1
|
Behr AC, Fæste CK, Azqueta A, Tavares AM, Spyropoulou A, Solhaug A, Olsen AK, Vettorazzi A, Mertens B, Zegura B, Streel C, Ndiaye D, Spilioti E, Dubreil E, Buratti FM, Crudo F, Eriksen GS, Snapkow I, Teixeira JP, Rasinger JD, Sanders J, Machera K, Ivanova L, Gaté L, Le Hegarat L, Novak M, Smith NM, Tait S, Fraga S, Hager S, Marko D, Braeuning A, Louro H, Silva MJ, Dirven H, Dietrich J. Hazard characterization of the mycotoxins enniatins and beauvericin to identify data gaps and improve risk assessment for human health. Arch Toxicol 2025:10.1007/s00204-025-03988-3. [PMID: 40137953 DOI: 10.1007/s00204-025-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
Enniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | | | - Amaya Azqueta
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ana M Tavares
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Anita Solhaug
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Ann-Karin Olsen
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ariane Vettorazzi
- Department for Environmental Chemistry and Health Effects, NILU Climate and Environment Institute, PO Box 100, 2027, Kjeller, Norway
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Zegura
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Camille Streel
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Dieynaba Ndiaye
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Estelle Dubreil
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Franca Maria Buratti
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesco Crudo
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - João Paulo Teixeira
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Josef D Rasinger
- IMR Norwegian Institute of Marine Research, Nordnes, PO box 1870, 5817, Bergen, Norway
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Lada Ivanova
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Laurent Gaté
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Ludovic Le Hegarat
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Matjaz Novak
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Sabrina Tait
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sónia Fraga
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Sonja Hager
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Albert Braeuning
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
3
|
Althouse GC. Contaminant toxicity of concern for boars and semen used in assisted reproduction programs. Anim Reprod Sci 2024; 269:107519. [PMID: 38897823 DOI: 10.1016/j.anireprosci.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
The commercial swine industry utilizes artificial insemination (AI) in their breeding programs. With this assisted reproductive technology, the process starts by obtaining fresh ejaculates from desirable boars who are housed in a dedicated facility (i.e., stud) that also contains a clean-room laboratory where semen quality is assessed and then ejaculates processed into AI doses. In concert with AI adoption, disruptions in sow herd reproductive performance have been traced back to contributions made from the boar stud. Through field investigations and research, several extrinsic contaminants have been identified that impact semen quality either at the boar or AI-dose level. These contaminants can be categorized as either biological or chemical in origin, eliciting reprotoxic outcomes at the boar level and/or spermatotoxicity at the AI-dose level. Biological contaminants include multiple genera of primarily opportunistic microbes (i.e., bacteria, fungi), along with their secondary metabolites (e.g., endotoxins, exotoxins, mycotoxins). Chemical contaminants appear to originate from products used at the stud, and include cleaning agent/disinfectant residues, leachates from gloves and plastics, semen extender impurities, purified and drinking water impurities, and pesticides (i.e., biocides, fungicides, herbicides, insecticides, wood preservatives). In conclusion, contaminants are a real and constant threat to the health and productivity of a stud, and have caused significant reproductive and economic losses in the swine industry. The knowledge gained in recognizing the types and sources of contaminants provides a solid foundation for the development and implementation of pro-active strategies that mitigate risk to the industry.
Collapse
Affiliation(s)
- G C Althouse
- Department of Clinical Studies, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA.
