1
|
Veltman CHJ, van der Ven LTM, Menegola E, Luijten M. A pragmatic workflow for human relevance assessment of toxicological pathways and associated new approach methodologies. Regul Toxicol Pharmacol 2025; 160:105828. [PMID: 40228575 DOI: 10.1016/j.yrtph.2025.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Currently, safety assessments of chemical substances are predominantly based on animal data. Multiple considerations call for the use of alternative testing strategies that are based on new approach methodologies (NAMs). However, the human relevance of these testing strategies is usually uncertain. This necessitates a harmonized and accepted workflow for assessing their applicability for regulatory purposes. This report proposes such a workflow, applicable for assessing the human relevance of a toxicological pathway and the relevance of NAMs related to the different components of the pathway. The workflow starts with an established toxicological pathway, of which the adverse outcome is relevant for human health risk assessment and that has sufficient weight of evidence. Human relevance is assessed through three main questions, related to the different components (steps) of the pathway, the pathology of human syndromes that have a similar adverse outcome, and quantitative aspects. The latter comprise both interspecies differences and in vitro - in vivo differences. The combined evidence is scored as 'strong', 'moderate' or 'weak' support of human relevance, based on expert judgement. The workflow developed was tested in a case study, through application to an AOP describing craniofacial malformations after in utero exposure to triazoles. Based on evidence collected for two of the three main questions, the case study provided moderate to strong support for human relevance of both the various components of the AOP and its associated NAMs. Furthermore, it demonstrated that the workflow is a promising approach that allows for a more transparent scientific evaluation of human relevance of toxicological pathways and associated NAMs. Therefore, despite some areas for improvement, we consider the workflow an important step forward for application of AOPs and related NAMs in human health risk assessment.
Collapse
Affiliation(s)
- Christina H J Veltman
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elena Menegola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
2
|
Kirman CR, Boysen G, DiNovi MJ, Roy R, Sonawane BR, Hays SM. Human health risk assessment for exposures to 1,3-butadiene in the United States with input from an independent science advisory panel. Regul Toxicol Pharmacol 2025; 160:105819. [PMID: 40204065 DOI: 10.1016/j.yrtph.2025.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
A human health risk assessment was conducted for potential cancer and noncancer effects of 1,3-butadiene (BD) using best available science, data, and methodologies. An independent panel of experts was engaged to provide input and guidance on key decisions made in the quantitative assessment. BD biomarker data played an important role in quantifying species differences, human variation, and quantifying smoking exposures. The assessment included consideration of nineteen scenarios for potential worker exposures, each of which include characterization of the impact of respirator use, and seven scenarios for aggregate exposures to BD across pathways. Monte Carlo methods were used to characterize uncertainty and variation risks and hazards from exposures to BD. The results of this assessment support three general conclusions: (1) ambient air is generally not an important source of BD exposure to the U.S. population when compared to other sources; (2) exposures to BD in the US are not expected to pose an unreasonable risk of cancer or noncancer effects; and (3) the existing OSHA PEL of 1 ppm is considered to be protective of the potential cancer risks and noncancer hazards from BD exposures.
Collapse
Affiliation(s)
| | - G Boysen
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M J DiNovi
- DiNovi Regulatory Associates, Baltimore, MD, USA
| | - R Roy
- Northland Toxicology Consultants, Chanhassen, MN, USA
| | - B R Sonawane
- Toxicology and Risk Assessment Consulting Services, Newberry, FL, USA
| | | |
Collapse
|
3
|
Yano J, Kawamoto K, Shimotsuma Y, Matsunaga K, Abe J, Fukunaga S, Osimitz TG, Lake BG, Asano H. Mode of action analysis for rat thyroid gland follicular cell tumor formation by MGK-264 and human relevance. Regul Toxicol Pharmacol 2025; 160:105834. [PMID: 40315979 DOI: 10.1016/j.yrtph.2025.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
MGK-264 (N-(2-ethylhexyl)-5-norborene-2.3-dicarboximide or N-octyl bicycloheptene dicarboximide), an insecticidal synergist, produced thyroid gland follicular cell (TFC) tumors in male Sprague-Dawley (SD) rats in a carcinogenicity study. The purpose of this study was to evaluate the possible mode of action (MoA) for TFC tumor induction by MGK-264 and its relevance to humans. In short-term in vivo studies, the treatment of male SD rats with MGK-264 resulted in induction of hepatic UDPglucuronosyltransferase (UGT) activity towards thyroxine (T4) as substrate (UGT activity), a decrease in serum T4 levels, an increase in serum thyroid stimulating hormone levels, and TFC hypertrophy at MGK-264 dose levels where TFC tumors were noted in the carcinogenicity study. Other possible MoAs such as genotoxicity, thyroperoxidase inhibition, and sodium/iodide symporter inhibition were excluded. Therefore, it is reasonable to conclude that MGK-264 has mitogenic activity on TFCs via induction of hepatic UGT activity followed by perturbation of the hypothalamus-pituitary-thyroid axis, similar to other hepatic xenobiotic enzyme inducers like phenobarbital. Literature data demonstrates that there are marked species differences between rats and humans in the effects of hepatic xenobiotic enzyme inducers on thyroid hormones and the thyroid gland. Overall, the proposed MoA for MGK-264-induced rat TFC tumor formation is considered quantitatively not plausible for humans.
Collapse
Affiliation(s)
- Junji Yano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan.
| | - Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Yukako Shimotsuma
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Kohei Matsunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | | | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| |
Collapse
|
4
|
Melching-Kollmuss S, Sauer UG, Gatto V, Stinchcombe S, Tinwell H. A proposal of criteria to support the EU classification on endocrine disruption for the thyroid modality and their application to four data-rich case studies. Arch Toxicol 2025:10.1007/s00204-025-04037-9. [PMID: 40347277 DOI: 10.1007/s00204-025-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/19/2025] [Indexed: 05/12/2025]
Abstract
Recently, the European Commission has implemented hazard categories to classify substances as endocrine disruptors for human health, i.e. ED HH 1 or ED HH 2, depending on the weight-of-evidence. However, specific guidance on how to differentiate between the two is unavailable. This article presents the CropLife Europe (CLE) proposal for a structured approach to support the ED HH classification for the thyroid modality. Further, the Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS) has been modified in view of the new classification. Application of the CLE proposal and the modified Thyroid-NDT-TAS is illustrated in four case studies covering active substances in plant protection products that showed thyroid- and liver-related effects in laboratory animal studies (pyrimethanil, boscalid, metribuzin, ethiprole). For all four substances, there is strong and consistent evidence that the thyroid-related endocrine activity in rats is liver enzyme induction-mediated, a mode-of-action that is of questionable relevance to humans. In vitro species comparisons (unavailable for pyrimethanil) further confirm non-relevance to humans. However, pyrimethanil (and boscalid) did not elicit developmental neurotoxicity in rats. For pyrimethanil, boscalid and ethiprole, the overall weight-of-evidence determination yields the conclusion "no ED HH via the thyroid modality". For metribuzin, category ED HH 2 may be triggered due to uncertainties related to its database. The case studies underline that expert judgement is required to assess overall effect patterns, to balance the available evidence and to conclude on classification as ED HH 1, ED HH 2 or no ED HH via the thyroid modality.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy, Animal Welfare, Neubiberg, Germany
| | - Valeria Gatto
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - Stefan Stinchcombe
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | | |
Collapse
|
5
|
Bates CA, Haber LT, Schoeny R, Maier A. Identification of mutagenicity, MOA, and dose response analysis. Food Chem Toxicol 2025; 202:115441. [PMID: 40222646 DOI: 10.1016/j.fct.2025.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Bates et al. (2023) developed a cancer risk assessment framework to evaluate dietary carcinogens. The framework 1) evaluates gene mutation as an early key event of cancer development; 2) considers the dose metric appropriate based on mode of action understanding; and 3) integrates the appropriate dose metric category with relevant exposure data to evaluate dose response options and cancer level of concern for the specified exposure scenario. Here, we test the framework with three demonstrated rodent carcinogens with varying human cancer assessments and underlying cancer biology: acrylamide, aflatoxin B1, and β-myrcene. While traditional cancer assessment approaches might characterize these chemicals as potential human carcinogens based primarily on rodent tumorigenicity data, the framework evaluates the cancer MOA in the context of exposure patterns to provide more information on conditions that may increase risk. We found that mutation is an early key event for aflatoxin B1 carcinogenicity, and linear low-dose extrapolation is an appropriate approach. In contrast, MOA data support a dose threshold-based approach for acrylamide and β-myrcene, and their respective dietary consumption patterns suggest a low concern for cancer. The framework provides a more nuanced approach to cancer risk assessment and provides for a more informed risk management decision.
