1
|
Lee AJB, Bi S, Ridgeway E, Al-Hussaini I, Deshpande S, Krueger A, Khatri A, Tsui D, Deng J, Mitchell CS. Restoring Homeostasis: Treating Amyotrophic Lateral Sclerosis by Resolving Dynamic Regulatory Instability. Int J Mol Sci 2025; 26:872. [PMID: 39940644 PMCID: PMC11817447 DOI: 10.3390/ijms26030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert J. B. Lee
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sarah Bi
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Eleanor Ridgeway
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Irfan Al-Hussaini
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sakshi Deshpande
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Adam Krueger
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ahad Khatri
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dennis Tsui
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jennifer Deng
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Živančević K, Aru B, Demir A, Radenović L, Andjus P, Demirel GY. Zn 0-Induced Cytotoxicity and Mitochondrial Stress in Microglia: Implications of the Protective Role of Immunoglobulin G In Vitro. Balkan Med J 2024; 41:348-356. [PMID: 39129512 PMCID: PMC11588912 DOI: 10.4274/balkanmedj.galenos.2024.2024-4-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background Zinc (Zn), an essential micronutrient, regulates and maintains neurological functions. However, both Zn deficiency and excess can cause oxidative stress and neurodegenerative diseases. As previously reported, immunoglobulin G (IgG) can modulate oxidative stress in various disorders. Aims To investigate whether IgG treatment can alleviate oxidative stress caused by Zn0 on microglia in vitro. Study Design In vitro study. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Results: In silico screening confirmed the association between Zn0 cytotoxicity and apoptosis. Furthermore, oxidative stress was identified as a critical mechanism that underlies Zn0 neurotoxicity. The in silico analysis revealed that Zn can interact with the constant region of the Ig heavy chain, suggesting a potential role for IgG in alleviating Zn0-induced cytotoxicity. Experimental findings supported this hypothesis, as IgG administration significantly reduced Zn0-induced mitochondrial stress in a dose-dependent manner. The upregulation of PINK1 levels by Zn0 exposure suggests that mitochondrial injury promotes mitophagy. Interestingly, Zn0 decreased TRIM21 levels, which is reversed by IgG administration. Conclusion These findings elucidate the cellular responses to Zn0 and highlight the potential use of intravenous immunoglobulin in mitigating the adverse effects of acute Zn0 exposure.
Collapse
Affiliation(s)
- Katarina Živančević
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
| | - Abdullah Demir
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| | - Lidija Radenović
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Gülderen Yanıkkaya Demirel
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
3
|
Wang Y, Li Y, Nong Q, Zhang G, Liu N, Guo H, He Q, Liu L, Qu G, He B, Hu L, Jiang G. Zinc-associated phospholipid metabolic alterations and their impacts on ALT levels in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173152. [PMID: 38735327 DOI: 10.1016/j.scitotenv.2024.173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Zinc (Zn) is an essential trace element that is required for various biological functions, but excessive exposure to Zn is associated with many disorders and even diseases. However, the health effects and underlying mechanisms of long-term and high concentration exposure of Zn remain to be unclear. In the present study, we investigated the association between occupational exposure to Zn and liver function indicators (like alanine aminotransferase (ALT)) in workers. We found a positive association between Zn exposure and ALT level in workers. Workers having higher blood Zn (7735.65 (1159.15) μg/L) shows a 30.4 % increase in ALT level compared to those with lower blood Zn (5969.30 (989.26) μg/L). Furthermore, we explored the effects of phospholipids (PLs) and their metabolism on ALT level and discovered that Zn exposure in workers was associated with changes in PL levels and metabolism, which had further effects on increased ALT levels in workers. The study provides insights into the relationship between occupational Zn exposure and liver function, highlights the risk of long-term exposure to high concentrations of Zn, and paves the way for understanding the underlying mechanisms of Zn exposure on human health.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guohuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nian Liu
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Hua Guo
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Qinghao He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Xia Y, Tsim KWK, Wang WX. How fish cells responded to zinc challenges: Insights from bioimaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162538. [PMID: 36898541 DOI: 10.1016/j.scitotenv.2023.162538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Zinc ion (Zn) is an essential nutrition element and it is important to understand its regulation and distribution among different cellular organelles. Here, subcellular trafficking of Zn in rabbitfish fin cells was investigated through bioimaging, and the results showed that the toxicity and bioaccumulation of Zn were both dose- and time-dependent. Cytotoxicity of Zn only occurred when the Zn concentration reached 200-250 μM after 3 h of exposure when the cellular quota of Zn:P reached a threshold level around 0.7. Remarkably, the cells were able to maintain homeostasis at a low Zn exposure concentration or within the first 4-h exposure. Zn homeostasis was mainly regulated by the lysosomes which stored Zn within the short exposure period, during which the number and size of lysosomes as well as the lysozyme activity increased in response to incoming Zn. However, with increasing Zn concentration beyond a threshold concentration (> 200 μM) and an exposure time > 3 h, homeostasis was disrupted, leading to an Zn spillover to cytoplasm and other cellular organelles. At the same time, cell viability decreased due to the Zn damage on mitochondria which caused morphological changes (smaller and rounder dots) and over production of reactive oxygen species, indicating the dysfunction of mitochondria. By further purifying the cellular organelles, cell viability was found to be consistent with the mitochondrial Zn amount. This study suggested that the amount of mitochondrial Zn was an excellent predictor of Zn toxicity on fish cells.
Collapse
Affiliation(s)
- Yiteng Xia
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
5
|
Oh J, Min C, Park D, Han MS. Oligonucleotide-Chemosensor Conjugate as a Dual Responsive Detection Platform and Its Application for Simultaneous Detection of ATP and Zn 2. ACS Sens 2022; 7:3933-3939. [PMID: 36503238 DOI: 10.1021/acssensors.2c02006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simultaneous detection, which helps understand complex physiological processes and accurately diagnose diseases, has been achieved using dual responsive probes. The dual responsive probe can ideally distinguish four cases, which are a combination of the absence and presence of two analytes, with characteristic fluorescence emissions. Owing to the demanding conditions of its development, most previous studies have focused on the simple linkage between small-molecule chemosensors that have an individual target and spectral range. In this study, a new dual responsive detection platform, oligonucleotide-chemosensor conjugate, was developed using a linkage between versatile oligonucleotide probes and small-molecule chemosensors to expand the applicable scaffold and detectable target for simultaneous detection. As a proof of concept, the ATP aptamer probe and Zn2+ chemosensor were conjugated as the levels of ATP and Zn2+ are intimately correlated in several signaling pathways and diseases. Each probe could detect an analyte independently within a conjugate probe, and simultaneous detection was also demonstrated without spectral crosstalk or interference between the receptors. In addition, the introduced cholesterol modification allowed the developed probe to detect changes in analytes on the plasma membrane of live cells through flow cytometry and confocal microscopy.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Huang C, Lei H, Liu C, Wang Y. Acute and subchronic exposure of cyadox induced metabolic and transcriptomic disturbances in Wistar rats. Toxicology 2022; 482:153367. [DOI: 10.1016/j.tox.2022.153367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Teschke R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int J Mol Sci 2022; 23:12213. [PMID: 36293069 PMCID: PMC9602583 DOI: 10.3390/ijms232012213] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany
| |
Collapse
|
8
|
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, Ye L. Mechanisms of cardiovascular toxicity induced by PM 2.5: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65033-65051. [PMID: 34617228 DOI: 10.1007/s11356-021-16735-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies have shown that exposure to particulate matter with a diameter ≤ 2.5 μm (PM2.5) could affect the onset and development of cardiovascular diseases. To explore the underlying mechanisms, the studies conducted in vitro investigations using different cell lines. In this review, we examined recently published reports cited by PubMed or Web of Science on the topic of cardiovascular toxicity induced by PM2.5 that carried the term in vitro. Here, we summarized the suggested mechanisms of PM2.5 leading to adverse effects and cardiovascular toxicity including oxidative stress; the increase of vascular endothelial permeability; the injury of vasomotor function and vascular reparative capacity in vascular endothelial cell lines; macrophage polarization and apoptosis in macrophage cell lines; and hypermethylation and apoptosis in the AC16 cell line and the related signaling pathways, which provided a new research direction of cardiovascular toxicity of PM2.5.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| |
Collapse
|
9
|
|
10
|
Kumar A, Cordes T, Thalacker-Mercer AE, Pajor AM, Murphy AN, Metallo CM. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep 2021; 36:109701. [PMID: 34525352 PMCID: PMC8500708 DOI: 10.1016/j.celrep.2021.109701] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.