| |
Collapse
|
4
|
Laouni C, Lara FJ, Messai A, Redouane-Salah S, Hernández-Mesa M, Gámiz-Gracia L, García-Campaña AM. Emerging mycotoxin occurrence in chicken feed and eggs from Algeria. Mycotoxin Res 2024; 40:447-456. [PMID: 38753281 PMCID: PMC11258080 DOI: 10.1007/s12550-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 07/19/2024]
Abstract
Poultry farming has developed into one of Algeria's most productive industrial farming because of the growing demand for sources of protein among Algerian society. Laying hen feed consists mainly of cereals, which can be contaminated with molds and subsequently with their secondary metabolites known as mycotoxins. These later can pose a serious danger to the production and quality of eggs in the commercial layer industry. This work focuses on the detection of emerging mycotoxins, mainly enniatins (ENNs) and beauvericin (BEA), in poultry feed and eggs from different locations in Algeria. Two different QuEChERS-based extractions were established to extract ENNs and BEA from chicken feed and eggs. The determination of mycotoxin occurrence was achieved by a UHPLC-MS/MS method using 0.1% (v/v) formic acid in water and MeOH as mobile phase, an ESI interface operating in positive mode, and a triple quadrupole mass spectrometer operating in MRM for the detection. Matrix-matched calibration curves were carried out for both matrices, obtaining good linearity (R2 > 0.99). The method performance was assessed in terms of extraction recovery (from 87 to 107%), matrix effect (from - 47 to - 86%), precision (RSD < 15%), and limits of quantitation (≤ 1.1 µg/kg for feed and ≤ 0.8 µg/kg for eggs). The analysis of 10 chicken feed samples and 35 egg samples composed of a 10-egg pool each showed that ENN B1 was the most common mycotoxin (i.e., found in 9 feed samples) with contamination levels ranging from 3.6 to 41.5 µg/kg, while BEA was detected only in one feed sample (12 µg/kg). However, eggs were not found to be contaminated with any mycotoxin at the detection limit levels. Our findings indicate that the searched mycotoxins are present in traces in feed and absent in eggs. This can be explained by the application of a mycotoxin binder. However, this does not put a stop on the conduction of additional research and ultimately setting regulations to prevent the occurrence of emerging mycotoxins.
Collapse
Affiliation(s)
- Chahinez Laouni
- DEDSPAZA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ahmed Messai
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Sara Redouane-Salah
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Juan-García A, Ilie AM, Juan C, Martínez L. Evaluating the combined and individual cytotoxic effect of beauvericin, enniatin B and ochratoxin a on breast cancer cells, leukemia cells, and fresh peripheral blood mononuclear cells. Toxicol In Vitro 2024; 99:105890. [PMID: 38972516 DOI: 10.1016/j.tiv.2024.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Beauvericin (BEA), Enniatin B (ENN B), and Ochratoxin A (OTA) are mycotoxins produced by fungi species. Their main effect on several organs and systems is associated with chronic exposure going from immunotoxicity, estrogenic disorders, and renal failure to cancer (in animals and humans). OTA belongs to Group 1 according to the International Agency for Research in Cancer (IARC) and it has legislated limited values; not happening for BEA nor ENN B. Exposure to mixtures of mycotoxins occurs through food intake in daily consumption. The aim of this study was to evaluate the implication of BEA, ENN B, and OTA individually and combined in producing cytotoxicity in cells for immunological studies and cancer cell lines (human leukemia cells (HL-60), fresh human peripheral blood mononuclear cells (PBMCs), and human breast cancer (MDA-MB-231) cells). Cells were treated for 4 h and 24 h at different concentrations of BEA, ENN B, and OTA, respectively. Viability assays were carried out by flow cytometry using DAPI (4',6-diamindino-2-phenylindole, dihydrochloride) as a viability dye and the potential effects of synergism, addition, and antagonism were assessed through the Chou and Talalay method. Individual OTA treatment exerted the greatest cytotoxicity for PBMC cells (IC50 0.5 μM) while ENN B for HL-60 (IC50 0.25 μM) and MDA-MB-231 (IC50 0.15 μM). In binary combination [ENN B + OTA] resulted in exerting the greatest cytotoxicity for HL-60 and MDA-MB-231 cells; while [BEA + OTA] in PBMC cells. The triple combination resulted in being highly cytotoxic for PBMC cells compared to HL-60 and MDA-MB-231 cells. In summary, PBMC cells were the most sensible cells for all three mycotoxins and the presence of OTA in any of the combinations had the greatest toxicity causing synergism as the most common cytotoxic effect.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; Flow Cytometry Core Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.
