulation of the wound edge was compared in each group before treatment with injection and at two, four, eight and 24 hours after injection. RESULTS A total of 40 rats were used in the study. Since more severe inflammation in and around the wound was induced on day three post-wounding than that of day five, the withdrawal threshold measured on day three post-wounding was significantly lower than that of day five. The decrease of the withdrawal threshold was depressed by morphine hydrochloride and indomethacin treatment on day three post-wounding. While there was no significant difference between the changes in the withdrawal threshold after indomethacin treatment on day five post-wounding, we observed an increased withdrawal threshold after morphine hydrochloride treatment and decreased withdrawal threshold after lambda-carrageenan treatment on day five post-wounding. CONCLUSION The results suggest that the von Frey test can be applied to measure the mechanical withdrawal threshold of full-thickness dorsal wounds in rats.
Collapse
Affiliation(s)
- Taichi Goto
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Leadership Initiative for an Age-Friendly Society, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Review: What innovations in pain measurement and control might be possible if we could quantify the neuroimmune synapse? Animal 2019; 13:3000-3008. [PMID: 31405403 DOI: 10.1017/s1751731119001885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has taken more than 40 years for the fields of immunology and neuroscience to capture the potential impact of the mechanistic understanding of how an active immune signalling brain might function. These developments have grown an appreciation for the immunocompetent cells of the central nervous system and their key role in the health and disease of the brain and spinal cord. Moreover, the understanding of the bidirectional communication between the brain and the peripheral immune system has evolved to capture an understanding of how mood can alter immune function and vice versa. These concepts are rapidly evolving the field of psychiatry and medicine as a whole. However, the advances in human medicine have not been capitalised upon yet in animal husbandry practice. Of specific attention are the implications that these biological systems have for creating and maintaining heightened pain states. This review will outline the key concepts of brain-immune communication and the immediate opportunities targeting this biology can have for husbandry practices, with a specific focus on pain.
Collapse
|
21
|
Skin/Muscle Incision and Retraction Induces Evoked and Spontaneous Pain in Mice. Pain Res Manag 2019; 2019:6528528. [PMID: 31467625 PMCID: PMC6701374 DOI: 10.1155/2019/6528528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/11/2019] [Indexed: 01/30/2023]
Abstract
Background Surgery is a frequent cause of persistent pain. Unrelieved chronic postsurgical pain causes unnecessary patient suffering and discomfort and usually leads to psychological complications. The rat model of skin/muscle incision and retraction (SMIR) with decreased paw withdrawal thresholds developed by Flatters was usually used to investigate the underlying mechanism of chronic postsurgical pain. Objectives The aim of our study was to develop a new mice model of SMIR for further investigation with transgenic mice and so on and to evaluate the analgesic effects of clonidine and gabapentin on pain behavior with this new mice model. Methods Male C57BL/6 mice were anesthetized, and a 1.0-1.3 cm incision was made in the skin of the medial thigh approximately 3 mm medial to the saphenous vein to reveal the muscle of the thigh. The paw withdrawal threshold (PWT) to mechanical stimuli and the paw withdrawal latency to heat stimuli were measured before and after SMIR. Furthermore, the PWT to mechanical stimuli and conditioned place preference (CPP) was measured before and after the systemic injection of clonidine and gabapentin. Results SMIR-evoked mechanical hypersensitivity in mice began on day 1 after the procedure, prominent between days 1 and 10 after the procedure, persisted at least until day 14, and disappeared on day 18 after the procedure. However, the mice model of SMIR did not evoke significant heat hypersensitivity. Systemic injection of clonidine and gabapentin raised the PWT in the SMIR mice dose-dependently. Compared with the mice that underwent the sham operation, mice of SMIR spent a longer time in the clonidine-paired chamber than those of NS, while the gabapentin-paired chamber has no difference with that of NS in the CPP paradigm. Conclusion These data suggested that the mice model of SMIR demonstrated a persistent pain syndrome, including evoked pain and spontaneous pain. Clonidine and gabapentin could relieve mechanical hypersensitivity dose-dependently simultaneously. However, clonidine but not gabapentin could alleviate the spontaneous pain of SMIR in the mice model.