Collapse
Affiliation(s)
- Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
12
|
Noor MN, Wu F, Sokolov EP, Falfushynska H, Timm S, Haider F, Sokolova IM. Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145195. [PMID: 33609850 DOI: 10.1016/j.scitotenv.2021.145195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Engineered nanoparticles including ZnO nanoparticles (nZnO) are important emerging pollutants in aquatic ecosystems creating potential risks to coastal ecosystems and associated biota. The toxicity of nanoparticles and its interaction with the important environmental stressors (such as salinity variation) are not well understood in coastal organisms and require further investigation. Here, we examined the interactive effects of 100 μg l-1 nZnO or dissolved Zn (as a positive control for Zn2+ release) and salinity (normal 15, low 5, and fluctuating 5-15) on bioenergetics and intermediate metabolite homeostasis of a keystone marine bivalve, the blue mussel Mytilus edulis from the Baltic Sea. nZnO exposures did not lead to strong disturbances in energy or intermediate metabolite homeostasis regardless of the salinity regime. Dissolved Zn exposures suppressed the mitochondrial ATP synthesis capacity and coupling as well as anaerobic metabolism and modified the free amino acid profiles in the mussels indicating that dissolved Zn is metabolically more damaging than nZnO. The environmental salinity regime strongly affected metabolic homeostasis and altered physiological and biochemical responses to nZnO or dissolved Zn in the mussels. Exposure to low (5) or fluctuating (5-15) salinity affected the physiological condition, energy metabolism and homeostasis, as well as amino acid metabolism in M. edulis. Generally, fluctuating salinity (5-15) appeared bioenergetically less stressful than constantly hypoosmotic stress (salinity 5) in M. edulis indicating that even short (24 h) periods of recovery might be sufficient to restore the metabolic homeostasis in this euryhaline species. Notably, the biological effects of nZnO and dissolved Zn became progressively less detectable as the salinity stress increased. These findings demonstrate that habitat salinity must be considered in the biomarker-based assessment of the toxic effects of nanopollutants on coastal organisms.
Collapse
Affiliation(s)
- Mirza Nusrat Noor
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
14
|
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021; 9:biomedicines9050489. [PMID: 33946782 PMCID: PMC8145363 DOI: 10.3390/biomedicines9050489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.
Collapse
|
15
|
Wu F, Sokolov EP, Dellwig O, Sokolova IM. Season-dependent effects of ZnO nanoparticles and elevated temperature on bioenergetics of the blue mussel Mytilus edulis. CHEMOSPHERE 2021; 263:127780. [PMID: 32814131 DOI: 10.1016/j.chemosphere.2020.127780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Input of ZnO nanoparticles (nZnO) from multiple sources have raised concerns about the potential toxic effects on estuarine and coastal organisms. The toxicity of nZnO and its interaction with common abiotic stressors (such as elevated temperature) are not well understood in these organisms. Here, we examined the bioenergetics responses of the blue mussel Mytilus edulis exposed for 21 days to different concentrations of nZnO or dissolved zinc (Zn2+) (0, 10, 100 μg l-1) and two temperatures (ambient and 5 °C warmer) in winter and summer. Exposure to nZnO had little effect on the protein and lipid levels, but led to a significant depletion of carbohydrates and a decrease in the electron transport system (ETS) activity. Qualitatively similar but weaker effects were found for dissolved Zn. In winter mussels, elevated temperature (15 °C) led to elevated protein and lipid levels increasing the total energy content of the tissues. In contrast, elevated temperature (20 °C) resulted in a decrease in the lipid and carbohydrate levels and suppressed ETS in summer mussels. These data indicate that moderate warming in winter (but not in summer) might partially compensate for the bioenergetics stress caused by nZnO toxicity in M. edulis from temperate areas such as the Baltic Sea.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research, Rostock, Warnemünde, Germany
| | - Olaf Dellwig
- Department of Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
16
|
Campos A, Pereira R, Vaz A, Caetano T, Malta M, Oliveira J, Carvalho FP, Mendo S, Lourenço J. Metals and low dose IR: Molecular effects of combined exposures using HepG2 cells as a biological model. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122634. [PMID: 32304850 DOI: 10.1016/j.jhazmat.2020.122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Uranium mining sites produce residues rich in metals and radionuclides, that may contaminate all environmental matrices, exposing human and non-human biota to low doses of ionizing radiation (LDIR) and to the chemical toxicity of several metals. To date, experimental and radio-epidemiological studies do not provide conclusive evidence of LDIR induced cancer. However, co-exposures (LDIR plus other contaminants), may increase the risks. To determine the potential for genotoxic effects in human cells induced by the exposure to LDIR plus metals, HEPG2 cells were exposed to different concentrations of a uranium mine effluent for 96 h. DNA damage was evaluated using the comet assay and changes in the expression of tumor suppressor and oncogenes were determined using qPCR. Results show that effluent concentrations higher than 5%, induce significant DNA damage. Also, a significant under-expression of ATM and TP53 genes and a significant overexpression of GADD45a gene was observed. Results show that the exposure to complex mixtures cannot be disregarded, as effects were detected at very low doses. This study highlights the need for further studies to clarify the risks of exposure to LDIR along with other stressors, to fully review the IR exposure risk limits established for human and non-human biota.