| | - Ana-María Ilie
- Flow Cytometry Core Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
6
|
Li L, Li S, Ma H, Akhtar MF, Tan Y, Wang T, Liu W, Khan A, Khan MZ, Wang C. An Overview of Infectious and Non-Infectious Causes of Pregnancy Losses in Equine. Animals (Basel) 2024; 14:1961. [PMID: 38998073 PMCID: PMC11240482 DOI: 10.3390/ani14131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Equine breeding plays an essential role in the local economic development of many countries, and it has experienced rapid growth in China in recent years. However, the equine industry, particularly large-scale donkey farms, faces a significant challenge with pregnancy losses. Unfortunately, there is a lack of systematic research on abortion during equine breeding. Several causes, both infectious and non-infectious, of pregnancy losses have been documented in equines. The infectious causes are viruses, bacteria, parasites, and fungi. Non-infectious causes may include long transportation, ingestion of mycotoxins, hormonal disturbances, twinning, placentitis, umbilical length and torsion, etc. In current review, we discuss the transmission routes, diagnostic methods, and control measures for these infectious agents. Early detection of the cause and appropriate management are crucial in preventing pregnancy loss in equine practice. This review aims to provide a comprehensive understanding of the potential causes of abortion in equines, including infectious agents and non-infectious factors. It emphasizes the importance of continued research and effective control measures to address this significant challenge in the equine industry.
Collapse
Affiliation(s)
- Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Shuwen Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Haoran Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Muhammad Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Ying Tan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (L.L.)
| |
Collapse
|
7
|
Perego MC, Spicer LJ, Cortinovis C, Bertero A, Caloni F. In vitro effects of two environmental toxicants, beauvericin and glyphosate in Roundup, on cell numbers and steroidogenesis of bovine ovarian cells. Vet Res Commun 2024; 48:1769-1778. [PMID: 38558370 DOI: 10.1007/s11259-024-10357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Beauvericin is an emerging Fusariotoxin naturally occurring in cereal grains throughout the world whereas glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide used worldwide. The purpose of this study is to evaluate a newly developed ovarian cell culture system (that includes both granulosa and theca cells) as an in vitro model for toxicological studies. Specifically, the effects of beauvericin and glyphosate in formulation with Roundup on ovarian cell numbers and steroid production were evaluated. Ovaries collected from cattle without luteal structures were sliced into 30-70 pieces each, and granulosa and theca cells were collected. Harvested cells were cultured for 48 h in 10% fetal bovine serum-containing medium followed by 48 h in serum-free medium containing testosterone (500 ng/mL; as an estrogen precursor) with the following eight treatments: (1) controls, (2) FSH (30 ng/mL) alone, (3) FSH plus insulin-like growth factor-1 (IGF1; 30 ng/mL), (4) FSH plus IGF1 plus beauvericin (3 µM), (5) FSH plus IGF1 plus glyphosate in Roundup (10 µg/mL), (6) FSH plus IGF1 plus fibroblast growth factor 9 (FGF9, 30 ng/mL), (7) a negative control without added testosterone, and (8) IGF1 plus LH (30 ng/mL) with basal medium without added testosterone. In the presence of FSH, IGF1 significantly increased cell numbers, estradiol and progesterone production by severalfold. Glyphosate in Roundup formulation significantly inhibited IGF1-induced cell numbers and estradiol and progesterone production by 89-94%. Beauvericin inhibited IGF1-induced cell numbers and estradiol and progesterone by 50-97% production. LH plus IGF1 significantly increased androstenedione secretion compared with controls without added testosterone indicating the presence of theca cells. In conclusion, the present study demonstrates that toxicological effects of beauvericin and glyphosate in Roundup formulation are observed in a newly developed ovarian cell model system and further confirms that both glyphosate and beauvericin may have the potential to impair reproductive function in cattle.
Collapse
Affiliation(s)
- M C Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - C Cortinovis
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, Milan, 20133, Italy
| | - A Bertero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - F Caloni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, Milan, 20133, Italy
| |
Collapse
|
8
|
Penagos-Tabares F, Khiaosa-Ard R, Faas J, Steininger F, Papst F, Egger-Danner C, Zebeli Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J Dairy Sci 2024; 107:1124-1142. [PMID: 37709039 DOI: 10.3168/jds.2023-23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the <25th and >75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance.