Collapse
|
22
|
Mechanisms of acute and chronic pain after surgery: update from findings in experimental animal models. Curr Opin Anaesthesiol 2019; 31:575-585. [PMID: 30028733 DOI: 10.1097/aco.0000000000000646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Management of postoperative pain is still a major issue and relevant mechanisms need to be investigated. In preclinical research, substantial progress has been made, for example, by establishing specific rodent models of postoperative pain. By reviewing most recent preclinical studies in animals related to postoperative, incisional pain, we outline the currently available surgical-related pain models, discuss assessment methods for pain-relevant behavior and their shortcomings to reflect the clinical situation, delineate some novel clinical-relevant mechanisms for postoperative pain, and point toward future needs. RECENT FINDINGS Since the development of the first rodent model of postoperative, incisional pain almost 20 years ago, numerous variations and some procedure-specific models have been emerged including some conceivably relevant for investigating prolonged, chronic pain after surgery. Many mechanisms have been investigated by using these models; most recent studies focussed on endogenous descending inhibition and opioid-induced hyperalgesia. However, surgical models beyond the classical incision model have so far been used only in exceptional cases, and clinical relevant behavioral pain assays are still rarely utilized. SUMMARY Pathophysiological mechanisms of pain after surgery are increasingly discovered, but utilization of pain behavior assays are only sparsely able to reflect clinical-relevant aspects of acute and chronic postoperative pain in patients.
Collapse
|
23
|
Rice FL, Castel D, Ruggiero E, Dockum M, Houk G, Sabbag I, Albrecht PJ, Meilin S. Human-like cutaneous neuropathologies associated with a porcine model of peripheral neuritis: A translational platform for neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 5:100021. [PMID: 31194066 PMCID: PMC6550106 DOI: 10.1016/j.ynpai.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
Despite enormous investment in research and development of novel treatments, there remains a lack of predictable, effective, and safe therapeutics for human chronic neuropathic pain (NP) afflictions. NP continues to increase among the population and treatments remain a major unmet public health care need. In recent years, numerous costly (time and money) failures have occurred attempting to translate successful animal pain model results, typically using rodents, to human clinical trials. These continued failures point to the essential need for better animal models of human pain conditions. To address this challenge, we have previously developed a peripheral neuritis trauma (PNT) model of chronic pain induced by a proximal sciatic nerve irritation in pigs, which have a body size, metabolism, skin structure, and cutaneous innervation more similar to humans. Here, we set out to determine the extent that the PNT model presents with cutaneous neuropathologies consistent with those associated with human chronic NP afflictions. Exactly as is performed in human skin biopsies, extensive quantitative multi-molecular immunofluorescence analyses of porcine skin biopsies were performed to assess cutaneous innervation and skin structure. ChemoMorphometric Analysis (CMA) results demonstrated a significant reduction in small caliber intraepidermal nerve fiber (IENF) innervation, altered dermal vascular innervation, and aberrant analgesic/algesic neurochemical properties among epidermal keratinocytes, which are implicated in modulating sensory innervation. These comprehensive pathologic changes very closely resemble those observed from CMA of human skin biopsies collected from NP afflictions. The results indicate that the porcine PNT model is more appropriate for translational NP research compared with commonly utilized rodent models. Because the PNT model creates cutaneous innervation and keratinocyte immunolabeling alterations consistent with human NP conditions, use of this animal model for NP testing and treatment response characteristics will likely provide more realistic results to direct successful translation to humans.