Collapse
Affiliation(s)
| | - Lynne T Haber
- Risk Science Center, University of Cincinnati College of Medicine, United States
| | | | | |
Collapse
|
6
|
Zhou Z, Pennings JLA, Sahlin U. Causal, predictive or observational? Different understandings of key event relationships for adverse outcome pathways and their implications on practice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104597. [PMID: 39622398 DOI: 10.1016/j.etap.2024.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
The Adverse Outcome Pathways (AOPs) framework is pivotal in toxicology, but the, terminology describing Key Event Relationships (KERs) varies within AOP guidelines.This study examined the usage of causal, observational and predictive terms in AOP, documentation and their adaptation in AOP development. A literature search and text, analysis of key AOP guidance documents revealed nuanced usage of these terms, with KERs often described as both causal and predictive. The adaptation of, terminology varies across AOP development stages. Evaluation of KER causality often, relies targeted blocking experiments and weight-of-evidence assessments in the, putative and qualitative stages. Our findings highlight a potential mismatch between,terminology in guidelines and methodologies in practice, particularly in inferring,causality from predictive models. We argue for careful consideration of terms like, causal and essential to facilitate interdisciplinary communication. Furthermore, integrating known causality into quantitative AOP models remains a challenge.
Collapse
Affiliation(s)
- Zheng Zhou
- Center for Environmental and Climate Science, Lund University, Sweden.
| | | | - Ullrika Sahlin
- Center for Environmental and Climate Science, Lund University, Sweden
| |
Collapse
|
7
|
Liszewska M, Czaja K, Korcz W, Lewiński R, Struciński P. Endocrine-disrupting chemicals - pesticide regulatory issues from the EU perspective. Regul Toxicol Pharmacol 2024; 154:105735. [PMID: 39491584 DOI: 10.1016/j.yrtph.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Endocrine-disrupting chemicals (EDCs), including substances used in plant protection products (PPPs), are a source of ongoing concern for the EU society. Under the EC Regulation 1107/2009, the endocrine-disrupting (ED) properties of active substances, safeners, and synergists used in PPPs shall be investigated. The scientific criteria established by the Regulation (EU) 2018/605 and the joint guidance of the European Chemicals Agency (ECHA)/European Food Safety Authority (EFSA) provide the basis for this assessment. Data requirements for the approval of safeners and synergists have been recently published in Commission Regulation (EU) 2024/1487, allowing a consistent assessment of these substances. The approach to assessing co-formulant hazards is currently a subject of EU-wide discussion. It outlines the necessity to take into account information or evaluation data from other than pesticides' EU regulatory frameworks, such as REACH or SCCS applications for cosmetic ingredients. This paper outlines: a) current EU approach applied for identification of endocrine disrupting properties of pesticides; b) issues related to European regulations that may have an indirect impact on the safe use of plant protection products and c) an analysis of the European Commission's activities aimed to limit exposure to EDCs associated with use of PPPs in the society.
Collapse
Affiliation(s)
- Monika Liszewska
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland.
| | - Katarzyna Czaja
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Wojciech Korcz
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Radosław Lewiński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| | - Paweł Struciński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, 24 Chocimska, 00-791 Warsaw, Poland
| |
Collapse
|
8
|
Shimonovich M, Thomson H, Pearce A, Katikireddi SV. Applying Bradford Hill to assessing causality in systematic reviews: A transparent approach using process tracing. Res Synth Methods 2024; 15:826-838. [PMID: 39506911 DOI: 10.1002/jrsm.1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Bradford Hill (BH) viewpoints are widely used to assess causality in systematic reviews, but their application has often lacked reproducibility. We describe an approach for assessing causality within systematic reviews ('causal' reviews), illustrating its application to the topic of income inequality and health. Our approach draws on principles of process tracing, a method used for case study research, to harness BH viewpoints to judge evidence for causal claims. METHODS In process tracing, a hypothesis may be confirmed by observing highly unique evidence and disconfirmed by observing highly definitive evidence. We drew on these principles to consider the value of finding supportive or contradictory evidence for each BH viewpoint characterised by its uniqueness and definitiveness. RESULTS In our exemplar systematic review, we hypothesised that income inequality adversely affects self-rated health and all-cause mortality. BH viewpoints 'analogy' and 'coherence' were excluded from the causal assessment because of their low uniqueness and low definitiveness. The 'experiment' viewpoint was considered highly unique and highly definitive, and thus could be particularly valuable. We propose five steps for using BH viewpoints in a 'causal' review: (1) define the hypothesis; (2) characterise each viewpoint; (3) specify the evidence expected for each BH viewpoint for a true or untrue hypothesis; (4) gather evidence for each viewpoint (e.g., systematic review meta-analyses, critical appraisal, background knowledge); (5) consider if each viewpoint was met (supportive evidence) or unmet (contradictory evidence). CONCLUSIONS Incorporating process tracing has the potential to provide transparency and structure when using BH viewpoints in 'causal' reviews.
Collapse
Affiliation(s)
- Michal Shimonovich
- MRC/CSO Social & Public Health Sciences Unit, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Hilary Thomson
- MRC/CSO Social & Public Health Sciences Unit, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Anna Pearce
- MRC/CSO Social & Public Health Sciences Unit, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
9
|
Johnson VJ, Luster MI, Maier A, Boles C, Miller EW, Arrieta DE. Application and interpretation of immunophenotyping data in safety and risk assessment. FRONTIERS IN TOXICOLOGY 2024; 6:1409365. [PMID: 39430110 PMCID: PMC11486759 DOI: 10.3389/ftox.2024.1409365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
The use of immunophenotyping during immunotoxicity investigations was first popularized in the 1980 s and has since become more integrated into diagnostic and non-clinical assessments. The data provided from immunophenotyping can serve as an initial source of information to guide decisions for additional, more advanced, immunotoxicity testing as well as for human health safety and risk assessment of drugs and chemicals. However, comprehensive guidance describing applications of immunophenotyping data in immunotoxicity investigations is lacking, particularly among regulatory bodies. Therefore, a critical examination is needed for the appropriate interpretations and potential misinterpretations of such data during the assessment of drug safety and chemical risk. As such, the current uses and implications of immunophenotyping data in human health safety and risk assessments has been evaluated to provide additional context for the application of current methodologies and guidelines. In addition, case studies are presented to highlight the challenges of interpreting immunophenotyping results along with incorporating the findings into immunotoxicity investigations. Based on the analyses of current approaches and methodologies, a decision flow is presented for use of immunophenotyping data during risk informed decision making.
Collapse
Affiliation(s)
- Victor J. Johnson
- Burleson Research Technologies, Inc., Morrisville, NC, United States
| | | | - Andrew Maier
- Stantec ChemRisk, Cincinnati, OH, United States
- Integral Consulting, Inc., Cincinnati, OH, United States
| | - Corey Boles
- Stantec ChemRisk, Raleigh, NC, United States
- Insight Exposure and Risk Sciences Group, Raleigh, NC, United States
| | | | - Daniel E. Arrieta
- Chevron Phillips Chemical Company LP, The Woodlands, TX, United States
| |
Collapse
|
10
|
Klaunig JE, Cohen SM. Mode of action of dieldrin-induced liver tumors: application to human risk assessment. Crit Rev Toxicol 2024; 54:634-658. [PMID: 39077834 DOI: 10.1080/10408444.2024.2377208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
Dieldrin is an organochlorine insecticide that was widely used until 1970 when its use was banned because of its liver carcinogenicity in mice. Several long-term rodent bioassays have reported dieldrin to induce liver tumors in in several strains of mice, but not in rats. This article reviews the available information on dieldrin liver effects and performs an analysis of mode of action (MOA) and human relevance of these liver findings. Scientific evidence strongly supports a MOA based on CAR activation, leading to alterations in gene expression, which result in increased hepatocellular proliferation, clonal expansion leading to altered hepatic foci, and ultimately the formation of hepatocellular adenomas and carcinomas. Associative events include increased liver weight, centrilobular hypertrophy, increased expression of Cyp2b10 and its resulting increased enzymatic activity. Other associative events include alterations of intercellular gap junction communication and oxidative stress. Alternative MOAs are evaluated and shown not to be related to dieldrin administration. Weight of evidence shows that dieldrin is not DNA reactive, it is not mutagenic, and it is not genotoxic in general. Furthermore, activation of other pertinent nuclear receptors, including PXR, PPARα, AhR, and estrogen are not related to dieldrin-induced liver tumors nor is there liver cytotoxicity. In previous studies, rats, dogs, and non-human primates did not show increased cell proliferation or production of pre-neoplastic or neoplastic lesions following dieldrin treatment. Thus, the evidence strongly indicates that dieldrin-induced mouse liver tumors are due to CAR activation and are specific to the mouse, which are qualitatively not relevant to human hepatocarcinogenesis. Thus, there is no carcinogenic risk to humans. This conclusion is also supported by a lack of positive epidemiologic findings for evidence of liver carcinogenicity. Based on current understanding of the mode of action of dieldrin-induced liver tumors in mice, the appropriate conclusion is that dieldrin is a mouse specific liver carcinogen and it does not pose a cancer risk to humans.