Collapse
Affiliation(s)
- A Campos
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - R Pereira
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; GreenUPorto- Sustainable Agrifood Production Research Centre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - A Vaz
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - T Caetano
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Piavchenko G, Alekseev A, Stelmashchuk O, Seryogina E, Zherebtsov E, Kuznetsova E, Dunaev A, Volkov Y, Kuznetsov S. A complex morphofunctional approach for zinc toxicity evaluation in rats. Heliyon 2020; 6:e03768. [PMID: 32337380 PMCID: PMC7177034 DOI: 10.1016/j.heliyon.2020.e03768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic activity causes the introduction of zinc compounds into the biological cycle in mining and processing sites and its accumulation in organs and tissues, causing systemic toxicity. A cumulative effect of zinc is predominantly neurotoxic and it also affects the respiratory, cardiovascular and digestive systems. This study evaluates the effects of single-dose intragastric administration of 100 mg/kg zinc succinate on the structure and function of organs and tissues in male Wistar rats 1 month after treatment. The presented morphofunctional approach for the toxicity evaluation included the study of behavioral responses using the automated Laboras® complex, fluorescent spectral analysis of the NADH and FAD activity and histological evaluation of animal organs and tissues. The results of the behavioral activity assessment showed a significant decrease in animals' motor activity, whereas the fluorescence spectra analysis demonstrated a decrease in coenzyme NADH without the reduction of FAD levels. We detected toxic and dystrophic changes in the cerebral cortex, heart, lungs and liver tissues. Our original multiparametric approach enables a comprehensive assessment of the long-term toxic effects of the metal salts such as zinc succinate, especially in the cerebral cortex at the doses much lower than the acute LD50 reported for the common zinc salts.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russian Federation
- Pharmaceutical R&D Enterprise “Retinoids”, Russian Federation
- Orel State University named after I.S. Turgenev, Russian Federation
| | | | | | | | - Evgeny Zherebtsov
- Orel State University named after I.S. Turgenev, Russian Federation
- University of Oulu, Finland
| | - Elena Kuznetsova
- Orel State University named after I.S. Turgenev, Russian Federation
| | - Andrey Dunaev
- Orel State University named after I.S. Turgenev, Russian Federation
- University of Oulu, Finland
| | - Yuri Volkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russian Federation
- School of Medicine and Trinity Translational Medicine Institute, The University of Dublin, Trinity College, Ireland
| | - Sergey Kuznetsov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russian Federation
| |
Collapse
|
18
|
Bi Q, Song X, Chen Y, Zheng Y, Yin P, Lei T. Zn-HA/Bi-HA biphasic coatings on Titanium: Fabrication, characterization, antibacterial and biological activity. Colloids Surf B Biointerfaces 2020; 189:110813. [PMID: 32018139 DOI: 10.1016/j.colsurfb.2020.110813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 11/24/2022]
Abstract
Hydroxyapatite (HA) coatings have been of important as biocompatible coatings for dental and bone tissue engineering application. However, the poor antibacterial performance and weak biological activity of HA coatings limited their clinical applications. As a strategy to improve the antibacterial performance and biological activity of HA, Zinc and bismuth ions were incorporated into HA lattice by substituting Ca2+ ions, respectively, and thus zinc substituted hydroxyapatite/bismuth substituted hydroxyapatite (Zn-HA/Bi-HA) biphasic coatings on titanium plates with various ratios were fabricated via sol-gel and dip-coating processes. The purity of the Zn-HA and Bi-HA phase was confirmed by X-ray diffraction (XRD) test. The biphasic coatings showed slower dissolution rate than pure HA coating. Furthermore, the Zn-HA/Bi-HA coatings reveal good biomineralization activity in simulated body fluid (SBF) by forming regular spherical apatite agglomerates. Moreover, the biphasic Zn-HA/Bi-HA coatings exhibited that improved antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared to pure HA coatings. The CCK-8 assays demonstrate Zn-HA/Bi-HA coatings showed no toxicity to MG63 cells, and the Zn-HA/Bi-HA2 (Zn-HA:Bi-HA=64:1) coating is more effective to enhance the proliferation of MG63 cells compared to other coatings. This finding suggests Zn-HA/Bi-HA biphasic coatings are promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Qing Bi
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xian Song
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yujia Chen
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yaping Zheng
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ping Yin
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Ting Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China.
| |
Collapse
|
19
|
Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun 2019; 521:50-56. [PMID: 31610916 DOI: 10.1016/j.bbrc.2019.10.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/06/2019] [Indexed: 01/20/2023]
Abstract
Osteoarthritis (OA) is characterized with articular cartilage degradation, and monosodium iodoacetate (MIA)-treated chondrocyte is the most commonly used model for mimicking OA progression. Zinc protects chondrocytes from MIA-induced damage. Here, we explored the protective effects of 25 μM zinc on 5 μM MIA-treated SW1353 cells (human chondrosarcoma cell line) through the analysis of energy metabolism- and autophagy-related parameters. We found that the exposure of SW1353 cells to MIA decreased ATP levels, expression of glycolysis-related proteins, including glucose transporter 1, hexokinase 2, and pyruvate dehydrogenase E1 component subunit alpha, and the levels of mitochondrial complex I, II, IV, and V subunits of the oxidative phosphorylation pathway. MIA treatment also decreased the expression of autophagy-related proteins, including autophagic elongation protein 5 (ATG5), ATG7, and microtubule-associated protein 1A/1B light chain 3B (LC3-II) and mitophagy-related proteins, including phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), ubiquitin, and p62. These results indicate that MIA interferes with energy metabolism and the autophagic clearance of dysfunctional mitochondria (so called mitophagy). Interestingly, zinc exposure could almost completely reverse the effects of MIA, suggesting its potential protective role against OA progression.
Collapse
|
20
|
Miao X, Li W, Niu B, Li J, Sun J, Qin M, Zhou Z. Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 2019; 39:1424-1432. [DOI: 10.1002/jat.3828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyan Miao
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Wenke Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Bingyu Niu
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jiangshuai Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jingjie Sun
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Mengnan Qin
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Zhixiang Zhou
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| |
Collapse
|
21
|
Ischia J, Bolton DM, Patel O. Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application. Metallomics 2019; 11:1330-1343. [PMID: 31204765 DOI: 10.1039/c9mt00079h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemia (interruption in the blood/oxygen supply) and subsequent damage induced by reperfusion (restoration of blood/oxygen supply) ultimately leads to cell death, tissue injury and permanent organ dysfunction. The impact of ischaemia reperfusion injury (IRI) is not limited to heart attack and stroke but can be extended to patients undergoing surgeries such as partial nephrectomy for renal cancer, liver resection for colorectal cancer liver metastasis, cardiopulmonary bypass, and organ transplantation. Unfortunately, there are no drugs that can protect organs against the inevitable peril of IRI. Recent data show that a protocol incorporating specific Zn formulation, dosage, number of dosages, time of injection, and mode of Zn delivery (intravenous) and testing of efficacy in a large preclinical sheep model of IRI strongly supports human trials of Zn preconditioning. No doubt, scepticism still exists among funding bodies and research fraternity on whether Zn, a naturally occurring metal, will work where everything else has failed. Therefore, in this article, we review the conflicting evidence on the promoter and protector role of Zn in the case of IRI and highlight factors that may help explain the contradictory evidence. Finally, we review the literature related to the knowledge of Zn's mechanism of action on ROS generation, apoptosis, HIF activation, inflammation, and signal transduction pathways, which highlight Zn's likelihood of success compared to various other interventions targeting IRI.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Damien M Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
22
|
Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.01967-18. [PMID: 30824435 PMCID: PMC6495748 DOI: 10.1128/aem.01967-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
While zinc is an essential trace metal in biology, excess zinc is toxic to organisms. Previous studies have shown that zinc toxicity is associated with disruption of the [4Fe-4S] clusters in various dehydratases in Escherichia coli Here, we report that the intracellular zinc overload in E. coli cells inhibits iron-sulfur cluster biogenesis without affecting the preassembled iron-sulfur clusters in proteins. Among the housekeeping iron-sulfur cluster assembly proteins encoded by the gene cluster iscSUA-hscBA-fdx-iscX in E. coli cells, the scaffold IscU, the iron chaperone IscA, and ferredoxin have strong zinc binding activity in cells, suggesting that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by binding to the iron-sulfur cluster assembly proteins. Mutations of the conserved cysteine residues to serine in IscA, IscU, or ferredoxin completely abolish the zinc binding activity of the proteins, indicating that zinc can compete with iron or iron-sulfur cluster binding in IscA, IscU, and ferredoxin and block iron-sulfur cluster biogenesis. Furthermore, intracellular zinc overload appears to emulate the slow-growth phenotype of the E. coli mutant cells with deletion of the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin. Our results suggest that intracellular zinc overload inhibits iron-sulfur cluster biogenesis by targeting the iron-sulfur cluster assembly proteins IscU, IscA, and ferredoxin in E. coli cells.IMPORTANCE Zinc toxicity has been implicated in causing various human diseases. High concentrations of zinc can also inhibit bacterial cell growth. However, the underlying mechanism has not been fully understood. Here, we report that zinc overload in Escherichia coli cells inhibits iron-sulfur cluster biogenesis by targeting specific iron-sulfur cluster assembly proteins. Because iron-sulfur proteins are involved in diverse physiological processes, the zinc-mediated inhibition of iron-sulfur cluster biogenesis could be largely responsible for the zinc-mediated cytotoxicity. Our finding provides new insights on how intracellular zinc overload may inhibit cellular functions in bacteria.