Collapse
Affiliation(s)
- Frank L. Rice
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY 12144, United States
- Division of Health Sciences, University at Albany, Rensselaer, NY 12144, United States
| | - David Castel
- The Neufeld Cardiac Research Institute, Sheba Medical Centre, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Elizabeth Ruggiero
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY 12144, United States
| | - Marilyn Dockum
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY 12144, United States
| | - George Houk
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY 12144, United States
| | - Itai Sabbag
- Lahav Research Institute, Kibutz Lahav, Negev 85335, Israel
| | - Phillip J. Albrecht
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY 12144, United States
- Division of Health Sciences, University at Albany, Rensselaer, NY 12144, United States
| | - Sigal Meilin
- MD Biosciences, Neurology R&D Division, Nes-Ziona 74140, Israel
| |
Collapse
|
24
|
Castel D, Sabbag I, Nasaev E, Peng S, Meilin S. Open field and a behavior score in PNT model for neuropathic pain in pigs. J Pain Res 2018; 11:2279-2293. [PMID: 30349354 PMCID: PMC6188018 DOI: 10.2147/jpr.s172300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Rodent models are frequently used in the research of pain and continue to provide valuable data on the mechanisms driving pain, although they are criticized due to limited translational ability to human conditions. Previously we have suggested pigs as a model for development of drugs for neuropathic pain. In this study, we investigate the spontaneous behavior of pigs following peripheral neuritis trauma (PNT)-induced neuropathic pain. Methods A computerized monitoring system was used to evaluate the changes in open field test in addition to applying a composite behavior scoring system. The data suggest that the PNT operation did not affect the animal’s ability to walk as the total distance walked by PNT animals was not significantly different from the total distance walked by sham-operated animals. However, PNT animals expressed a significant change in the pattern of walking. This effect was unrelated to the time that the animals spent in the open field. Following treatment with different drugs (morphine, buprenorphine, or gabapentin), the walking pattern of the animals in the open field changed in a drug-specific manner. In addition, the detailed behavior score revealed drug-specific changes following treatment. Results Pharmacokinetic analysis of the drug concentration in blood and cerebrospinal fluid correlated with the behavioral analysis. Conclusion The data of this study suggest that the open field test together with the detailed behavior score applied in this model are a powerful tool to assess the spontaneous behavior of pigs following PNT-induced neuropathic pain.
Collapse
Affiliation(s)
- David Castel
- The Neufeld Cardiac Research Institute, Sheba Medical Centre, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itai Sabbag
- Lahav Research Institute, Kibutz Lahav, Negev, Israel
| | - Elvira Nasaev
- Neurology R&D Division, MD Biosciences, Ness Ziona, Israel,
| | - Sean Peng
- Touchstone Biosciences, Plymouth Meeting, PA, USA
| | - Sigal Meilin
- Neurology R&D Division, MD Biosciences, Ness Ziona, Israel,
| |
Collapse
|
25
|
Clutton RE. A review of factors affecting analgesic selection in large animals undergoing translational research. Vet J 2018; 236:12-22. [PMID: 29871744 DOI: 10.1016/j.tvjl.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The widespread physiological effects of pain in experimental animals are likely to reduce the validity of data except when pain itself is studied. Appropriately prescribed analgesics will limit pain and improve the welfare of animals undergoing noxious experimental procedures. However, their injudicious use may also introduce variability in data and limit study reproducibility. Optimizing both animal welfare and the value of scientific data from experimental studies requires the ability to identify, quantify and treat animal pain by applying a knowledge of analgesic pharmacology that is sympathetic to study objectives. This review first examines the reasons for promoting analgesic use in translational animal research and, in focussing on pigs and small ruminants, then identifies factors that should be considered when devising analgesic plans.
Collapse
Affiliation(s)
- R E Clutton
- The Wellcome Trust Critical Care Laboratory for Large Animals, Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, United Kingdom.
| |
Collapse
|
26
|
Wilsey JT, Block JH. Sustained analgesic effect of clonidine co-polymer depot in a porcine incisional pain model. J Pain Res 2018; 11:693-701. [PMID: 29670396 PMCID: PMC5898591 DOI: 10.2147/jpr.s157018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Previous research suggests that the α2 adrenergic agonist clonidine, a centrally acting analgesic and antihypertensive, may also have direct effects on peripheral pain generators. However, aqueous injections are limited by rapid systemic absorption leading to off target effects and a brief analgesic duration of action. Purpose The aim of this study was to examine the efficacy of a sustained-release clonidine depot, placed in the wound bed, in a pig incisional pain model. Methods The depot was a 15 mm ×5 mm ×0.3 mm poly(lactide-co-caprolactone) polymer film containing 3% (w/w) clonidine HCl (MDT3). Fifty-two young adult mix Landrace pigs (9–11 kg) were divided into seven groups. All subjects received a 6 cm, full-thickness, linear incision into the left lateral flank. Group 1 served as a Sham control group (Sham, n=8). Group 2 received three placebo strips (PBO, n=8), placed end-to-end in the subcutaneous wound bed before wound closure. Group 3 received one MDT3 and two PBO (n=8), Group 4 received two MDT3 and one PBO (n=8), and Group 5 received three MDT3 (n=8). Positive control groups received peri-incisional injections of bupivacaine solution (Group 6, 30 mg/day bupivacaine, n=8) or clonidine solution (Group 7, 225 µg/day, n=4). Results The surgical procedure was associated with significant peri-incisional tactile allodynia. There was a dose-dependent effect of MDT3 in partially reversing the peri-incisional tactile allodynia, with maximum pain relief relative to Sham at 72 hours. Daily injections of bupivacaine (30 mg), but not clonidine (up to 225 µg), completely reversed allodynia within 48 hours. There was a statistically significant correlation between the dose of MDT3 and cumulative withdrawal threshold from 4 hours through the conclusion of the study on day 7. Conclusion These data suggest that a sustained-release clonidine depot may be a viable nonopioid, nonamide anesthetic therapy for the treatment of acute postsurgical nociceptive sensitization.