Collapse
Affiliation(s)
- James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, USA
| | - Samuel M Cohen
- Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Lagadic L, Coady KK, Körner O, Miller TJ, Mingo V, Salinas ER, Sauer UG, Schopfer CR, Weltje L, Wheeler JR. Endocrine disruption assessment in aquatic vertebrates - Identification of substance-induced thyroid-mediated effect patterns. ENVIRONMENT INTERNATIONAL 2024; 191:108918. [PMID: 39270431 DOI: 10.1016/j.envint.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024]
Abstract
According to the World Health Organisation and European Commission definitions, substances shall be considered as having endocrine disrupting properties if they show adverse effects, have endocrine activity and the adverse effects are a consequence of the endocrine activity (using a weight-of-evidence approach based on biological plausibility), unless the adverse effects are not relevant to humans or non-target organisms at the (sub)population level. To date, there is no decision logic on how to establish endocrine disruption via the thyroid modality in non-mammalian vertebrates. This paper describes an evidence-based decision logic compliant with the integrated approach to testing and assessment (IATA) concept, to identify thyroid-mediated effect patterns in aquatic vertebrates using amphibians as relevant models for thyroid disruption assessment. The decision logic includes existing test guidelines and methods and proposes detailed considerations on how to select relevant assays and interpret the findings. If the mammalian dataset used as the starting point indicates no thyroid concern, the Xenopus Eleutheroembryonic Thyroid Assay allows checking out thyroid-mediated activity in non-mammalian vertebrates, whereas the Amphibian Metamorphosis Assay or its extended, fixed termination stage variant inform on both thyroid-mediated activity and potentially population-relevant adversity. In evaluating findings, the response patterns of all assay endpoints are considered, including the direction of changes. Thyroid-mediated effect patterns identified at the individual level in the amphibian tests are followed by mode-of-action and population relevance assessments. Finally, all data are considered in an overarching weight-of-evidence evaluation. The logic has been designed generically and can be adapted, e.g. to accommodate fish tests once available for thyroid disruption assessments. It also ensures that all scientifically relevant information is considered, and that animal testing is minimised. The proposed decision logic can be included in regulatory assessments to facilitate the conclusion on whether substances meet the endocrine disruptor definition for the thyroid modality in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany.
| | | | - Oliver Körner
- ADAMA Deutschland GmbH, Environmental Safety, Köln, Germany
| | - Tara J Miller
- Syngenta, Jealott's Hill International Research Centre, Jealott's Hill, United Kingdom
| | | | - Edward R Salinas
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany; Georg-August-University Göttingen, Division of Plant Pathology and Plant Protection, Göttingen, Germany
| | | |
Collapse
|
12
|
Prueitt RL, Drury NL, Shore RA, Boon DN, Goodman JE. Talc and human cancer: a systematic review of the experimental animal and mechanistic evidence. Crit Rev Toxicol 2024; 54:359-393. [PMID: 38979679 DOI: 10.1080/10408444.2024.2349668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 07/10/2024]
Abstract
The potential carcinogenicity of talc has been evaluated in many studies in humans and experimental animals published in the scientific literature over the last several decades, with a number of these studies reporting no associations between talc exposure and any type of cancer. In order to fully understand the current state of the science regarding the potential for talc to induce human cancers, we conducted a comprehensive and systematic review of the available experimental animal and mechanistic evidence (in conjunction with a systematic review of the epidemiology evidence in a companion analysis) to evaluate whether it supports talc as being carcinogenic to humans. We considered study quality and its impact on the interpretation of results and evaluated all types of cancer and all exposure routes. We also evaluated the evidence on the potential for talc to migrate in the body to potential tumor sites. We identified seven experimental animal carcinogenicity studies and 11 mechanistic studies of talc to systematically review. We found that several of the experimental animal carcinogenicity studies of talc have limitations that preclude their sensitivity to detect increases in tumor incidence. Regardless, the studies cover multiple exposure routes, species, and exposure durations, and none indicate that talc is a carcinogen in experimental animals except in rats under conditions of extremely high exposure that likely resulted in lung particle overload, a nonspecific effect of high exposures to poorly soluble particles, and not from any carcinogenic properties of talc. Lung particle overload leading to lung tumor formation has only been observed in rats and not in any other species, including humans. The mechanistic studies indicate that talc is not genotoxic or mutagenic, but can induce some effects that could be events on a possible pathway to carcinogenicity, mainly at high exposures or in in vitro studies with exposures of unclear relevance in vivo, but these effects are not consistent across studies and cell types. This systematic review of the experimental animal carcinogenicity and mechanistic evidence for talc indicates that an association between talc exposure and cancer is not expected in humans. Talc carcinogenicity is not plausible in any species except rats, and only when the exposure conditions are high enough to induce lung particle overload, which is not relevant to human exposures.
Collapse
|
13
|
EFSA Scientific Committee, More S, Bampidis V, Benford D, Bragard C, Hernandez‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mennes W, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Fletcher T, Greiner M, Ntzani E, Pearce N, Vinceti M, Vrijheid M, Georgiadis M, Gervelmeyer A, Halldorsson TI. Scientific Committee guidance on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. EFSA J 2024; 22:e8866. [PMID: 38974922 PMCID: PMC11224774 DOI: 10.2903/j.efsa.2024.8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
EFSA requested its Scientific Committee to prepare a guidance document on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. The guidance document provides an introduction to epidemiological studies and illustrates the typical biases, which may be present in different epidemiological study designs. It then describes key epidemiological concepts relevant for evidence appraisal. This includes brief explanations for measures of association, exposure assessment, statistical inference, systematic error and effect modification. The guidance then describes the concept of external validity and the principles of appraising epidemiological studies. The customisation of the study appraisal process is explained including tailoring of tools for assessing the risk of bias (RoB). Several examples of appraising experimental and observational studies using a RoB tool are annexed to the document to illustrate the application of the approach. The latter part of this guidance focuses on different steps of evidence integration, first within and then across different streams of evidence. With respect to risk characterisation, the guidance considers how evidence from human epidemiological studies can be used in dose-response modelling with several different options being presented. Finally, the guidance addresses the application of uncertainty factors in risk characterisation when using evidence from human epidemiological studies.
Collapse
|
14
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Goetz A, Ryan N, Sauve-Ciencewicki A, Lord CC, Hilton GM, Wolf DC. Assessing human carcinogenicity risk of agrochemicals without the rodent cancer bioassay. FRONTIERS IN TOXICOLOGY 2024; 6:1394361. [PMID: 38933090 PMCID: PMC11200232 DOI: 10.3389/ftox.2024.1394361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The rodent cancer bioassays are conducted for agrochemical safety assessment yet they often do not inform regulatory decision-making. As part of a collaborative effort, the Rethinking Carcinogenicity Assessment for Agrochemicals Project (ReCAAP) developed a reporting framework to guide a weight of evidence (WOE)-based carcinogenicity assessment that demonstrates how to fulfill the regulatory requirements for chronic risk estimation without the need to conduct lifetime rodent bioassays. The framework is the result of a multi-stakeholder collaboration that worked through an iterative process of writing case studies (in the form of waivers), technical peer reviews of waivers, and an incorporation of key learnings back into the framework to be tested in subsequent case study development. The example waivers used to develop the framework were written retrospectively for registered agrochemical active substances for which the necessary data and information could be obtained through risk assessment documents or data evaluation records from the US EPA. This exercise was critical to the development of a framework, but it lacked authenticity in that the stakeholders reviewing the waiver already knew the outcome of the rodent cancer bioassay(s). Syngenta expanded the evaluation of the ReCAAP reporting framework by writing waivers for three prospective case studies for new active substances where the data packages had not yet been submitted for registration. The prospective waivers followed the established framework considering ADME, potential exposure, subchronic toxicity, genotoxicity, immunosuppression, hormone perturbation, mode of action (MOA), and all relevant information available for read-across using a WOE assessment. The point of departure was estimated from the available data, excluding the cancer bioassay results, with a proposed use for the chronic dietary risk assessment. The read-across assessments compared data from reliable registered chemical analogues to strengthen the prediction of chronic toxicity and/or tumorigenic potential. The prospective case studies represent a range of scenarios, from a new molecule in a well-established chemical class with a known MOA to a molecule with a new pesticidal MOA (pMOA) and limited read-across to related molecules. This effort represents an important step in establishing criteria for a WOE-based carcinogenicity assessment without the rodent cancer bioassay(s) while ensuring a health protective chronic dietary risk assessment.
Collapse
Affiliation(s)
- Amber Goetz
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | - Natalia Ryan
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | | | - Caleb C. Lord
- Syngenta Crop Protection LLCGreensboro, NC, United States
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | |
Collapse
|
16
|
Elmore SA, Rehg JE, Schoeb TR, Everitt JI, Bolon B. Pathologists' perspective on the study design, analysis, and interpretation of proliferative lesions in a lifetime rodent carcinogenicity bioassay of sucralose. Food Chem Toxicol 2024; 188:114524. [PMID: 38428799 DOI: 10.1016/j.fct.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Sucralose, a sugar substitute first approved for use in 1991, is a non-caloric sweetener regulated globally as a food additive. Based on numerous experimental animal studies (dating to the 1980s) and human epidemiology studies, international health agencies have determined that sucralose is safe when consumed as intended. A single lifetime rodent carcinogenicity bioassay conducted by the Ramazzini Institute (RI) reported that mice fed diets containing sucralose develop hematopoietic neoplasia, but controversy continues regarding the validity and relevance of these data for predicting health effects in humans. The present paper addresses the controversy by providing the perspective of experienced pathologists on sucralose-related animal toxicity and carcinogenicity data generally, and the RI carcinogenicity bioassay findings specifically, using results from publicly available papers and international regulatory authority decisions. In the authors' view, flaws in the design, methodology, data evaluation, and reporting of the RI carcinogenicity bioassay for sucralose diminish the value of the data as evidence that this agent represents a carcinogenic hazard to humans. This limitation will remain until the RI bioassay is repeated under Good Laboratory Practices and the design, data, and accuracy of the pathology diagnoses and interpretations are reviewed by qualified pathologists with experience in evaluating potential chemically-induced carcinogenic hazards.