Collapse
|
23
|
Saravaia H, Gupta H, Popat P, Sodha P, Kulshrestha V. Single-Step Synthesis of Magnesium-Doped Lithium Manganese Oxide Nanosorbent and Their Polymer Composite Beads for Selective Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44059-44070. [PMID: 30489067 DOI: 10.1021/acsami.8b17141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Magnesium-doped lithium manganese oxide nanosorbent is prepared by a single-step solid-state method and characterized with appropriate analytical techniques, adsorption kinetic model, and isotherms. Competitive and noncompetitive adsorption studies are performed for a range of heavy metal ions. Prepared nanosorbent has shown explicit selectivity for various heavy metal ions and no remarkable influence of coexisting common interfering ions (Na+, K+, Mg2+, and Ca2+), which generally coexist with all natural sources of water, contaminated water, and industrial waste. To achieve easy handling of an adsorbent, polysulfone-nanosorbent (PS-nanosorbent) composite beads are prepared, and their competitive heavy metal removal performance is determined. Competitive adsorption and regeneration studies have shown that PS-nanosorbent beads can be employed for selective heavy metal removal and reuse for multiple cycles.
Collapse
Affiliation(s)
- Hitesh Saravaia
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) , Council of Scientific & Industrial Research (CSIR) , Gijubhai Badheka Marg, Bhavnagar 364002 , Gujarat , India
| | - Hariom Gupta
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) , Council of Scientific & Industrial Research (CSIR) , Gijubhai Badheka Marg, Bhavnagar 364002 , Gujarat , India
| | - Pooja Popat
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) , Council of Scientific & Industrial Research (CSIR) , Gijubhai Badheka Marg, Bhavnagar 364002 , Gujarat , India
| | - Parthrajsinh Sodha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) , Council of Scientific & Industrial Research (CSIR) , Gijubhai Badheka Marg, Bhavnagar 364002 , Gujarat , India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI) , Council of Scientific & Industrial Research (CSIR) , Gijubhai Badheka Marg, Bhavnagar 364002 , Gujarat , India
| |
Collapse
|
24
|
Mo J, Lin D, Wang J, Li P, Liu W. Apoptosis in HepG2 cells induced by zinc pyrithione via mitochondrial dysfunction pathway: Involvement of zinc accumulation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:515-525. [PMID: 29913420 DOI: 10.1016/j.ecoenv.2018.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/02/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Zinc pyrithione (ZPT) is widely used as a substitute booster biocide for tributyltin and is also an additive to antidandruff shampoos and medical cosmetic products. ZPT and pyrithione have been detected in different environmental matrices and biota, suggesting that it may pose health threats to aquatic organisms and even humans. The present study used HepG2 cells, a human hepatoma cell line, to study the hepatotoxicity of ZPT (0.1-5.0 μM). ZPT treatment caused marked viability reduction and induced apoptosis depending on its dose used. ZPT-induced apoptosis involved an increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, and enhanced caspase-9/-3 activity. In addition, a significant elevation in the amount of zinc ions and oxidative stress was evident. The involvement of these in ZPT-induced apoptosis was confirmed by toxicity comparison with analogs of ZPT and the observation that pretreatment with antioxidants afforded protection. Overall, these results suggest that ZPT induces zinc accumulation, oxidative stress, and subsequent apoptosis by causing mitochondrial dysfunction. Importantly, ROS was an initial and prolonged signal in ZPT-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Jiezhang Mo
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, HKSAR
| | - Derun Lin
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jingzhen Wang
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; College of Marine Sciences, Qinzhou University, Qinzhou, Guangxi 535000, PR China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Lab of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
25
|
Jara C, Aránguiz A, Cerpa W, Tapia-Rojas C, Quintanilla RA. Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol 2018; 18:279-294. [PMID: 30077079 PMCID: PMC6072970 DOI: 10.1016/j.redox.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Tau is a key protein for microtubule stability; however, post-translationally modified tau contributes to neurodegenerative diseases by forming tau aggregates in the neurons. Previous reports from our group and others have shown that pathological forms of tau are toxic and impair mitochondrial function, whereas tau deletion is neuroprotective. However, the effects of tau ablation on brain structure and function in young mice have not been fully elucidated. Therefore, the aim of this study was to investigate the implications of tau ablation on the mitochondrial function and cognitive abilities of a litter of young mice (3 months old). Our results showed that tau deletion had positive effects on hippocampal cells by decreasing oxidative damage, favoring a mitochondrial pro-fusion state, and inhibiting mitochondrial permeability transition pore (mPTP) formation by reducing cyclophilin D (Cyp-D) protein. More importantly, tau deletion increased ATP production and improved the recognition memory and attentive capacity of juvenile mice. Therefore, the absence of tau enhanced brain function by improving mitochondrial health, which supplied more energy to the synapses. Thus, our work opens the possibility that preventing negative tau modifications could enhance brain function through the improvement of mitochondrial health.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Alejandra Aránguiz
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| | | |
Collapse
|
26
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
27
|
Chen NN, Liu B, Xiong PW, Guo Y, He JN, Hou CC, Ma LX, Yu DY. Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology. Poult Sci 2018; 97:1120-1126. [PMID: 29325174 DOI: 10.3382/ps/pex400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 01/27/2023] Open
Abstract
The study was conducted to investigate whether high-dose zinc methionine (Zn-Met) affected the safety of laying hens, including laying performance, hematological parameters, serum chemical parameters, organ index, and histopathology. A total of 540 20-week-old Hy-Line White laying hens was randomly allocated to 6 groups with 6 replicates of 15 birds each. Birds were fed diets supplemented with 0 (control), 70, 140, 350, 700, or 1,400 mg Zn/kg diet as Zn-Met. The experiment lasted for 8 wk after a 2-week acclimation period. Results showed that dietary supplementation with 70 or 140 mg Zn/kg diet as Zn-Met significantly increased average daily egg mass (ADEM), laying rate (LR), and feed conversion ratio (FCR) (P < 0.05) and lowered broken and soft-shelled egg ratio (BSER) (P < 0.05) in comparison with the control group; no significant differences were detected among hens fed with 0, 350, or 700 mg Zn/kg as Zn-Met (P > 0.05); hens administered 1,400 mg Zn/kg showed a significant increase in BSER and remarkable decreases in ADEM, LR, and FCR (P < 0.001). There were no significant differences among hens receiving 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met in serum chemical parameters (P > 0.05); supplementation with 1,400 mg Zn/kg as Zn-Met remarkably elevated the concentrations of serum total bilirubin (TBILI), glucose (GLU), uric acid (UA), and creatinine (CRE) (P < 0.001), and enhanced activities of serum glutamic oxalacetic transaminase (GOP) and alkaline phosphatase (AKP) (P < 0.001) compared with the control group. No significant histopathological changes were found in hens administered 0, 70, 140, 350, or 700 mg Zn/kg as Zn-Met, while significant histological lesions were observed in the heart, liver, lung, and kidney tissues of hens receiving 1,400 mg Zn/kg as Zn-Met. No significant differences were detected in hematological parameters or organ index (P > 0.05). In conclusion, a nominal Zn concentration of 700 mg/kg as Zn-Met is considered to be no-observed-adverse-effect level following daily administration to hens for 56 days.