Collapse
Affiliation(s)
- F Penagos-Tabares
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J Faas
- DSM-BIOMIN Research Center, Tulln a.d., 3430 Donau, Austria
| | - F Steininger
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - F Papst
- Institute of Technical Informatics, TU Graz/CSH Vienna, 8010 Graz, Austria
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - Q Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
9
|
Castell A, Arroyo-Manzanares N, Palma-Manrique R, Campillo N, Torres C, Fenoll J, Viñas P. Evaluation of distribution of emerging mycotoxins in human tissues: applications of dispersive liquid-liquid microextraction and liquid chromatography-mass spectrometry. Anal Bioanal Chem 2024; 416:449-459. [PMID: 37987769 PMCID: PMC10761373 DOI: 10.1007/s00216-023-05040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
In this work, a complete study of the distribution of emerging mycotoxins in the human body has been carried out. Specifically, the presence of enniatins (A, A1, B, B1) and beauvericin has been monitored in brain, lung, kidney, fat, liver, and heart samples. A unique methodology based on solid-liquid extraction (SLE) followed by dispersive liquid-liquid microextraction (DLLME) was proposed for the six different matrices. Mycotoxin isolation was performed by adding ultrapure water, acetonitrile, and sodium chloride to the tissue sample for SLE, while the DLLME step was performed using chloroform as extraction solvent. Subsequently, the analysis was carried out by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The proposed method allowed limits of quantification (LOQs) to be obtained in a range of 0.001-0.150 ng g-1, depending on the tissue and mycotoxin. The precision was investigated intraday and interday, not exceeding of 9.8% of relative standard deviation. In addition, trueness studies achieved 75 to 115% at a mycotoxin concentration of 25 ng g-1 and from 82 to 118% at 5 ng g-1. The application of this methodology to 26 forensic autopsies demonstrated the bioaccumulation of emerging mycotoxins in the human body since all mycotoxins were detected in tissues. Enniatin B (ENNB) showed a high occurrence, being detected in 100% of liver (7 ± 13 ng g-1) and fat samples (0.2 ± 0.8 ng g-1). The lung had a high incidence of all emerging mycotoxins at low concentrations, while ENNB, ENNB1, and ENNA1 were not quantifiable in heart samples. Co-occurrence of mycotoxins was also investigated, and statistical tests were applied to evaluate the distribution of these mycotoxins in the human body.
Collapse
Affiliation(s)
- Ana Castell
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| | - Rosa Palma-Manrique
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Carmen Torres
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - José Fenoll
- Murcia Institute of Agricultural and Alimentary Research and Development IMIDA, 30150, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
10
|
Pecora G, Sciarra F, Gangitano E, Venneri MA. How Food Choices Impact on Male Fertility. Curr Nutr Rep 2023; 12:864-876. [PMID: 37861951 PMCID: PMC10766669 DOI: 10.1007/s13668-023-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting an association between nutrition and male fertility. Here, we have highlighted the impact of the various food groups on reproductive hormones and on spermatogenesis, and the effects of classical and latest dietary patterns such as Mediterranean diet, Western diet, intermittent fasting, ketogenic diet, and vegan/vegetarian diet on male fertility. RECENT FINDINGS Nutrients are the precursors of molecules involved in various body's reactions; therefore, their balance is essential to ensure the correct regulation of different systems including the endocrine system. Hormones are strongly influenced by the nutritional status of the individual, and their alteration can lead to dysfunctions or diseases like infertility. In addition, nutrients affect sperm production and spermatogenesis, controlling sexual development, and maintaining secondary sexual characteristics and behaviors. The consumption of fruit, vegetables, fish, processed meats, dairy products, sugars, alcohol, and caffeine importantly impact on male fertility. Among dietary patterns, the Mediterranean diet and the Western diet are most strongly associated with the quality of semen. Nutrients, dietary patterns, and hormonal levels have an impact on male infertility. Therefore, understanding how these factors interact with each other is important for strategies to improve male fertility.