Collapse
Affiliation(s)
| | - Jerold E Rehg
- Department of Pathology, Emeritus, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Trenton R Schoeb
- Department of Genetics and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
17
|
Goettel M, Werner C, Honarvar N, Gröters S, Fegert I, Haines C, Chatham LR, Vardy A, Lake BG. Mode of action analysis for fluxapyroxad-induced rat liver tumour formation: evidence for activation of the constitutive androstane receptor and assessment of human relevance. Toxicology 2024; 505:153828. [PMID: 38740169 DOI: 10.1016/j.tox.2024.153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 μM fluxapyroxad or 500 μM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid β-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 μM fluxapyroxad or 500 μM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 μM fluxapyroxad or 500 μM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats, Wistar
- Rats
- Fungicides, Industrial/toxicity
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Constitutive Androstane Receptor
- Humans
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Dose-Response Relationship, Drug
- Organ Size/drug effects
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- DNA Replication/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany.
| | - Christoph Werner
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sibylle Gröters
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ivana Fegert
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Corinne Haines
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
18
|
Vincent MJ, Fitch S, Bylsma L, Thompson C, Rogers S, Britt J, Wikoff D. Assessment of associations between inhaled formaldehyde and lymphohematopoietic cancer through the integration of epidemiological and toxicological evidence with biological plausibility. Toxicol Sci 2024; 199:172-193. [PMID: 38547404 PMCID: PMC11131035 DOI: 10.1093/toxsci/kfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Formaldehyde is recognized as carcinogenic for the portal of entry sites, though conclusions are mixed regarding lymphohematopoietic (LHP) cancers. This systematic review assesses the likelihood of a causal relationship between formaldehyde and LHP cancers by integrating components recommended by NASEM. Four experimental rodent bioassays and 16 observational studies in humans were included following the implementation of the a priori protocol. All studies were assessed for risk of bias (RoB), and meta-analyses were conducted on epidemiological studies, followed by a structured assessment of causation based on GRADE and Bradford Hill. RoB analysis identified systemic limitations precluding confidence in the epidemiological evidence due to inadequate characterization of formaldehyde exposure and a failure to adequately adjust for confounders or effect modifiers, thus suggesting that effect estimates are likely to be impacted by systemic bias. Mixed findings were reported in individual studies; meta-analyses did not identify significant associations between formaldehyde inhalation (when measured as ever/never exposure) and LHP outcomes, with meta-SMRs ranging from 0.50 to 1.51, depending on LHP subtype. No associations with LHP-related lesions were reported in reliable animal bioassays. No biologically plausible explanation linking the inhalation of FA and LHP was identified, supported primarily by the lack of systemic distribution and in vivo genotoxicity. In conclusion, the inconsistent associations reported in a subset of the evidence were not considered causal when integrated with the totality of the epidemiological evidence, toxicological data, and considerations of biological plausibility. The impact of systemic biases identified herein could be quantitatively assessed to better inform causality and use in risk assessment.
Collapse
Affiliation(s)
| | - Seneca Fitch
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Lauren Bylsma
- EpidStrategies, a Division of ToxStrategies, LLC, Katy, Texas 77494, United States
| | - Chad Thompson
- ToxStrategies, LLC, Katy, Texas 77494, United States
| | - Sarah Rogers
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Janice Britt
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| | - Daniele Wikoff
- ToxStrategies, LLC, Asheville, North Carolina 28801, United States
| |
Collapse
|
19
|
Prueitt RL, Meakin CJ, Drury NL, Goodman JE. Evaluation of neural reflex activation as a potential mode of action for respiratory and cardiovascular effects of fine particulate matter. Inhal Toxicol 2024; 36:125-144. [PMID: 38488087 DOI: 10.1080/08958378.2024.2324033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/20/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES Mortality from respiratory and cardiovascular health conditions contributes largely to the total mortality that has been associated with exposure to PM2.5 in epidemiology studies. A mode of action (MoA) for these underlying morbidities has not been established, but it has been proposed that some effects of PM2.5 occur through activation of neural reflexes. MATERIALS AND METHODS We critically reviewed the experimental studies of PM2.5 (including ambient PM2.5, diesel exhaust particles, concentrated ambient particles, diesel exhaust, and cigarette smoke) and neural reflex activation, and applied the principles of the International Programme on Chemical Safety (IPCS) MoA/human relevance framework to assess whether they support a biologically plausible and human-relevant MoA by which PM2.5 could contribute to cardiovascular and respiratory causes of death. We also considered whether the evidence from these studies supports a non-threshold MoA that operates at low, human-relevant PM2.5 exposure concentrations. RESULTS AND DISCUSSION We found that the proposed MoA of neural reflex activation is biologically plausible for PM2.5-induced respiratory effects at high exposure levels used in experimental studies, but further studies are needed to fill important data gaps regarding the relevance of this MoA to humans at lower PM2.5 exposure levels. A role for the proposed MoA in PM2.5-induced cardiovascular effects is plausible for some effects but not others. CONCLUSIONS Further studies are needed to determine whether neural reflex activation is the MoA by which PM2.5 could cause either respiratory or cardiovascular morbidities in humans, particularly at the ambient concentrations associated with total mortality in epidemiology studies.
Collapse
|
20
|
Frank EA, Meek MEB. Procedural application of mode-of-action and human relevance analysis: styrene-induced lung tumors in mice. Crit Rev Toxicol 2024; 54:134-151. [PMID: 38440945 DOI: 10.1080/10408444.2024.2310600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.
Collapse
Affiliation(s)
- Evan A Frank
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M E Bette Meek
- School of Epidemiology and Public Health in the Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
21
|
Burgoon LD, Clewell HJ, Cox T, Dekant W, Dell LD, Deyo JA, Dourson ML, Gadagbui BK, Goodrum P, Green LC, Vijayavel K, Kline TR, House-Knight T, Luster MI, Manning T, Nathanail P, Pagone F, Richardson K, Severo-Peixe T, Sharma A, Smith JS, Verma N, Wright J. Range of the perfluorooctanoate (PFOA) safe dose for human health: An international collaboration. Regul Toxicol Pharmacol 2023; 145:105502. [PMID: 38832926 DOI: 10.1016/j.yrtph.2023.105502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 06/06/2024]
Abstract
Many government agencies and expert groups have estimated a dose-rate of perfluorooctanoate (PFOA) that would protect human health. Most of these evaluations are based on the same studies (whether of humans, laboratory animals, or both), and all note various uncertainties in our existing knowledge. Nonetheless, the values of these various, estimated, safe-doses vary widely, with some being more than 100,000 fold different. This sort of discrepancy invites scrutiny and explanation. Otherwise what is the lay public to make of this disparity? The Steering Committee of the Alliance for Risk Assessment (2022) called for scientists interested in attempting to understand and narrow these disparities. An advisory committee of nine scientists from four countries was selected from nominations received, and a subsequent invitation to scientists internationally led to the formation of three technical teams (for a total of 24 scientists from 8 countries). The teams reviewed relevant information and independently developed ranges for estimated PFOA safe doses. All three teams determined that the available epidemiologic information could not form a reliable basis for a PFOA safe dose-assessment in the absence of mechanistic data that are relevant for humans at serum concentrations seen in the general population. Based instead on dose-response data from five studies of PFOA-exposed laboratory animals, we estimated that PFOA dose-rates 10-70 ng/kg-day are protective of human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anurag Sharma
- Nitte University Centre for Science Education and Research, India
| | | | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University Himachal Pradesh, India
| | | |
Collapse
|
22
|
Lynch HN, Kozal JS, Vincent MJ, Freid RD, Beckett EM, Brown S, Mathis C, Schoeny RS, Maier A. Systematic review of the human health hazards of propylene dichloride. Regul Toxicol Pharmacol 2023; 144:105468. [PMID: 37562533 DOI: 10.1016/j.yrtph.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Propylene dichloride (PDC) is a chlorinated substance used primarily as an intermediate in basic organic chemical manufacturing. The United States Environmental Protection Agency (EPA) is currently evaluating PDC as a high-priority substance under the Toxic Substances Control Act (TSCA). We conducted a systematic review of the non-cancer and cancer hazards of PDC using the EPA TSCA and Integrated Risk Information System (IRIS) frameworks. We identified 12 epidemiological, 16 toxicokinetic, 34 experimental animal, and 49 mechanistic studies. Point-of-contact respiratory effects are the most sensitive non-cancer effects after inhalation exposure, and PDC is neither a reproductive nor a developmental toxicant. PDC is not mutagenic in vivo, and while in vitro evidence is mixed, DNA strand breaks consistently occur. Nasal tumors in rats and lung tumors in mice occurred after lifetime high-level inhalation exposure. Cholangiocarcinoma (CCA) was observed in Japanese print workers exposed to high concentrations of PDC. However, co-exposures, as well as liver parasites, hepatitis, and other risk factors, may also have contributed. The cancer mode of action (MOA) analysis revealed that PDC may act through multiple biological pathways occurring sequentially and/or simultaneously, although chronic tissue damage and inflammation likely dominate. Critically, health benchmarks protective of non-cancer effects are expected to protect against cancer in humans.