Collapse
Affiliation(s)
- N N Chen
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - B Liu
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - P W Xiong
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - Y Guo
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - J N He
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - C C Hou
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - L X Ma
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| | - D Y Yu
- Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture, Feed Science Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Park M, Cho YJ, Lee YW, Jung WH. Understanding the Mechanism of Action of the Anti-Dandruff Agent Zinc Pyrithione against Malassezia restricta. Sci Rep 2018; 8:12086. [PMID: 30108245 PMCID: PMC6092343 DOI: 10.1038/s41598-018-30588-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
Dandruff is known to be associated with Malassezia restricta. Zinc pyrithione (ZPT) has been used as an ingredient in anti-dandruff treatments. The mechanism of ZPT has been investigated in several studies; however, a non-pathogenic model yeast, such as Saccharomyces cerevisiae was most often used. The aim of the present study was to understand how ZPT inhibits the growth of M. restricta. We analyzed the cellular metal content and transcriptome profile of ZPT-treated M. restricta cells and found that ZPT treatment dramatically increased cellular zinc levels, along with a small increase in cellular copper levels. Moreover, our transcriptome analysis showed that ZPT inhibits Fe-S cluster synthesis in M. restricta. We also observed that ZPT treatment significantly reduced the expression of lipases, whose activities contribute to the survival and virulence of M. restricta on human skin. Therefore, the results of our study suggest that at least three inhibitory mechanisms are associated with the action of ZPT against M. restricta: (i) an increase in cellular zinc levels, (ii) inhibition of mitochondrial function, and (iii) a decrease in lipase expression.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea
| | - Yong-Joon Cho
- Korea Polar Research Institute, Incheon, 21990, Korea
| | - Yang Won Lee
- Department of Dermatology, School of Medicine, Konkuk University, Seoul, 05029, Korea. .,Research Institute of Medicine, Konkuk University, Seoul, 05029, Korea.
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea.
| |
Collapse
|
29
|
Fudge DH, Black R, Son L, LeJeune K, Qin Y. Optical Recording of Zn 2+ Dynamics in the Mitochondrial Matrix and Intermembrane Space with the GZnP2 Sensor. ACS Chem Biol 2018; 13:1897-1905. [PMID: 29912548 DOI: 10.1021/acschembio.8b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zinc ion (Zn2+) is emerging as an important signaling molecule. Here, we engineered an improved Zn2+ probe GZnP2 based on a previously developed fluorescent sensor GZnP1 to provide a higher fluorescent readout (2-fold higher) that is proportional to cellular labile Zn2+ concentrations. We further developed a set of GZnP2 derived imaging tools to determine the labile Zn2+ concentrations in the mitochondrial matrix, mitochondrial intermembrane space (IMS), and cytosol in four different cell lines (HeLa, Cos-7, HEK293, and INS-1). The labile Zn2+ concentration in the matrix was less than 1 pM, while the labile Zn2+ concentration in the IMS was comparable to the cytosol (∼100 pM). With these sensors, we showed that upon exposure to high Zn2+, only the cytosol and the IMS were overloaded with Zn2+, while the mitochondrial matrix was unable to sequester excess labile Zn2+ in depolarized INS-1 cells. This work highlighted the importance of distinguishing the labile Zn2+ concentrations and dynamics between the mitochondrial matrix and IMS.
Collapse
Affiliation(s)
- Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Raymond Black
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Lea Son
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Kate LeJeune
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
30
|
Degirmenci S, Olgar Y, Durak A, Tuncay E, Turan B. Cytosolic increased labile Zn 2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. J Trace Elem Med Biol 2018; 48:202-212. [PMID: 29773183 DOI: 10.1016/j.jtemb.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023]
Abstract
Intracellular labile (free) Zn2+-level ([Zn2+]i) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn2+]i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn2+]i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn2+]i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn2+]i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn2+]i induced inhibitions in voltage-dependent K+-channel currents, such as transient outward K+-currents, Ito, steady-state currents, Iss and inward-rectifier K+-currents, IK1, reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both Iss and IK1, while no effect on Ito. However, the increased-[Zn2+]i could induce marked activation in ATP-sensitive K+-channel currents, IKATP, depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn2+]i with no change in mRNA level of Kv4.2, while the mRNA level of IKATP subunit, SUR2A was increased significantly with increased-[Zn2+]i, being reversible with DTT. Overall we demonstrated that high-[Zn2+]i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K+-currents, although activation of IKATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn2+]i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress.
Collapse
Affiliation(s)
- Sinan Degirmenci
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
31
|
Wetherell D, Baldwin GS, Shulkes A, Bolton D, Ischia J, Patel O. Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α. Oncotarget 2018; 9:8463-8477. [PMID: 29492208 PMCID: PMC5823553 DOI: 10.18632/oncotarget.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc ions (Zn2+) are known to influence cell survival and proliferation. However the homeostatic regulation of Zn2+ and their role in prostate cancer (PC) progression is poorly understood. Therefore the subcellular distribution and uptake of Zn2+ in PC cells were investigated. Inductively coupled plasma mass spectroscopy and fluorescent microscopy with the Zn2+-specific fluorescent probe FluoZin-3 were used to quantify total and free Zn2+, respectively, in the normal prostate epithelial cell line (PNT1A) and three human PC cell lines (PC3, DU145 and LNCaP). The effects of Zn2+ treatment on proliferation and survival were measured in vitro using MTT assays and in vivo using mouse xenografts. The ability of Zn2+ to protect against oxidative stress via a HIF1α-dependent mechanism was investigated using a HIF1α knock-down PC3 model. Our results demonstrate that the total Zn2+ concentration in normal PNT1A and PC cells is similar, but PC3 cells contain significantly higher free Zn2+ than PNT1A cells (p < 0.01). PNT1A cells can survive better in the presence of high concentrations of Zn2+ than PC3 cells. Exposure to 10 µM Zn2+ over 72 hours significantly reduces PC3 cell proliferation in vitro but not in vivo. Zn2+ increases PC3 cell survival up to 2.3-fold under oxidative stress, and this protective effect is not seen in PNT1A cells or in a HIF1α-KD PC3 cell model. A state of Zn2+ dyshomeostasis exists in PC. HIF1α is an integral component of a Zn2+-dependent protective mechanism present in PC3 cells. This pathway may be clinically significant through its contribution to castrate-resistant PC survival.