Collapse
|
27
|
Jeger V, Hauffe T, Nicholls-Vuille F, Bettex D, Rudiger A. Analgesia in clinically relevant rodent models of sepsis. Lab Anim 2018; 50:418-426. [PMID: 27909191 DOI: 10.1177/0023677216675009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Postoperative analgesia in rodent sepsis models has been considerably neglected in the past. However, intentions to model clinical practice, increasing awareness of animal ethics, efforts to apply the 3Rs (replacement, reduction, refinement), and stricter legislation argue for a change in this respect. In this review, we describe different concepts of analgesia in rodent models of sepsis focusing on opioid agonists as well as non-opioid analgesics. Advantages and pitfalls in study design and side-effects are discussed. Score sheets should be used to adapt analgesia or to terminate experiments using humane endpoints. Further research is needed to differentiate behavioral changes caused by sepsis and pain or as a consequence of analgesia. Information on the efficacy of analgesia in sepsis models is scarce. Hence, studies are needed to identify the best ways to reduce suffering of research animals and thereby optimize the clinically relevant rodent models of sepsis.
Collapse
Affiliation(s)
- Victor Jeger
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland.,Department of Medicine, University and University Hospital Zurich, Switzerland
| | - Till Hauffe
- Department of Medicine, University and University Hospital Zurich, Switzerland
| | - Flora Nicholls-Vuille
- Research Unit, Department of Surgery, University and University Hospital Zurich, Zurich, Switzerland
| | - Dominique Bettex
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland
| | - Alain Rudiger
- Institute for Anesthesiology, University and University Hospital Zurich, Switzerland
| |
Collapse
|
28
|
Castel D, Sabbag I, Meilin S. The effect of local/topical analgesics on incisional pain in a pig model. J Pain Res 2017; 10:2169-2175. [PMID: 28919812 PMCID: PMC5590771 DOI: 10.2147/jpr.s144949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interest in the development of new topical/local drug administration for blocking pain at peripheral sites, with maximum drug activity and minimal systemic effects, is on the rise. In the review article by Kopsky and Stahl, four critical barriers in the process of research and development of topical analgesics were indicated. The active pharmaceutical ingredient (API) and the formulation are among the major challenges. The road to the development of such drugs passes through preclinical studies. These studies, if planned correctly, should serve as guidance for choosing the right API and formulation. Although rodent models for pain continue to provide valuable data on the mechanisms driving pain, their use in developing topical and localized treatment approaches is limited for technical (intraplate injection area is small) as well as mechanical reasons (non-similarity to human skin and innervation). It has been previously shown that pigs are comparable to humans in ways that make them a better choice for evaluating topical and local analgesics. The aim of this study was to summarize several experiments that used pigs for testing postoperative pain in an incisional pain model (skin incision [SI] and skin and muscle incision [SMI]). At the end of the surgery, the animals were treated with different doses of bupivacaine solution (Marcaine®), bupivacaine liposomal formulation (Exparel®) or ropivacaine solution (Naropin). Von Frey testing demonstrated a decrease in the animals’ sensitivity to mechanical stimulation expressed as an increase in the withdrawal force following local treatment. These changes reflect the clinical condition in the level as well as in the duration of the response. These data indicate a good resemblance between pig and human skin and suggest that use of these animals in the preclinical phase of developing topical analgesics can, to some extent, release the bottleneck.