Collapse
|
23
|
Kozal JS, Lynch HN, Klapacz J, Schoeny RS, Jean PA, Maier A. Mode of action assessment for propylene dichloride as a human carcinogen. Chem Biol Interact 2023; 382:110382. [PMID: 36754223 DOI: 10.1016/j.cbi.2023.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
As part of a systematic review of the non-cancer and cancer hazards of propylene dichloride (PDC), with a focus on potential carcinogenicity in workers following inhalation exposures, we determined that a mode of action (MOA)-centric framing of cancer effects was warranted. In our MOA analysis, we systematically reviewed the available mechanistic evidence for PDC-induced carcinogenesis, and we mapped biologically plausible MOA pathways and key events (KEs), as guided by the International Programme on Chemical Safety (IPCS)-MOA framework. For the identified pathways and KEs, biological concordance, essentiality of KEs, concordance of empirical observations among KEs, consistency, and analogy were evaluated. The results of this analysis indicate that multiple biologically plausible pathways may contribute to the cancer MOA for PDC, but that the relevant pathways vary by exposure route and level, tissue type, and species; further, more than one pathway may occur concurrently at high exposure levels. While several important data gaps exist, evidence from in vitro mechanistic studies, in vivo experimental animal studies, and ex vivo human tumor tissue analyses indicates that the predominant MOA pathway likely involves saturation of cytochrome p450 2E1 (CYP2E1)-glutathione (GSH) detoxification (molecular initiating event; MIE), accumulation of CYP2E1-oxidative metabolites, cytotoxicity, chronic tissue damage and inflammation, and ultimately tumor formation. Tumors may occur through several subsets of inflammatory KEs, including inflammation-induced aberrant expression of activation-induced cytidine deaminase (AID), which causes DNA strand breaks and mutations and can lead to tumors with a characteristic mutational signature found in occupational cholangiocarcinoma. Dose concordance analysis showed that low-dose mutagenicity (from any pathway) is not a driving MOA, and that prevention of target tissue damage and inflammation (associated with saturation of CYP2E1-GSH detoxification) is expected to also prevent the cascade of processes responsible for tumor formation.
Collapse
Affiliation(s)
| | | | - Joanna Klapacz
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| | | | | | | |
Collapse
|
24
|
Lynch HN, Lauer DJ, Leleck OM, Freid RD, Collins J, Chen K, Thompson WJ, Ierardi AM, Urban A, Boffetta P, Mundt KA. Systematic review of the association between talc and female reproductive tract cancers. FRONTIERS IN TOXICOLOGY 2023; 5:1157761. [PMID: 37608907 PMCID: PMC10442069 DOI: 10.3389/ftox.2023.1157761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 08/24/2023] Open
Abstract
Talc is a hydrous magnesium sheet silicate used in cosmetic powders, ceramics, paints, rubber, and many other products. We conducted a systematic review of the potential carcinogenicity of genitally applied talc in humans. Our systematic review methods adhere to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and incorporated aspects from the US Institute of Medicine (IOM, now the National Academy of Medicine) and several US EPA frameworks for systematic reviews, evaluating and integrating the epidemiological, animal, and mechanistic literature on talc and cancer. We conducted a comprehensive literature search. Detailed data abstraction and study quality evaluation, adapting the Toxic Substances Control Act (TSCA) framework, were central to our analysis. The literature search and selection process identified 40 primary studies that assessed exposure to talc and female reproductive cancer risks in humans (n = 36) and animals (n = 4). The results of our evaluation emphasize the importance of considering biological plausibility and study quality in systematic review. Integrating all streams of evidence according to the IOM framework yielded classifications of suggestive evidence of no association between perineal application of talcum powders and risk of ovarian cancer at human-relevant exposure levels. We also concluded that there is suggestive evidence of no association between genital talc application and endometrial cancer, and insufficient evidence to determine whether a causal association exists between genital talc application and cervical cancer based on a smaller but largely null body of literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ania Urban
- Stantec (ChemRisk), San Francisco, CA, United States
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
25
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
27
|
Meek B, Bridges JW, Fasey A, Sauer UG. Evidential requirements for the regulatory hazard and risk assessment of respiratory sensitisers: methyl methacrylate as an example. Arch Toxicol 2023; 97:931-946. [PMID: 36797432 PMCID: PMC10025211 DOI: 10.1007/s00204-023-03448-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
This review addresses the need for a framework to increase the consistency, objectivity and transparency in the regulatory assessment of respiratory sensitisers and associated uncertainties. Principal issues are considered and illustrated through a case study (with methyl methacrylate). In the absence of test methods validated for regulatory use, formal documentation of the weight-of-evidence for hazard classification both at the level of integration of individual studies within lines of evidence and across a broad range of data streams was agreed to be critical for such a framework. An integrated approach is proposed to include not only occupational studies and clinical evidence for the regulatory assessment of respiratory sensitisers, but also information on structure and physical and chemical factors, predictive approaches such as structure activity analysis and in vitro and in vivo mechanistic and toxicokinetic findings. A weight-of-evidence protocol, incorporating integration of these sources of data based on predefined considerations, would contribute to transparency and consistency in the outcome of the assessment. In those cases where a decision may need to be taken on the basis of occupational findings alone, conclusions should be based on transparent weighting of relevant data on the observed prevalence of occupational asthma in various studies taking into account all relevant information including the range and nature of workplace exposures to the substance of interest, co-exposure to other chemicals and study quality.
Collapse
Affiliation(s)
| | - James W Bridges
- Emeritus Professor, University of Surrey, Guildford, Surrey, UK
| | | | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany.
| |
Collapse
|
28
|
Heintz MM, Haws LC, Klaunig JE, Cullen JM, Thompson CM. Assessment of the mode of action underlying development of liver lesions in mice following oral exposure to HFPO-DA and relevance to humans. Toxicol Sci 2023; 192:15-29. [PMID: 36629480 PMCID: PMC10025879 DOI: 10.1093/toxsci/kfad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate) is a short-chain polyfluorinated alkyl substance (PFAS) used in the manufacture of some types of fluorinated polymers. Like many PFAS, toxicity studies with HFPO-DA indicate the liver is the primary target of toxicity in rodents following oral exposure. Due to the structural diversity of PFAS, the mode of action (MOA) can differ between PFAS for the same target tissue. There is significant evidence for involvement of peroxisome proliferator-activated receptor alpha (PPARα) activation based on molecular and histopathological responses in the liver following HFPO-DA exposure, but other MOAs have also been hypothesized based on limited evidence. The MOA underlying the liver effects in mice exposed to HFPO-DA was assessed in the context of the Key Events (KEs) outlined in the MOA framework for PPARα activator-induced rodent hepatocarcinogenesis. The first 3 KEs (ie, PPARα activation, alteration of cell growth pathways, and perturbation of cell growth/survival) are supported by several lines of evidence from both in vitro and in vivo data available for HFPO-DA. In contrast, alternate MOAs, including cytotoxicity, PPARγ and mitochondrial dysfunction are generally not supported by the scientific literature. HFPO-DA-mediated liver effects in mice are not expected in humans as only KE 1, PPARα activation, is shared across species. PPARα-mediated gene expression in humans produces only a subset (ie, lipid modulating effects) of the responses observed in rodents. As such, the adverse effects observed in rodent livers should not be used as the basis of toxicity values for HFPO-DA for purposes of human health risk assessment.
Collapse
Affiliation(s)
| | | | - James E Klaunig
- School of Public Health, Indiana University, Bloomington, Indiana 47405, USA
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606, USA
| | | |
Collapse
|
29
|
Koterov AN, Ushenkova LN. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspects. Report 4, Part 1: The Post-Hill Criteria and Ecolgoical Criteria. BIOL BULL+ 2023; 49:2423-2466. [PMID: 36845199 PMCID: PMC9944838 DOI: 10.1134/s1062359022120068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 02/24/2023]
Abstract
Part 1 of Report 4 is focused on the development and modifications of causal criteria after A.B. Hill (1965). Criteria from B. MacMahon et al. (1970-1996), regarded as the first textbook for modern epidemiology, were considered, and it was found that the named researchers did not offer anything new despite the frequent mention of this source in relation to the theme. A similar situation emerged with the criteria of M. Susser: the three obligatory points of this author, "Association" (or "Probability" of causality), "Time order," and "Direction of effect," are trivial, and two more special criteria, which are the development of "Popperian Epidemiology," i.e., "Surviability" of the hypothesis when it is tested by different methods (included in the refinement in Hill's criterion "Consistency of association") and "Predictive performance" of the hypothesis are more theoretical and hardly applicable for the practice of epidemiology and public health. The same restrictions apply to the similar "Popperian" criteria of D.L. Weed, "Predictability" and "Testability" of the causal hypothesis. Although the universal postulates of A.S. Evans for infectious and noninfectious pathologies can be considered exhaustive, they are not used either in epidemiology or in any other discipline practice, except for the field of infectious pathologies, which is probably explained by the complication of the ten-point complex. The little-known criteria of P. Cole (1997) for medical and forensic practice are the most important. The three parts of Hill's criterion-based approaches are important in that they go from a single epidemiological study through a cycle of studies (coupled with the integration of data from other biomedical disciplines) to re-base Hill's criteria for assessing the individual causality of an effect. These constructs complement the earlier guidance from R.E. Gots (1986) on establishing probabilistic personal causation. The collection of causal criteria and the guidelines for environmental disciplines (ecology of biota, human ecoepidemiology, and human ecotoxicology) were considered. The total dominance of inductive causal criteria, both initial and in modifications and with additions, was revealed for an apparently complete base of sources (1979-2020). Adaptations of all known causal schemes based on guidelines have been found, from Henle-Koch postulates to Hill and Susser, including in the international programs and practice of the U.S. Environmental Protection Agency. The Hill Criteria are used by the WHO and other organizations on chemical safety (IPCS) to assess causality in animal experiments for subsequent extrapolation to humans. Data on the assessment of the causality of effects in ecology, ecoepidemiology, and ecotoxicology, together with the use of Hill's criteria for animal experiments, are of significant relevance not only for radiation ecology, but also for radiobiology.