Collapse
Affiliation(s)
- Giulia Pecora
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy.
| |
Collapse
|
11
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
De Felice B, Spicer LJ, Caloni F. Enniatin B1: Emerging Mycotoxin and Emerging Issues. Toxins (Basel) 2023; 15:383. [PMID: 37368684 DOI: 10.3390/toxins15060383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Although over the last 10 years several studies have focused on the emerging mycotoxins known as enniatins (ENNs), there is still a lack of knowledge regarding their toxicological effects and the development of a correct risk assessment. This is especially true for enniatin B1 (ENN B1), considered the younger sister of the widely studied enniatin B (ENN B). ENN B1 has been found in several food commodities and, as with other mycotoxins, presents antibacterial and antifungal properties. On the other hand, ENN B1 has shown cytotoxic activity, impairment of the cell cycle, the induction of oxidative stress, and changes in mitochondrial membrane permeabilization, as well as negative genotoxic and estrogenic effects. Overall, considering the paucity of information available regarding ENN B1, further studies are necessary to perform a risk assessment. This review summarizes information on the biological characteristics and toxicological effects of ENN B1 as well as the future challenges that this mycotoxin could present.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
13
|
Cooray A, Kim J, Nirujan BR, Jayathilake NJ, Lee KP. Pharmacological Evidence Suggests That Slo3 Channel Is the Principal K + Channel in Boar Spermatozoa. Int J Mol Sci 2023; 24:ijms24097806. [PMID: 37175513 PMCID: PMC10178124 DOI: 10.3390/ijms24097806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Sperm ion channels are associated with the quality and type of flagellar movement, and their differential regulation is crucial for sperm function during specific phases. The principal potassium ion channel is responsible for the majority of K+ ion flux, resulting in membrane hyperpolarization, and is essential for sperm capacitation-related signaling pathways. The molecular identity of the principal K+ channel varies greatly between different species, and there is a lack of information about boar K+ channels. We aimed to determine the channel identity of boar sperm contributing to the primary K+ current using pharmacological dissection. A series of Slo1 and Slo3 channel modulators were used for treatment. Sperm motility and related kinematic parameters were monitored using a computer-assisted sperm analysis system under non-capacitated conditions. Time-lapse flow cytometry with fluorochromes was used to measure changes in different intracellular ionic concentrations, and conventional flow cytometry was used to determine the acrosome reaction. Membrane depolarization, reduction in acrosome reaction, and motility parameters were observed upon the inhibition of the Slo3 channel, suggesting that the Slo3 gene encodes the main K+ channel in boar spermatozoa. The Slo3 channel was localized on the sperm flagellum, and the inhibition of Slo3 did not reduce sperm viability. These results may aid potential animal-model-based extrapolations and help to ameliorate motility and related parameters, leading to improved assisted reproductive methods in industrial livestock production.
Collapse
Affiliation(s)
- Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beno Ramesh Nirujan
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Berntssen MHG, Fjeldal PG, Gavaia PJ, Laizé V, Hamre K, Donald CE, Jakobsen JV, Omdal Å, Søderstrøm S, Lie KK. Dietary beauvericin and enniatin B exposure cause different adverse health effects in farmed Atlantic salmon. Food Chem Toxicol 2023; 174:113648. [PMID: 36736876 DOI: 10.1016/j.fct.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The extensive use of plant ingredients in novel aquafeeds have introduced mycotoxins to the farming of seafood. The emerging enniatin B (ENNB) and beauvericin (BEA) mycotoxins have been found in the novel aquafeeds and farmed fish. Little is known about the potential toxicity of ENNs and BEA in farmed fish and their feed-to-organ transfer. Atlantic salmon (Salmo salar) pre-smolt (75.3 ± 8.10 g) were fed four graded levels of spiked chemical pure ENNB or BEA feeds for three months, in triplicate tanks. Organismal adverse health end-point assessment included intestinal function (protein digestibility), disturbed hematology (red blood cell formation), bone formation (spinal deformity), overall energy use (feed utilization), and lipid oxidative status (vitamin E). Both dietary BEA and ENNB had a low (<∼0.01%) transfer to organs (kidney > liver > brain > muscle), with a higher transfer for ENNB compared to BEA. BEA caused a growth reduction combined with a decreased protein digestion and feed conversion rate- ENNB caused a stunted growth, unrelated to feed utilization capacity. In addition, ENNB caused anemia while BEA gave an oxidative stress response. Lower bench-mark dose regression assessment showed that high background levels of ENNB in commercial salmon feed could pose a risk for animal health, but not in the case of BEA.