Collapse
Affiliation(s)
- David Wetherell
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Arthur Shulkes
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Damien Bolton
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Joseph Ischia
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Oneel Patel
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
32
|
Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc Natl Acad Sci U S A 2018; 115:E478-E487. [PMID: 29295921 DOI: 10.1073/pnas.1711950115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity, cancer, and trauma. We report here that human lymphocytes [B cells, T cells, natural killer (NK) cells], monocytes, and neutrophils derived from healthy blood donors, as well as B cells from chronic lymphocytic leukemia patients, rapidly eject mtDNA as web filament structures upon recognition of CpG and non-CpG oligodeoxynucleotides of class C. The release was quenched by ZnCl2, independent of cell death (apoptosis, necrosis, necroptosis, autophagy), and continued in the presence of TLR9 signaling inhibitors. B-cell mtDNA webs were distinct from neutrophil extracellular traps concerning structure, reactive oxygen species (ROS) dependence, and were devoid of antibacterial proteins. mtDNA webs acted as rapid (within minutes) messengers, priming antiviral type I IFN production. In summary, our findings point at a previously unrecognized role for lymphocytes in antimicrobial defense, utilizing mtDNA webs as signals in synergy with cytokines and natural antibodies, and cast light on the interplay between mitochondria and the immune system.
Collapse
|
33
|
Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD. Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol 2017; 123:798-809. [PMID: 28609580 DOI: 10.1111/jam.13509] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
Bacteria have survived, and many have thrived, since antiquity in the presence of the highly-reactive chalcogen-oxygen (O2 ). They are known to evoke intricate strategies to defend themselves from the reactive by-products of oxygen-reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)-cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH-the reductive engine of many ROS-combating enzymes-is maintained by metabolic enzymes including, but not exclusively, glucose-6 phosphate dehydrogenase (G6PDH) and NADP-dependent isocitrate dehydrogenase (ICDH-NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro-oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids-moieties capable of non-enzymatic decarboxylation in the presence of oxidants-as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid-mediated detoxification of the ROS will be commented on within the context of oxidative stress.
Collapse
Affiliation(s)
- J Lemire
- The Biofilm Research Group, The Department of Biological Sciences, The University of Calgary, Calgary, AB, Canada
| | - A Alhasawi
- Faculty of Science & Engineering, Laurentian University, Sudbury, ON, Canada
| | - V P Appanna
- Faculty of Science & Engineering, Laurentian University, Sudbury, ON, Canada
| | - S Tharmalingam
- Faculty of Science & Engineering, Laurentian University, Sudbury, ON, Canada
| | - V D Appanna
- Faculty of Science & Engineering, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
34
|
|
35
|
Textural, Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations. MATERIALS 2017; 10:ma10030229. [PMID: 28772589 PMCID: PMC5503371 DOI: 10.3390/ma10030229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 01/04/2023]
Abstract
The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out.
Collapse
|
36
|
Huang CW, Li SW, Hsiu-Chuan Liao V. Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1456-1464. [PMID: 27839994 DOI: 10.1016/j.envpol.2016.10.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 05/29/2023]
Abstract
ZnO nanoparticles (ZnO-NPs) are emerging contaminants that raise the concerns of potential risk in the aquatic environment. It has been estimated that the environmental ZnO-NPs concentration is 76 μg/l in the aquatic environment. Our aim was to determine the aquatic toxicity of ZnO-NPs with chronic exposure at environmentally relevant concentrations using the nematode Caenorhabditis elegans. Two simulated environmentally relevant mediums-moderately hard reconstituted water (EPA water) and simulated soil pore water (SSPW)-were used to represent surface water and pore water in sediment, respectively. The results showed that the ZnO-NPs in EPA water has a much smaller hydrodynamic diameter than that in SSPW. Although the ionic release of Zn ions increased time-dependently in both mediums, the Zn ions concentrations in EPA water increased two-fold more than that in SSPW at 48 h and 72 h. The ZnO-NPs did not induce growth defects or decrease head thrashes in C. elegans in either media. However, chronic exposure to ZnO-NPs caused a significant reduction in C. elegans body bends in EPA water even with a relatively low concentration (0.05 μg/l); similar results were not observed in SSPW. Moreover, at the same concentrations (50 and 500 μg/l), body bends in C. elegans were reduced more severely in ZnO-NPs than in ZnCl2 in EPA water. The ATP levels were consistently and significantly decreased, and ROS was induced after ZnO-NPs exposure (50 and 500 μg/l) in EPA water. Our results provide evidences that chronic exposure to ZnO-NPs under environmentally relevant concentrations causes metabolic and locomotive toxicities implicating the potential ecotoxicity of ZnO-NPs at low concentrations in aquatic environments.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Shang-Wei Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
37
|
Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta. Sci Rep 2016; 6:38716. [PMID: 27934965 PMCID: PMC5146659 DOI: 10.1038/srep38716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
Collapse
|
38
|
Chevallet M, Gallet B, Fuchs A, Jouneau PH, Um K, Mintz E, Michaud-Soret I. Metal homeostasis disruption and mitochondrial dysfunction in hepatocytes exposed to sub-toxic doses of zinc oxide nanoparticles. NANOSCALE 2016; 8:18495-18506. [PMID: 27782264 DOI: 10.1039/c6nr05306h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increased production and use of zinc oxide nanoparticles (ZnO-NPs) in consumer products has prompted the scientific community to investigate their potential toxicity, and understand their impact on the environment and organisms. Molecular mechanisms involved in ZnO-NP toxicity are still under debate and focus essentially on high dose expositions. In our study, we chose to evaluate the effect of sub-toxic doses of ZnO-NPs on human hepatocytes (HepG2) with a focus on metal homeostasis and redox balance disruptions. We showed massive dissolution of ZnO-NPs outside the cell, transport and accumulation of zinc ions inside the cell but no evidence of nanoparticle entry, even when analysed by high resolution TEM microscopy coupled with EDX. Gene expression analysis highlighted zinc homeostasis disruptions as shown by metallothionein 1X and zinc transporter 1 and 2 (ZnT1, ZnT2) over-expression. Major oxidative stress response genes, such as superoxide dismutase 1, 2 and catalase were not induced. Phase 2 enzymes in term of antioxidant response, such as heme oxygenase 1 (HMOX1) and the regulating subunit of the glutamate-cysteine ligase (GCLM) were slightly upregulated, but these observations may be linked solely to metal homeostasis disruptions, as these actors are involved in both metal and ROS responses. Finally, we observed abnormal mitochondria morphologies and autophagy vesicles in response to ZnO-NPs, indicating a potential role of mitochondria in storing and protecting cells from zinc excess but ultimately causing cell death at higher doses.