Collapse
Affiliation(s)
- A. N. Koterov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow, Russia
| | - L. N. Ushenkova
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
30
|
Bajard L, Adamovsky O, Audouze K, Baken K, Barouki R, Beltman JB, Beronius A, Bonefeld-Jørgensen EC, Cano-Sancho G, de Baat ML, Di Tillio F, Fernández MF, FitzGerald RE, Gundacker C, Hernández AF, Hilscherova K, Karakitsios S, Kuchovska E, Long M, Luijten M, Majid S, Marx-Stoelting P, Mustieles V, Negi CK, Sarigiannis D, Scholz S, Sovadinova I, Stierum R, Tanabe S, Tollefsen KE, van den Brand AD, Vogs C, Wielsøe M, Wittwehr C, Blaha L. Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations. ENVIRONMENTAL RESEARCH 2023; 217:114650. [PMID: 36309218 PMCID: PMC9850416 DOI: 10.1016/j.envres.2022.114650] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Collapse
Affiliation(s)
- Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Kirsten Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - Robert Barouki
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland
| | | | - Milo L de Baat
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Filippo Di Tillio
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rex E FitzGerald
- Swiss Centre for Applied Human Toxicology SCAHT, University of Basel, Missionsstrasse 64, CH-4055 Basel, Switzerland
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Antonio F Hernández
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Avda. de la Investigación, 11, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Sanah Majid
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Stefan Scholz
- UFZ Helmholtz Center for Environmental Research, Dept Bioanalyt Ecotoxicol, D-04318 Leipzig, Germany
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norway
| | - Annick D van den Brand
- Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, 3720 BA Bilthoven, the Netherlands
| | - Carolina Vogs
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
31
|
Garvey GJ, Anderson JK, Goodrum PE, Tyndall KH, Cox LA, Khatami M, Morales-Montor J, Schoeny RS, Seed JG, Tyagi RK, Kirman CR, Hays SM. Weight of evidence evaluation for chemical-induced immunotoxicity for PFOA and PFOS: findings from an independent panel of experts. Crit Rev Toxicol 2023; 53:34-51. [PMID: 37115714 DOI: 10.1080/10408444.2023.2194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Immunotoxicity is the critical endpoint used by some regulatory agencies to establish toxicity values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, the hypothesis that exposure to certain per- and polyfluoroalkyl substances (PFAS) causes immune dysregulation is subject to much debate. An independent, international expert panel was engaged utilizing methods to reduce bias and "groupthink". The panel concluded there is moderate evidence that PFOS and PFOA are immunotoxic, based primarily on evidence from animal data. However, species concordance and human relevance cannot be well established due to data limitations. The panel recommended additional testing that includes longer-term exposures, evaluates both genders, includes other species of animals, tests lower dose levels, assesses more complete measures of immune responses, and elucidates the mechanism of action. Panel members agreed that the Faroe Islands cohort data should not be used as the primary basis for deriving PFAS risk assessment values. The panel agreed that vaccine antibody titer is not useful as a stand-alone metric for risk assessment. Instead, PFOA and PFOS toxicity values should rely on multiple high-quality studies, which are currently not available for immune suppression. The panel concluded that the available PFAS immune epidemiology studies suffer from weaknesses in study design that preclude their use, whereas available animal toxicity studies provide comprehensive dataset to derive points of departure (PODs) for non-immune endpoints. The panel recommends accounting for potential PFAS immunotoxicity by applying a database uncertainty factor to POD values derived from animal studies for other more robustly supported critical effects.
Collapse
Affiliation(s)
| | | | | | | | - L Anthony Cox
- Business Analytics, University of Colorado, Denver, CO, USA
| | | | - Jorge Morales-Montor
- Department of Immunology, Universidad Nacional Autonoma De Mexico, Mexico City, Mexico
| | | | | | - Rajeev K Tyagi
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | | | | |
Collapse
|
32
|
Koterov AN. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspect. Report 3, Part 2: Hill’s Last Four Criteria: Use and Limitations. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
33
|
Maurer LL, Alexander MS, Bachman AN, Grimm FA, Lewis RJ, North CM, Wojcik NC, Goyak KO. An interdisciplinary framework for derivation of occupational exposure limits. Front Public Health 2022; 10:1038305. [PMID: 36530659 PMCID: PMC9748553 DOI: 10.3389/fpubh.2022.1038305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Protecting the health and safety of workers in industrial operations is a top priority. One of the resources used in industry to ensure worker safety is the occupational exposure limit (OEL). OELs are derived from the assessment and interpretation of empirical data from animal and/or human studies. There are various guidelines for the derivation and implementation of OELs globally, with a range of stakeholders (including regulatory bodies, governmental agencies, expert groups and others). The purpose of this manuscript is to supplement existing guidance with learnings from a multidisciplinary team approach within an industry setting. The framework we present is similar in construct to other risk assessment frameworks and includes: (1) problem formulation, (2) literature review, (3) weight of evidence considerations, (4) point of departure selection/derivation, (5) application of assessment factors, and the final step, (6) derivation of the OEL. Within each step are descriptions and examples to consider when incorporating data from various disciplines such as toxicology, epidemiology, and exposure science. This manuscript describes a technical framework by which available data relevant for occupational exposures is compiled, analyzed, and utilized to inform safety threshold derivation applicable to OELs.
Collapse
|
34
|
Cronin MTD, Bauer FJ, Bonnell M, Campos B, Ebbrell DJ, Firman JW, Gutsell S, Hodges G, Patlewicz G, Sapounidou M, Spînu N, Thomas PC, Worth AP. A scheme to evaluate structural alerts to predict toxicity - Assessing confidence by characterising uncertainties. Regul Toxicol Pharmacol 2022; 135:105249. [PMID: 36041585 PMCID: PMC9585125 DOI: 10.1016/j.yrtph.2022.105249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches for their evaluation, there is no formal process to assess the confidence that may be associated with a structural alert. This investigation proposes twelve criteria to assess the uncertainty associated with structural alerts, allowing for an assessment of confidence. The criteria are based around the stated purpose, description of the chemistry, toxicology and mechanism, performance and coverage, as well as corroborating and supporting evidence of the alert. Alerts can be given a confidence assessment and score, enabling the identification of areas where more information may be beneficial. The scheme to evaluate structural alerts was placed in the context of various use cases for industrial and regulatory applications. The analysis of alerts, and consideration of the evaluation scheme, identifies the different characteristics an alert may have, such as being highly specific or generic. These characteristics may determine when an alert can be used for specific uses such as identification of analogues for read-across or hazard identification. Structural alerts are useful tools for predictive toxicology. 12 criteria to evaluate structural alerts have been identified. A strategy to determine confidence of structural alerts is presented. Different use cases require different characteristics of structural alerts. A Scheme to Evaluate Structural Alerts to Predict Toxicity – Assessing Confidence By Characterising Uncertainties.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Franklin J Bauer
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Mark Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec, K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - David J Ebbrell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), US Environmental Protection Agency, 109 TW Alexander Dr, RTP, NC, 27709, USA
| | - Maria Sapounidou
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Nicoleta Spînu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Paul C Thomas
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
35
|
Use of biomarker data and metabolite relative potencies to support derivation of noncancer reference values based on the reproductive and developmental toxicity effects of 1,3-butadiene. Regul Toxicol Pharmacol 2022; 134:105239. [DOI: 10.1016/j.yrtph.2022.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
36
|
Liu A, Han N, Munoz-Muriedas J, Bender A. Deriving time-concordant event cascades from gene expression data: A case study for Drug-Induced Liver Injury (DILI). PLoS Comput Biol 2022; 18:e1010148. [PMID: 35687583 PMCID: PMC9292124 DOI: 10.1371/journal.pcbi.1010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/18/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023] Open
Abstract
Adverse event pathogenesis is often a complex process which compromises multiple events ranging from the molecular to the phenotypic level. In toxicology, Adverse Outcome Pathways (AOPs) aim to formalize this as temporal sequences of events, in which event relationships should be supported by causal evidence according to the tailored Bradford-Hill criteria. One of the criteria is whether events are consistently observed in a certain temporal order and, in this work, we study this time concordance using the concept of “first activation” as data-driven means to generate hypotheses on potentially causal mechanisms. As a case study, we analysed liver data from repeat-dose studies in rats from the TG-GATEs database which comprises measurements across eight timepoints, ranging from 3 hours to 4 weeks post-treatment. We identified time-concordant gene expression-derived events preceding adverse histopathology, which serves as surrogate readout for Drug-Induced Liver Injury (DILI). We find known mechanisms in DILI to be time-concordant, and show further that significance, frequency and log fold change (logFC) of differential expression are metrics which can additionally prioritize events although not necessary to be mechanistically relevant. Moreover, we used the temporal order of transcription factor (TF) expression and regulon activity to identify transcriptionally regulated TFs and subsequently combined this with prior knowledge on functional interactions to derive detailed gene-regulatory mechanisms, such as reduced Hnf4a activity leading to decreased expression and activity of Cebpa. At the same time, also potentially novel events are identified such as Sox13 which is highly significantly time-concordant and shows sustained activation over time. Overall, we demonstrate how time-resolved transcriptomics can derive and support mechanistic hypotheses by quantifying time concordance and how this can be combined with prior causal knowledge, with the aim of both understanding mechanisms of toxicity, as well as potential applications to the AOP framework. We make our results available in the form of a Shiny app (https://anikaliu.shinyapps.io/dili_cascades), which allows users to query events of interest in more detail. Understanding mechanisms from systems-scale biological data is of great relevance in toxicology as well as drug discovery; however how to generate causal hypotheses instead of correlations is by no means clear. In this work, we study the conserved temporal order of events and present an automatable framework to quantify and characterize time concordance across a large set of time-series. We apply this concept to events derived from time-resolved gene expression and histopathology from the TG-GATEs in vivo liver data as a case study. We were able to recover known events involved in the pathogenesis of Drug-Induced Liver Injury (DILI), and identify potentially novel pathway and transcription factors (TFs) which precede adverse histopathology. As complementary sources of evidence for causality, we additionally show how time concordance and prior knowledge on plausible interactions between TFs can be combined to derive causal hypotheses on the TFs’ mode of regulation and interaction partners. Overall, the results derived in our case study can serve as valuable hypothesis-free starting points for the development of Adverse Outcome Pathways for DILI, and demonstrate that our approach provides a novel angle to prioritize mechanistically relevant events.