Collapse
Affiliation(s)
- David Castel
- The Neufeld Cardiac Research Institute, Sheba Medical Centre, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv
| | - Itai Sabbag
- Lahav Research Institute, Kibutz Lahav, Negev
| | - Sigal Meilin
- Neurology R&D Division, MD Biosciences, Nes-Ziona, Israel
| |
Collapse
|
29
|
Di Giminiani P, Edwards SA, Malcolm EM, Leach MC, Herskin MS, Sandercock DA. Characterization of short- and long-term mechanical sensitisation following surgical tail amputation in pigs. Sci Rep 2017; 7:4827. [PMID: 28684801 PMCID: PMC5500571 DOI: 10.1038/s41598-017-05404-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022] Open
Abstract
Commercial pigs are frequently exposed to tail mutilations in the form of preventive husbandry procedures (tail docking) or as a result of abnormal behaviour (tail biting). Although tissue and nerve injuries are well-described causes of pain hypersensitivity in humans and in rodent animal models, there is no information on the changes in local pain sensitivity induced by tail injuries in pigs. To determine the temporal profile of sensitisation, pigs were exposed to surgical tail resections and mechanical nociceptive thresholds (MNT) were measured in the acute (one week post-operatively) and in the long-term (either eight or sixteen weeks post-surgery) phase of recovery. The influence of the degree of amputation on MNTs was also evaluated by comparing three different tail-resection treatments (intact, ‘short tail’, ‘long tail’). A significant reduction in MNTs one week following surgery suggests the occurrence of acute sensitisation. Long-term hypersensitivity was also observed in tail-resected pigs at either two or four months following surgery. Tail amputation in pigs appears to evoke acute and sustained changes in peripheral mechanical sensitivity, which resemble features of neuropathic pain reported in humans and other species and provides new information on implications for the welfare of animals subjected to this type of injury.
Collapse
Affiliation(s)
- Pierpaolo Di Giminiani
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Sandra A Edwards
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Emma M Malcolm
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Matthew C Leach
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Mette S Herskin
- Aarhus University, Department of Animal Science, Au-Foulum, Tjele, Denmark
| | - Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH16 4SA, United Kingdom
| |
Collapse
|
30
|
Osorio Lujan S, Habre W, Daali Y, Pan Z, Kronen PW. Plasma concentrations of transdermal fentanyl and buprenorphine in pigs (Sus scrofa domesticus). Vet Anaesth Analg 2017; 44:665-675. [DOI: 10.1016/j.vaa.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023]
|
31
|
Gottardo F, Scollo A, Contiero B, Ravagnani A, Tavella G, Bernardini D, De Benedictis GM, Edwards SA. Pain alleviation during castration of piglets: a comparative study of different farm options. J Anim Sci 2017; 94:5077-5088. [PMID: 28046151 DOI: 10.2527/jas.2016-0843] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pain alleviation associated with castration of piglets is an important welfare issue. The present study compares the effect of different approaches and products suitable for farmer use, with the aim to alleviate pain due to castration in piglets. A randomized within-litter design, with 28 replicate litters, compared 7 treatments: handling () restraint of the piglet and manipulation of the scrotum, castration without pain relief (), 2 treatments (, ) with different concentrations of tetracaine (2 and 6%) applied topically 10 min before and immediately post-surgery, and 3 treatments with i.m. injection of different nonsteroidal anti-inflammatory drugs () 10 min prior to surgery (-meloxicam, -ketoprofen, -tolfenamic acid). Efficacy of pain relief was assessed during a 300 min period after castration by serum cortisol, behavior (walking, lying, suckling, in the nest, isolated and pain related: tremors, rubbing the rear, hunching, wagging of the tail), facial expression and scrotal skin pressure sensitivity. C pigs had greater serum cortisol concentration than all other groups at 60 min post-surgery ( < 0.001), while H pigs had lower concentrations than pigs given topical anesthesia ( < 0.001) though not injected analgesia. No treatment differences were significant at 180 min, but at 300 min cortisol concentration was greater in T2 and T6 piglets than those given NSAIDs ( = 0.03). These treatment differences were mirrored by the pressure sensitivity of the scrotum; in comparison with C piglets, those given NSAIDs showed a reduced sensitivity ( 0.003) but those given local anesthesia did not ( = 0.15). C pigs showed increased frequency of pain-related behavior in the first 30 min in comparison with all other treatments, more time isolated than H or NSAID treatments, and more time standing inactive than H or K treatments. No behavioral differences were apparent after 60 min. No differences in facial expressions were observed among treatments. In conclusion, on-farm methods for pain relief can provide some, though not complete, pain alleviation in the hours after castration. The use of topical anesthesia gave only minor benefit in comparison to NSAID agents injected prior to castration. Since the main differences in indicators of pain between positive and negative controls were observed within the first h after castration, it is important to select drugs that act quickly after administration to facilitate practical processing schedules on farm.