Collapse
Affiliation(s)
- M Chevallet
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249, Grenoble, France. and CEA, BIG, LCBM, Grenoble, France. and Université Grenoble Alpes, LCBM, Grenoble, France
| | - B Gallet
- Université Grenoble Alpes, IBS, Grenoble, France and CNRS, IBS, Grenoble, France and CEA, IBS, Grenoble, France
| | - A Fuchs
- CEA, BIG, DIR, Grenoble, France
| | - P H Jouneau
- CEA, INAC, Minatec campus, Grenoble, France and Université Grenoble Alpes, INAC-MEM-LEMMA, Grenoble, France
| | - K Um
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249, Grenoble, France. and CEA, BIG, LCBM, Grenoble, France. and Université Grenoble Alpes, LCBM, Grenoble, France
| | - E Mintz
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249, Grenoble, France. and CEA, BIG, LCBM, Grenoble, France. and Université Grenoble Alpes, LCBM, Grenoble, France
| | - I Michaud-Soret
- CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), UMR 5249, Grenoble, France. and CEA, BIG, LCBM, Grenoble, France. and Université Grenoble Alpes, LCBM, Grenoble, France
| |
Collapse
|
39
|
Del Pozo T, Gutiérrez-Garcia R, Latorre M, González M, Suazo M. Identification of reference genes for quantitative real-time PCR studies in human cell lines under copper and zinc exposure. Biometals 2016; 29:935-44. [PMID: 27567902 DOI: 10.1007/s10534-016-9965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/31/2016] [Indexed: 12/18/2022]
Abstract
Accurate quantification depends on normalization of the measured gene expression data. In particular, gene expression studies with exposure to metals are challenging due their toxicity and redox-active properties. Here, we assessed the stability of potential reference genes in three cell lines commonly used to study metal cell metabolism: Caco-2 (colon), HepG2 (liver) and THP-1 (peripheral blood) under copper (Cu) or zinc (Zn) exposure. We used combined statistical tools to identify the best reference genes from a set of eleven candidates, which included traditional "housekeeping" genes such as GAPDH and B-ACTIN, in cell lines exposed to high and low, Zn and Cu concentrations. The expression stabilities of ATP5B (ATP synthase) and CYC1 (subunits of the cytochrome) were the highest considering the effect of Zn and Cu treatments whereas SDHA (succinate dehydrogenase) was found to be the most unstable gene. Even though the transcriptional effect of Zn and Cu is very different in term of redox properties, the same best reference genes were identified when Zn or Cu treatments were analyzed together. Our results indicate that ATP5B/CYC1 are the best candidates for reference genes after metal exposure, which can be used as a suitable starting point to evaluate gene expression with other metals or in different cell types in human models.
Collapse
Affiliation(s)
- Talía Del Pozo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.
| | - Ricardo Gutiérrez-Garcia
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation, Universidad de Chile, Santiago, Chile
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Miriam Suazo
- Nutrition and Dietetics, Faculty of Health Sciences, San Sebastian University, Valdivia, Chile
| |
Collapse
|
40
|
Kunjara S, McLean P, Rademacher L, Rademacher TW, Fascilla F, Bettocchi S, Scioscia M. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia. Int J Endocrinol 2016; 2016:7695648. [PMID: 27738431 PMCID: PMC5050364 DOI: 10.1155/2016/7695648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease.
Collapse
Affiliation(s)
- Sirilaksana Kunjara
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | - Patricia McLean
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | - Fabiana Fascilla
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Bettocchi
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Scioscia
- Department of Obstetrics and Gynecology, Sacro Cuore Don Calabria, Negrar, Verona, Italy
- *Marco Scioscia:
| |
Collapse
|
41
|
Aude-Garcia C, Villiers F, Collin-Faure V, Pernet-Gallay K, Jouneau PH, Sorieul S, Mure G, Gerdil A, Herlin-Boime N, Carrière M, Rabilloud T. Differentin vitroexposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology 2015; 10:586-96. [DOI: 10.3109/17435390.2015.1104738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
McCormick NH, Lee S, Hennigar SR, Kelleher SL. ZnT4 (SLC30A4)-null ("lethal milk") mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R33-40. [PMID: 26538236 DOI: 10.1152/ajpregu.00315.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2015] [Indexed: 02/01/2023]
Abstract
During lactation, highly specialized secretory mammary epithelial cells (MECs) produce and secrete huge quantities of nutrients and nonnutritive factors into breast milk. The zinc (Zn) transporter ZnT4 (SLC30A4) transports Zn into the trans-Golgi apparatus for lactose synthesis, and across the apical cell membrane for efflux from MECs into milk. This is consistent with observations in "lethal milk" (lm/lm) mice, which have a truncation mutation in SLC30A4, and present with not only low milk Zn concentration, but also smaller mammary glands, decreased milk volume, and lactation failure by lactation day 2. However, the molecular underpinnings of these defects are not understood. Here, we used lactating C57BL/6J(lm/lm) (ZnT4-null) mice to explore the consequences of a ZnT4-null phenotype on mammary gland function during early lactation. Lactating C57BL/6J(lm/lm) mice had significantly fewer, smaller, and collapsed alveoli comprising swollen, lipid-filled MECs during early lactation. These defects were associated with decreased Akt expression and STAT5 activation, indicative of defects in MEC secretion. In addition, increased expression of ZnT2, TNF-α, and cleaved e-cadherin concomitant with increased activation of STAT3 implicated the loss of ZnT4 in precocious activation of involution. Collectively, our study indicates that the loss of ZnT4 has profound consequences on MEC secretion and may promote tissue remodeling in the mammary gland during early lactation.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Sooyeon Lee
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Shannon L Kelleher
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania; Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania; Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania; and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
43
|
Luche S, Eymard-Vernain E, Diemer H, Van Dorsselaer A, Rabilloud T, Lelong C. Zinc oxide induces the stringent response and major reorientations in the central metabolism of Bacillus subtilis. J Proteomics 2015. [PMID: 26211718 DOI: 10.1016/j.jprot.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microorganisms, such as bacteria, are one of the first targets of nanoparticles in the environment. In this study, we tested the effect of two nanoparticles, ZnO and TiO2, with the salt ZnSO4 as the control, on the Gram-positive bacterium Bacillus subtilis by 2D gel electrophoresis-based proteomics. Despite a significant effect on viability (LD50), TiO2 NPs had no detectable effect on the proteomic pattern, while ZnO NPs and ZnSO4 significantly modified B. subtilis metabolism. These results allowed us to conclude that the effects of ZnO observed in this work were mainly attributable to Zn dissolution in the culture media. Proteomic analysis highlighted twelve modulated proteins related to central metabolism: MetE and MccB (cysteine metabolism), OdhA, AspB, IolD, AnsB, PdhB and YtsJ (Krebs cycle) and XylA, YqjI, Drm and Tal (pentose phosphate pathway). Biochemical assays, such as free sulfhydryl, CoA-SH and malate dehydrogenase assays corroborated the observed central metabolism reorientation and showed that Zn stress induced oxidative stress, probably as a consequence of thiol chelation stress by Zn ions. The other patterns affected by ZnO and ZnSO4 were the stringent response and the general stress response. Nine proteins involved in or controlled by the stringent response showed a modified expression profile in the presence of ZnO NPs or ZnSO4: YwaC, SigH, YtxH, YtzB, TufA, RplJ, RpsB, PdhB and Mbl. An increase in the ppGpp concentration confirmed the involvement of the stringent response during a Zn stress. All these metabolic reorientations in response to Zn stress were probably the result of complex regulatory mechanisms including at least the stringent response via YwaC.