Collapse
Affiliation(s)
- Anika Liu
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
- Systems Modelling and Translational Biology, Data and Computational Sciences, GSK, London, United Kingdom
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AL); (AB)
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jordi Munoz-Muriedas
- Systems Modelling and Translational Biology, Data and Computational Sciences, GSK, London, United Kingdom
- Computer-Aided Drug Design, UCB, Slough, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AL); (AB)
| |
Collapse
|
37
|
Pemberton MA, Kimber I. Methyl methacrylate and respiratory sensitisation: a comprehensive review. Crit Rev Toxicol 2022; 52:139-166. [PMID: 35607993 DOI: 10.1080/10408444.2022.2064267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methyl methacrylate (MMA) is classified under GHS as a weak skin sensitiser and a skin and respiratory irritant. It has recently been proposed that MMA be classified as a respiratory sensitiser (a designation that in a regulatory context embraces both true respiratory allergens, as well as chemicals that cause asthma through non-immunological mechanisms). This proposal was based primarily upon the interpretation of human data. This review, and a detailed weight of evidence analysis, has led to another interpretation of these data. The conclusion drawn is that persuasive evidence consistent with the designation of MMA as a respiratory sensitiser is lacking. It is suggested that one reason for different interpretations of these data is that occupational asthma poses several challenges with respect to establishing causation. Among these is that it is difficult to distinguish between allergic asthma, non-allergic asthma, and work-related exacerbation of pre-existing asthma. Moreover, there is a lack of methods for the identification of true chemical respiratory allergens. The characterisation and causation of occupational asthma is consequently largely dependent upon interpretation of human data of various types. Recommendations are made that are designed to improve the utility and interpretation of human data for establishing causation in occupational asthma.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Huliganga E, Marchetti F, O'Brien JM, Chauhan V, Yauk CL. A Case Study on Integrating a New Key Event Into an Existing Adverse Outcome Pathway on Oxidative DNA Damage: Challenges and Approaches in a Data-Rich Area. FRONTIERS IN TOXICOLOGY 2022; 4:827328. [PMID: 35573276 PMCID: PMC9097222 DOI: 10.3389/ftox.2022.827328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Adverse outcome pathways (AOPs) synthesize toxicological information to convey and weigh evidence in an accessible format. AOPs are constructed in modules that include key events (KEs) and key event relationships (KERs). This modular structure facilitates AOP expansion and network development. AOP development requires finding relevant information to evaluate the weight of evidence supporting each KER. To do this, the use of transparent/reproducible search methods, such as systematic review (SR), have been proposed. Applying SR to AOP development in a data-rich area is difficult as SR requires screening each article returned from a search. Here we describe a case study to integrate a single new KE into an existing AOP. We explored the use of SR concepts and software to conduct a transparent and documented literature search to identify empirical data supporting the incorporation of a new KE, increase in cellular reactive oxygen species (ROS), upstream of an existing AOP: “Oxidative DNA Damage Leading to Chromosomal Aberrations and Mutations”. Connecting this KE to the AOP is supported by the development of five new KERs, the most important being the first adjacent KER (increase in ROS leading to oxidative DNA damage). We initially searched for evidence of all five KERs and screened 100 papers to develop a preliminary evidence map. After removing papers not containing relevant data based on our Population, Exposure, Comparator and Outcome statement, 39 articles supported one or more KERs; these primarily addressed temporal or dose concordance of the non-adjacent KERs with limited evidence supporting the first adjacent KER. We thus conducted a second focused set of searches using search terms for specific methodologies to measure these first two KEs. After screening, 12 articles were identified that contained quantitative evidence supporting the first adjacent KER. Given that integrating a new KE into an existing AOP requires the development of multiple KERs, this approach of building a preliminary evidence map, focusing evidence gathering on the first adjacent KER, and applying reproducible search strategies using specific methodologies for the first adjacent KER, enabled us to prioritize studies to support expansion of this data-rich AOP.
Collapse
Affiliation(s)
- Elizabeth Huliganga
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
39
|
Phillips JA, Taub ME, Bogdanffy MS, Yuan J, Knight B, Smith JD, Ku WW. Mode of Action and Human Relevance Assessment of Male CD-1 Mouse Renal Adenocarcinoma Associated With Lifetime Exposure to Empagliflozin. J Appl Toxicol 2022; 42:1570-1584. [PMID: 35393688 DOI: 10.1002/jat.4329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Inhibition of sodium-glucose cotransporter-2 (SGLT2) has been shown to be a safe and efficacious approach to support managing Type 2 diabetes. In the 2-year carcinogenicity study with the SGLT2 inhibitor empagliflozin in CD-1 mice, an increased incidence of renal tubular adenomas and carcinomas was identified in the male high-dose group but was not observed in female mice. An integrated review of available nonclinical data was conducted to establish a mode-of-action hypothesis for male mouse-specific tumorigenesis. Five key events were identified through systematic analysis to form the proposed mode-of-action: (1) Background kidney pathology in CD-1 mice sensitizes the strain to (2) pharmacology-related diuretic effects associated with SGLT2 inhibition. (3) In male mice, metabolic demand increases with the formation of a sex- and species-specific empagliflozin metabolite. These features converge to (4) deplete oxidative stress handling reserve, driving (5) constitutive cellular proliferation in male CD-1 mice. The proposed mode of action requires all five key events for empagliflozin to present a carcinogenicity risk in the CD-1 mouse. Considering that empagliflozin is not genotoxic in the standard battery of genotoxicity tests, and not all five key events are present in the context of female mice, rats or humans, nor for other osmotic diuretics or other SGLT2 inhibitors, the observed male mouse renal tumors are not considered relevant to humans.