Collapse
|
32
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
34
|
Gu W, Zhang W, Lei Y, Cui Y, Chu S, Gu X, Ma Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor shortens the duration of remifentanil-induced postoperative hyperalgesia by upregulating KCC2 in the spinal dorsal horn in rats. Mol Pain 2017; 13:1744806917704769. [PMID: 28425312 PMCID: PMC6997724 DOI: 10.1177/1744806917704769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Accumulating evidence has shown that the signal from spinal brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 plays a critical role in the process of pain hypersensitivity. The activation of alpha-7 nicotinic acetylcholine receptors could have an analgesic effect on remifentanil-induced postoperative hyperalgesia. Nevertheless, whether intrathecal administration of PNU-120596, an alpha-7 nicotinic acetylcholine receptors selective type II positive allosteric modulator, before surgery could affect the duration of remifentanil-induced postoperative hyperalgesia remains unknown, and the effects of alpha-7 nicotinic acetylcholine receptors activation on the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal in the spinal dorsal horn of rats with remifentanil-induced postoperative hyperalgesia is still enigmatic. Results We demonstrated that the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal played a critical role in the development of remifentanil-induced postoperative hyperalgesia. Intrathecal administration of PNU-120596 (8 µg/kg, 15 min before surgery) was associated with earlier signs of recovery from remifentanil-induced postoperative hyperalgesia. Simultaneously, remifentanil-induced postoperative hyperalgesia-induced K+-Cl- cotransporter-2 downregulation was partly reversed and coincided with a decreased expression of brain-derived neurotrophic factor/tyrosine receptor kinase B in the spinal dorsal horn, approximately correlating with the time course of the nociceptive behavior. Moreover, intrathecal administration of the K+-Cl- cotransporter-2 inhibitor VU0240551 significantly reduced the analgesic effect of PNU-120596 on remifentanil-induced postoperative hyperalgesia. Conclusions The activation of alpha-7 nicotinic acetylcholine receptors induced a shorter duration of remifentanil-induced postoperative hyperalgesia by restoring the brain-derived neurotrophic factor/tyrosine receptor kinase B-K+-Cl- cotransporter-2 signal in the spinal dorsal horn of rats, which provides new insight into treatment in clinical postoperative pain management.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yin Cui
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuaishuai Chu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Ison SH, Clutton RE, Di Giminiani P, Rutherford KMD. A Review of Pain Assessment in Pigs. Front Vet Sci 2016; 3:108. [PMID: 27965968 PMCID: PMC5124671 DOI: 10.3389/fvets.2016.00108] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
There is a moral obligation to minimize pain in pigs used for human benefit. In livestock production, pigs experience pain caused by management procedures, e.g., castration and tail docking, injuries from fighting or poor housing conditions, “management diseases” like mastitis or streptococcal meningitis, and at parturition. Pigs used in biomedical research undergo procedures that are regarded as painful in humans, but do not receive similar levels of analgesia, and pet pigs also experience potentially painful conditions. In all contexts, accurate pain assessment is a prerequisite in (a) the estimation of the welfare consequences of noxious interventions and (b) the development of more effective pain mitigation strategies. This narrative review identifies the sources of pain in pigs, discusses the various assessment measures currently available, and proposes directions for future investigation.