Collapse
Affiliation(s)
- Sylvie Luche
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Elise Eymard-Vernain
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Thierry Rabilloud
- Pro-MD team, UMR CNRS 5249, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Cécile Lelong
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France.
| |
Collapse
|
44
|
Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 2015; 3:40. [PMID: 26161384 PMCID: PMC4479819 DOI: 10.3389/fcell.2015.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated.
Collapse
Affiliation(s)
- Christopher Auger
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Azhar Alhasawi
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Manuraj Contavadoo
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Vasu D Appanna
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| |
Collapse
|
45
|
Alam MA, Wan C, Zhao XQ, Chen LJ, Chang JS, Bai FW. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:38-45. [PMID: 25704433 DOI: 10.1016/j.jhazmat.2015.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems.
Collapse
Affiliation(s)
- Md Asraful Alam
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chun Wan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xin-Qing Zhao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Li-Jie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, University Center for Bioscience and Biotechnology and Research for Energy Technology and Strategy Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Relationship between Zinc (Zn (2+) ) and Glutamate Receptors in the Processes Underlying Neurodegeneration. Neural Plast 2015; 2015:591563. [PMID: 26106488 PMCID: PMC4461779 DOI: 10.1155/2015/591563] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimer's, Huntington's, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn(2+) is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn(2+) dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn(2+) regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn(2+) and glutamate dependent signaling pathways under selected pathological central nervous system (CNS) conditions.
Collapse
|
47
|
Long SM, Tull DL, Jeppe KJ, De Souza DP, Dayalan S, Pettigrove VJ, McConville MJ, Hoffmann AA. A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:54-65. [PMID: 25781392 DOI: 10.1016/j.aquatox.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Measuring biological responses in resident biota is a commonly used approach to monitoring polluted habitats. The challenge is to choose sensitive and, ideally, stressor-specific endpoints that reflect the responses of the ecosystem. Metabolomics is a potentially useful approach for identifying sensitive and consistent responses since it provides a holistic view to understanding the effects of exposure to chemicals upon the physiological functioning of organisms. In this study, we exposed the aquatic non-biting midge, Chironomus tepperi, to two concentrations of zinc chloride and measured global changes in polar metabolite levels using an untargeted gas chromatography-mass spectrometry (GC-MS) analysis and a targeted liquid chromatography-mass spectrometry (LC-MS) analysis of amine-containing metabolites. These data were correlated with changes in the expression of a number of target genes. Zinc exposure resulted in a reduction in levels of intermediates in carbohydrate metabolism (i.e., glucose 6-phosphate, fructose 6-phosphate and disaccharides) and an increase in a number of TCA cycle intermediates. Zinc exposure also resulted in decreases in concentrations of the amine containing metabolites, lanthionine, methionine and cystathionine, and an increase in metallothionein gene expression. Methionine and cystathionine are intermediates in the transsulfuration pathway which is involved in the conversion of methionine to cysteine. These responses provide an understanding of the pathways affected by zinc toxicity, and how these effects are different to other heavy metals such as cadmium and copper. The use of complementary metabolomics analytical approaches was particularly useful for understanding the effects of zinc exposure and importantly, identified a suite of candidate biomarkers of zinc exposure useful for the development of biomonitoring programs.
Collapse
Affiliation(s)
- Sara M Long
- Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052, Australia.
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052, Australia.
| | - Katherine J Jeppe
- Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052, Australia; Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010, Australia.
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052, Australia.
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052, Australia.
| | - Vincent J Pettigrove
- Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010, Australia.
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052, Australia.
| | - Ary A Hoffmann
- Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052, Australia; School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052, Australia.
| |
Collapse
|
48
|
Prakash A, Bharti K, Majeed ABA. Zinc: indications in brain disorders. Fundam Clin Pharmacol 2015; 29:131-49. [PMID: 25659970 DOI: 10.1111/fcp.12110] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
Collapse
Affiliation(s)
- Atish Prakash
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Malaysia; Department of Pharmacology, ISF college of Pharmacy, Ghal kalan, Moga, 142-001, India; Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, 42300, Malaysia
| | | | | |
Collapse
|
49
|
Abd El-Moneim D, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C. On the consequences of aluminium stress in rye: repression of two mitochondrial malate dehydrogenase mRNAs. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:123-33. [PMID: 24946232 DOI: 10.1111/plb.12219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/29/2014] [Indexed: 05/23/2023]
Abstract
Plants have developed several external and internal aluminium (Al) tolerance mechanisms. The external mechanism best characterised is the exudation of organic acids induced by Al. Rye (Secale cereale L.), one of the most Al-tolerant cereal crops, secretes both citrate and malate from its roots in response to Al. However, the role of malate dehydrogenase (MDH) genes in Al-induced stress has not been studied in rye. We have isolated the ScMDH1 and ScMDH2 genes, encoding two different mitochondrial MDH isozymes, in three Al-tolerant rye cultivars (Ailés, Imperial and Petkus) and one sensitive inbred rye line (Riodeva). These genes, which have seven exons and six introns, were located on the 1R (ScMDH1) and 3RL (ScMDH2) chromosomes. Exon 1 of ScMDH1 and exon 7 of ScMDH2 were the most variable among the different ryes. The hypothetical proteins encoded by these genes were classified as putative mitochondrial MDH isoforms. The phylogenetic relationships obtained using both cDNA and protein sequences indicated that the ScMDH1 and ScMDH2 proteins are orthologous to mitochondrial MDH1 and MDH2 proteins of different Poaceae species. The expression studies of the ScMDH1 and ScMDH2 genes indicate that it is more intense in roots than in leaves. Moreover, the amount of their corresponding mRNAs in roots from plants treated and not treated with Al was higher in the tolerant cultivar Petkus than in the sensitive inbred line Riodeva. In addition, ScMDH1 and ScMDH2 mRNA levels decreased in response to Al stress (repressive behaviour) in the roots of both the tolerant Petkus and the sensitive line Riodeva.
Collapse
Affiliation(s)
- D Abd El-Moneim
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Thomas SC, Alhasawi A, Appanna VP, Auger C, Appanna VD. Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy. J Nutr Health Aging 2015; 19:58-63. [PMID: 25560817 DOI: 10.1007/s12603-014-0511-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is one of the most energy-demanding organs in the body. It has evolved intricate metabolic networks to fulfill this need and utilizes a variety of substrates to generate ATP, the universal energy currency. Any disruption in the supply of energy results in various abnormalities including Alzheimer's disease (AD), a condition with markedly diminished cognitive ability. Astrocytes are an important participant in maintaining the cerebral ATP budget. However, under oxidative stress induced by numerous factors including aluminum toxicity, the ability of astroctyes to generate ATP is impaired due to dysfunctional mitochondria. This leads to globular, glycolytic, lipogenic and ATP-deficient astrocytes, cerebral characteristics common in AD patients. The reversal of these perturbations by such natural metabolites as pyruvate, α-ketoglutarate, acetoacetate and L-carnitine provides valuable therapeutic cues against AD.
Collapse
Affiliation(s)
- S C Thomas
- Vasu D. Appanna, Faculty of Science and Engineering, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada. Phone: (705) 675-1151, ext. 2112, Fax: (705) 675-4844. E-mail:
| | | | | | | | | |
Collapse
|