Collapse
Affiliation(s)
- Jonathan A Phillips
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals, Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, CT
| | - Matthew S Bogdanffy
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | | | - Brian Knight
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - James D Smith
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| | - Warren W Ku
- Boehringer Ingelheim Pharmaceuticals, Inc., Nonclinical Drug Safety, Ridgefield, CT
| |
Collapse
|
40
|
Yamada T, Lake BG, Cohen SM. Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action. Crit Rev Toxicol 2022; 52:1-31. [PMID: 35275035 DOI: 10.1080/10408444.2022.2035316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
41
|
Hoffmann S, Aiassa E, Angrish M, Beausoleil C, Bois FY, Ciccolallo L, Craig PS, de Vries RBM, Dorne JLCM, Druwe IL, Edwards SW, Eskes C, Georgiadis M, Hartung T, Kienzler A, Kristjansson EA, Lam J, Martino L, Meek B, Morgan RL, Munoz-Guajardo I, Noyes PD, Parmelli E, Piersma A, Rooney A, Sena E, Sullivan K, Tarazona J, Terron A, Thayer K, Turner J, Verbeek J, Verloo D, Vinken M, Watford S, Whaley P, Wikoff D, Willett K, Tsaioun K. Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks. ALTEX 2022; 39:499–518. [PMID: 35258090 PMCID: PMC9466297 DOI: 10.14573/altex.2202141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
The workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders’ trust for implementation of NAM evidence and AOPs into chemical risk assessment.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elisa Aiassa
- European Food Safety Authority (EFSA), Parma, Italy
| | - Michelle Angrish
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | | | | | | | - Rob B. M. de Vries
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ingrid L. Druwe
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | - Chantra Eskes
- SeCAM, Magliaso, Switzerland
- current affiliation: European Food Safety Authority (EFSA), Parma, Italy
| | | | - Thomas Hartung
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Aude Kienzler
- current affiliation: European Food Safety Authority (EFSA), Parma, Italy
- European Commission, Joint Research Centre, Ispra, Italy
| | | | - Juleen Lam
- California State University, East Bay, CA, USA
| | | | | | - Rebecca L. Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Pamela D. Noyes
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Elena Parmelli
- European Commission, Joint Research Centre, Ispra, Italy
| | - Aldert Piersma
- Centre for Health Protection (RIVM), Bilthoven, the Netherlands
| | - Andrew Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | | | - Kris Thayer
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | - Jos Verbeek
- University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Paul Whaley
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Kate Willett
- Humane Society International, Washington, DC, USA
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
42
|
Danzeisen R, Jänig GR, Burzlaff A, Verberckmoes S, Adam J, Viegas V. The underlying mode of action for lung tumors in a tiered approach to the assessment of inhaled cobalt compounds. Regul Toxicol Pharmacol 2022; 130:105140. [PMID: 35158000 DOI: 10.1016/j.yrtph.2022.105140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
A mode of action (MOA) for cobalt substances based on the "International Programme on Chemical Safety Conceptual Framework for Evaluating a MOA for Chemical Carcinogenesis" is presented. The data recorded therein were generated in a tiered testing program described in the preceding papers of this special issue, as well as data from the public domain. The following parameters were included in the evaluation: solubility of cobalt substances in artificial lung fluids (bioelution), in vitro biomarkers for cytotoxicity, reactive oxygen species and hypoxia mimicry, inhalation toxicity following acute exposure and repeated dose inhalation effects. Two distinct groups of cobalt substances emerged: substances inducing all effects across the MOA form one group, associated with the adverse outcome of lung cancer in rodents upon chronic exposure. Another group of cobalt substances induces no or very limited effects in the in vitro and acute testing. Higher tier testing with a representative of this group, tricobalt tetraoxide, showed a response resembling rat lung overload following exposure to high concentrations of poorly soluble particles. Based on the fundamental differences in the lower tier toxicological profile, cobalt substances with an unknown hazard profile can be assigned to either group based on lower tier testing alone.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | - Gerd-Rüdiger Jänig
- Dr. Gerd-Rüdiger Jänig, Toxicological Consulting, 12524, Berlin, Germany
| | - Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | | | - Janine Adam
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| |
Collapse
|
43
|
Paini A, Campia I, Cronin MT, Asturiol D, Ceriani L, Exner TE, Gao W, Gomes C, Kruisselbrink J, Martens M, Meek MB, Pamies D, Pletz J, Scholz S, Schüttler A, Spînu N, Villeneuve DL, Wittwehr C, Worth A, Luijten M. Towards a qAOP framework for predictive toxicology - Linking data to decisions. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100195. [PMID: 35211660 PMCID: PMC8850654 DOI: 10.1016/j.comtox.2021.100195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022]
Abstract
The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of mechanistic data representing multiple biological levels and deriving from a range of methodological approaches including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of reliable data and information to support the inclusion of quantitative considerations in AOP development. An extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, providing a wide range of information, but also requiring guidance for their practical application. A framework for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The proposed framework provides a harmonised approach for both regulators and scientists working in this area.
Collapse
Affiliation(s)
- Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Thomas E. Exner
- Edelweiss Connect GmbH, Technology Park Basel, Basel, Switzerland
| | - Wang Gao
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | | | | | | | - David Pamies
- Department of Physiology, Lausanne and Swiss Centre for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| | - Julia Pletz
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Andreas Schüttler
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Nicoleta Spînu
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
44
|
Acrylonitrile induction of rodent neoplasia: Potential mechanism of action and relevance to humans. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473211055363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acrylonitrile, an industrial chemical, is a multisite carcinogen in rats and mice, producing tumors in four tissues with barrier function, that is, brain, forestomach, Zymbal’s gland, and Harderian gland. To assess mechanism(s) of action (MoA) for induction of neoplasia and to evaluate whether the findings in rodents are indicative of human hazard, data on the potential key effects produced by acrylonitrile in the four rodent target tissues of carcinogenicity were evaluated. A notable finding was depletion of glutathione in various organs, including two target tissues, the brain, and forestomach, suggesting that this effect could be a critical initiating event. An additional combination of oxidative DNA damage and cytotoxic effects of acrylonitrile and its metabolites, cyanide, and 2-cyanoethylene oxide, could initiate pro-inflammatory signaling and sustained cell and tissue injury, leading to compensatory cell proliferation and neoplastic development. The in vivo DNA-binding and genotoxicity of acrylonitrile has been studied in several target tissues with no compelling positive results. Thus, while some mutagenic effects were reported in acrylonitrile-exposed rodents, data to determine whether this mutagenicity stems from direct DNA reactivity of acrylonitrile are insufficient. Accordingly, the induction of tumors in rodents is consistent primarily with a non-genotoxic MoA, although a contribution from weak mutagenicity cannot be ruled out. Mechanistic data to support conclusions regarding human hazard from acrylonitrile exposure is weak. Comparison of metabolism of acrylonitrile between rodents and humans provide little support for human hazard. Three of the tissues affected in bioassays (forestomach, Zymbal’s gland, and Harderian gland) are present only in rodents, while the brain is anatomically different between rodents and humans, diminishing relevance of tumor induction in these tissues to human hazard. Extensive epidemiological data has not revealed causation of human cancer by acrylonitrile.
Collapse
|
45
|
Koterov AN, Ushenkova LN, Biryukov AP. Hill’s “Biological Plausibility” Criterion: Integration of Data from Various Disciplines for Epidemiology and Radiation Epidemiology. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Koterov AN, Ushenkova LN, Biryukov AP. Hill’s Criterion ‘Experiment’: The Counterfactual Approach in Non-Radiation and Radiation Sciences. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol 2022; 51:653-694. [DOI: 10.1080/10408444.2021.2003295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - David A. Bussard
- U.S. Environmental Protection Agency, Office of the Science Advisor, Policy and Engagement, Washington, DC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | - Edward V. Ohanian
- United States Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
48
|
Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – A case study with aromatase inhibition. Reprod Toxicol 2022; 108:43-55. [DOI: 10.1016/j.reprotox.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
|
49
|
Audouze K, Zgheib E, Abass K, Baig AH, Forner-Piquer I, Holbech H, Knapen D, Leonards PEG, Lupu DI, Palaniswamy S, Rautio A, Sapounidou M, Martin OV. Evidenced-Based Approaches to Support the Development of Endocrine-Mediated Adverse Outcome Pathways: Challenges and Opportunities. FRONTIERS IN TOXICOLOGY 2021; 3:787017. [PMID: 35295112 PMCID: PMC8915810 DOI: 10.3389/ftox.2021.787017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Elias Zgheib
- Université de Paris, T3S, Inserm U1124, Paris, France
| | - Khaled Abass
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
- Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Asma H. Baig
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pim E. G. Leonards
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diana I. Lupu
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Arja Rautio
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Maria Sapounidou
- Department of Chemistry, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Olwenn V. Martin
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
50
|
Parmentier C, Baze A, Untrau M, Kampkoetter A, Lasserre D, Richert L. Evaluation of human relevance of Nicofluprole-induced rat thyroid disruption. Toxicol Appl Pharmacol 2021; 435:115831. [PMID: 34922950 DOI: 10.1016/j.taap.2021.115831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Nicofluprole is a novel insecticide of the phenylpyrazole class conferring selective antagonistic activity on insect GABA receptors. After repeated daily dietary administration to Wistar rats for 28/90 days, Nicofluprole induced increases in thyroid (and liver) weight, associated with histopathology changes. Nicofluprole did not inhibit thyroid peroxydase nor sodium/iodide symporter, two key players in the biosynthesis of thyroid hormones, indicating the absence of a direct thyroid effect. The results seen in rats suggested a mode of action of Nicofluprole driven by the molecular initiating event of CAR/PXR nuclear receptor activation in livers, with key events of increases in liver weight and hypertrophy, decreasing circulatory thyroid hormones, a compensatory increase in TSH release and follicular cell hypertrophy. To explore the relevance of these changes to humans, well established in vitro rat and human sandwich-cultured hepatocytes were exposed to Nicofluprole up to 7 days. A concentration-dependent CYP3A induction (PXR-activation), an increase in T4-glucuronoconjugation accompanied by UGT1A/2B inductions was observed in rat but not in human hepatocytes. The inductions seen with Nicofluprole in rat (in vivo and in vitro in hepatocytes) that were absent in human hepatocytes represent another example of species-selectivity of nuclear CAR/PXR receptor activators. Importantly, the different pattern observed in rat and human models demonstrate that Nicofluprole-related thyroid effects observed in the rat are with no human relevance.
Collapse
Affiliation(s)
- Céline Parmentier
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| | - Audrey Baze
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| | - Meiggie Untrau
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France
| | - Andreas Kampkoetter
- Bayer Animal Health GmbH, An Elanco Animal Health Company, 50 Alfred-Nobel-Strasse, 40789 Monheim, Germany.
| | - Dominique Lasserre
- Bayer S.A.S. Bayer CropScience, 355 rue Dostoïevski, F-06560 Sophia Antipolis, France.
| | - Lysiane Richert
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| |
Collapse
|