Collapse
Affiliation(s)
- Sarah H Ison
- Animal Behaviour and Welfare, Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK; Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - R Eddie Clutton
- Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The University of Edinburgh , Midlothian , UK
| | - Pierpaolo Di Giminiani
- Food and Rural Development, School of Agriculture, Newcastle University , Newcastle upon Tyne , UK
| | - Kenneth M D Rutherford
- Animal Behaviour and Welfare, Animal and Veterinary Sciences, Scotland's Rural College (SRUC) , Edinburgh , UK
| |
Collapse
|
36
|
Di Giminiani P, Brierley VLMH, Scollo A, Gottardo F, Malcolm EM, Edwards SA, Leach MC. The Assessment of Facial Expressions in Piglets Undergoing Tail Docking and Castration: Toward the Development of the Piglet Grimace Scale. Front Vet Sci 2016; 3:100. [PMID: 27896270 PMCID: PMC5107875 DOI: 10.3389/fvets.2016.00100] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/31/2016] [Indexed: 01/22/2023] Open
Abstract
Many piglets are exposed to potentially painful husbandry procedures within the first week of life, including tail docking and castration, without the provision of either anesthesia or analgesia. The assessment methods used to evaluate pain experienced by piglets are often affected by low specificity and practical limitations, prompting the investigation of alternative methodologies. The assessment of changes in facial expression following a painful event has been successfully applied to several species. The objective of this pilot study was to evaluate the utility of a Grimace Scale applied to neonatal pigs to evaluate pain evoked by tail docking and castration. Eight female piglets, Sus scrofa domesticus (Landrace/Large White X synthetic sire line) underwent tail docking and 15 male piglets (75% Large White and 25% Belgian Landrace) were exposed to the castration procedure. Clear images of the faces of the piglets were collected immediately pre- and post-procedure. The images were used by experienced observers to identify facial action units (FAUs) which changed in individuals over this period, and a scoring scale was depicted in a training manual. A set of randomly selected images were then combined in a scorebook, which was evaluated after training by 30 scorers, blind to the treatment. The scale for most FAU was used with a high level of consistency across all observers. Tail docking induced a significant change (P < 0.05) in free moving piglets only in the "orbital tightening" FAU, whereas no change in any unit was observed in castrated piglets, which were restrained at the time of assessment. In this initial stage of development, orbital tightening seems to have the potential to be applied to investigate painful conditions in neonatal pigs. Nonetheless, more studies are needed to assess its full effectiveness and to evaluate the influence of possible confounds (e.g., handling stress) on the observed changes in FAUs.
Collapse
Affiliation(s)
- Pierpaolo Di Giminiani
- School of Agriculture, Food and Rural Development, Newcastle University , Newcastle upon Tyne , UK
| | - Victoria L M H Brierley
- School of Agriculture, Food and Rural Development, Newcastle University , Newcastle upon Tyne , UK
| | - Annalisa Scollo
- Department of Animal Medicine, Production and Health, University of Padova , Legnaro , Italy
| | - Flaviana Gottardo
- Department of Animal Medicine, Production and Health, University of Padova , Legnaro , Italy
| | - Emma M Malcolm
- School of Agriculture, Food and Rural Development, Newcastle University , Newcastle upon Tyne , UK
| | - Sandra A Edwards
- School of Agriculture, Food and Rural Development, Newcastle University , Newcastle upon Tyne , UK
| | - Matthew C Leach
- School of Agriculture, Food and Rural Development, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
37
|
Di Giminiani P, Sandercock DA, Malcolm EM, Leach MC, Herskin MS, Edwards SA. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails. Physiol Behav 2016; 165:119-26. [PMID: 27422675 PMCID: PMC5038977 DOI: 10.1016/j.physbeh.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury, such as tail docking or tail biting. The Pressure Application Measurement (PAM) device is used here for the first time on the tail of pigs to determine the reliability of the methods and to provide novel data on mechanical nociceptive thresholds (MNT) associated with four different age groups (9, 17, 24 and 32 weeks) and with proximity of the target region to the body of the animal. We recorded an overall acceptable level of intra-individual reliability, with mean values of CV ranging between 30.1 and 32.6%. Across all age groups, the first single measurement of MNT recorded at region 1 (proximal) was significantly higher (P < 0.05) than the following two. This was not observed at tail regions 2 and 3 (more distal). Age had a significant effect (P < 0.05) on the mean thresholds of nociception with increasing age corresponding to higher thresholds. Furthermore, a significant effect of proximity of tail region to the body was observed (P < 0.05), with MNT being higher in the proximal tail region in pigs of 9, 17 and 24 weeks of age. There was also a significant positive correlation (P < 0.05) between mechanical nociceptive thresholds and age/body size of the animals. To the best of our knowledge, no other investigation of tail nociceptive thresholds has been performed with the PAM device or alternative methods to obtain mechanical nociceptive thresholds in intact tails of pigs of different age/body size. The reliability of the data obtained with the PAM device support its use in the measurement of mechanical nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting. Mechanical nociceptive thresholds were quantified for the first time in pig tails. The PAM device allowed determining anatomical and age-specific thresholds in pigs. A platform for the assessment of painful conditions in pigs is proposed.