Collapse
Affiliation(s)
| | - P G Fjeldal
- Institute of Marine Research, Bergen, Norway
| | - P J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - V Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - K Hamre
- Institute of Marine Research, Bergen, Norway
| | - C E Donald
- Institute of Marine Research, Bergen, Norway
| | - J V Jakobsen
- Cargill Aqua Nutrition Innovation Center, Dirdal, Norway
| | - Å Omdal
- Institute of Marine Research, Bergen, Norway
| | | | - K K Lie
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
15
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
16
|
Chiminelli I, Spicer LJ, Maylem ERS, Caloni F. In Vitro Effects of Enniatin A on Steroidogenesis and Proliferation of Bovine Granulosa Cells. Toxins (Basel) 2022; 14:toxins14100714. [PMID: 36287982 PMCID: PMC9607026 DOI: 10.3390/toxins14100714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The emerging Fusarium mycotoxins enniatins (ENNs) have been the focus of new research because of their well-documented existence in various cereal and grain products. Research findings indicate that reproductive disorders may be caused by exposure to Fusarium mycotoxins, but little work has evaluated ENNs on reproductive function. Therefore, to determine the effects of ENNA on the proliferation and steroidogenesis of granulosa cells (GC), experiments were conducted using bovine GC cultures. In vitro, ENNA (1−5 μM) inhibited (p < 0.05) hormone-induced GC progesterone and estradiol production. The inhibitory effect of ENNA on estradiol production was more pronounced in small- than large-follicle GC. In large-follicle GC, 0.3 μM ENNA had no effect (p > 0.10) whereas 1 and 3 μM ENNA inhibited GC proliferation. In small-follicle GC, ENNA (1−5 μM) dramatically decreased (p < 0.05) GC proliferation. Using cell number data, the IC50 of ENNA was estimated at 2 μM for both follicle sizes. We conclude that ENNA can directly inhibit ovarian function in cattle, decreasing the proliferation and steroid production of GC.
Collapse
Affiliation(s)
- Ilaria Chiminelli
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
| | - Leon J. Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Excel Rio S. Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
17
|
P12-24 Emerging mycotoxins: in vitro transport on IPEC-J2 intestinal barrier. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Spicer LJ, Schütz LF. Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro. Food Chem Toxicol 2022; 167:113288. [PMID: 35820639 DOI: 10.1016/j.fct.2022.113288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Myricetin (a flavonol) and piceatannol (a stilbenoid) are naturally occurring phenolic compounds in red wine with cardio-protective and anti-carcinogenic effects, but their potential reproductive effects have not been investigated. Thus, the present study was designed to determine if myricetin and piceatannol can directly affect ovarian function using bovine granulosa cells (GC) and theca cells (TC) as in vitro model systems to evaluate effects on cell proliferation and steroid production. In Experiment 1 and 2, myricetin and piceatannol at 30 μM blocked insulin-like growth factor 1 (IGF1)-induced progesterone production by GC without affecting GC numbers. In contrast, myricetin stimulated IGF1-induced estradiol production, whereas piceatannol at 30 μM inhibited IGF1-induced estradiol production by 90% in GC. In Experiment 3 and 4, TC androstenedione and progesterone production and TC proliferation was inhibited by myricetin and piceatannol at 30 μM. In Experiment 5, piceatannol (30 μM) reduced the Fusarium mycotoxin, beauvericin (6 μM)-induced inhibition on progesterone production and cell proliferation. Myricetin (30 μM) reduced the inhibitory effect of beauvericin on estradiol but not progesterone production or cell proliferation. In conclusion, the red wine phenols, myricetin and piceatannol, directly affected GC and TC steroidogenesis, and were able to reduce some of the inhibitory effects of beauvericin on GC function.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|