Collapse
Affiliation(s)
- Pierpaolo Di Giminiani
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Dale A Sandercock
- Aarhus University, Department of Animal Science, AU-FOULUM, Tjele, Denmark
| | - Emma M Malcolm
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Matthew C Leach
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mette S Herskin
- Animal and Veterinary Science Research Group, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH16 4SA, United Kingdom
| | - Sandra A Edwards
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
38
|
Castel D, Naveh M, Aharon A, Doron O, Meilin S. Prolonged Analgesic Effect of PRF-108 and PRF-110 on Post-operative Pain in Pigs. Pain Ther 2016; 5:29-42. [PMID: 26724813 PMCID: PMC4912964 DOI: 10.1007/s40122-015-0043-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Local anesthetic infusion techniques have been reported to reduce opiate requirements and pain scores following different kinds of surgery, including orthopedic surgery, inguinal hernia, and Cesarean surgery in women. METHODS PRF-108 and PRF-110 formulations were applied to the wound space in an incisional model in pigs to test the hypothesis that these formulations have better and longer analgesic effects than the commercially available ropivacaine solution (Naropin(®), AstraZeneca). RESULTS The data show significantly better analgesic activity with PRF-108 and PRF-110 compared to ropivacaine. The duration of the analgesic efficacy of PRF-108 and PRF-110 was at least five times longer than that was measured following treatment with ropivacaine. The data further suggest that active clearance from the injection site (the wound) is much slower for PRF-108 and PRF-110 than for the commercial ropivacaine solution. CONCLUSION Assessing the local concentration of PRF compounds and commercially available ropivacaine solution suggests that active clearance from the injection site (the wound) is much slower for PRF-108 and PRF-110 than for ropivacaine. FUNDING PainReform.
Collapse
Affiliation(s)
- David Castel
- The Neufeld Cardiac Research Institute and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Ofer Doron
- Lahav Research Institute, Kibutz Lahav, Negev, Israel
| | - Sigal Meilin
- Neurology Division, MD Biosciences, Ness Ziona, Israel.
| |
Collapse
|
39
|
Castel D, Sabbag I, Brenner O, Meilin S. Peripheral Neuritis Trauma in Pigs: A Neuropathic Pain Model. THE JOURNAL OF PAIN 2016; 17:36-49. [DOI: 10.1016/j.jpain.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/29/2022]
|
40
|
Effect of adenosine triphosphate-sensitive potassium activation on peripheral and central pain sensitization. J Surg Res 2015; 195:481-7. [PMID: 25770739 DOI: 10.1016/j.jss.2015.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alterations in adenosine triphosphate-sensitive potassium (KATP) activity and expression under changing physiological conditions are important adaptive and protective mechanisms. KATP subunit expression is also altered in neuropathic pain; whether these changes are adaptive or deleterious is unclear. We therefore established a skin/muscle incision and retraction (SMIR) rat model of postoperative pain and examined the relationship between pain sensitization and changes in KATP subunit expression. METHODS Rats were randomly divided into untreated, sham-operation, SMIR, and SMIR + Pinacidil (sulfonylurea receptor [SUR]2-activator) groups. In the SMIR group, skin and muscle were retracted for 1 h after incision. In the SMIR + Pinacidil group, Pinacidil was injected intraperitoneally 0.5 h before SMIR or into the spinal myelin sheath 7 d after SMIR. Mechanical withdrawal threshold was used as an index of pain sensitivity. Expression levels and localization of the KATP subunits Kir6.2, Kir6.1, SUR1, and SUR2 were measured by Western blotting and immunofluorescence. RESULTS A rat postoperative pain model was successfully established, in which SMIR induced mechanical hypersensitivity (allodynia). Notably, significantly increased Kir6.1, Kir6.2, SUR1, and SUR2 protein expression levels were observed in tissues around the incision (P < 0.05). In addition, significantly decreased Kir6.1, SUR2, and SUR1 protein levels were obtained in spinal cord L3-L5. SMIR also starkly increased nerve growth factor expression in the muscle around the incision. Importantly, intrathecal Pinacidil injection inhibited the overexpression of allodynia markers and nerve growth factor. CONCLUSIONS Hyperexcitability due to spinal Kir6.1 and SUR2 downregulation may be responsible for postoperative pain. SUR2 activation is a potential strategy to inhibit postoperative allodynia.
Collapse
|