1
|
Garcia-Rico E, Correa-Duarte MA, Alvarez-Puebla RA. Precision oncology through SERS: emerging approaches for improved cancer diagnosis and prognosis. Nanomedicine (Lond) 2025:1-4. [PMID: 40293175 DOI: 10.1080/17435889.2025.2497745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Affiliation(s)
- Eduardo Garcia-Rico
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Facultad de Ciencias de la salud de la Universidad Camilo Jose Cela, Villafranca del Castillo, Spain
- Department of Medical Oncology, Hospital HM Torrelodones, Madrid, Spain
| | | | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira I Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Li J, Yu H, Zhao J, Qiao X, Chen X, Lu Z, Li Q, Lin H, Wu W, Zeng W, Yang Z, Feng Y. Metal-Organic Framework-Based Surface-Enhanced Raman Scattering Sensing Platform for Trace Malondialdehyde Detection in Tears. NANO LETTERS 2024; 24:7792-7799. [PMID: 38860501 DOI: 10.1021/acs.nanolett.4c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Disease biomarkers in tears are crucial for clinical diagnosis and health monitoring. However, the limited volume of tear samples, low concentration of tear biomarkers, and complex tear composition present challenges for precise testing. We introduce a spot-on testing platform of metal-organic framework (MOF)-based surface-enhanced Raman scattering (SERS) capillary column, which is capable of target molecules selective separation and enrichment for tear biomarkers in situ detection. It consists of Au nanostars for effective SERS signal and a porous MOF shell for separating impurities through molecular sieving effect. This platform allows for simultaneous collection and detection of tear, capturing the disease biomarker malondialdehyde in tears with a 9.38 × 10-9 mol/L limit of detection. Moreover, we designed a hand-held device based on this tubular SERS sensor, successfully diagnosing patients with dry eye disease. This functional capillary column enables noninvasive and rapid diagnosis of biomarkers in biofluids, providing potential for disease diagnosis and healthcare monitoring.
Collapse
Affiliation(s)
- Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, P. R. China
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Jianming Zhao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, P. R. China
| | - Xuezhi Qiao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Xiangyu Chen
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Qiaoyu Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Haimiao Lin
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, P. R. China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
3
|
Vigo F, Tozzi A, Disler M, Gisi A, Kavvadias V, Kavvadias T. Vibrational Spectroscopy in Urine Samples as a Medical Tool: Review and Overview on the Current State-of-the-Art. Diagnostics (Basel) 2022; 13:diagnostics13010027. [PMID: 36611319 PMCID: PMC9818072 DOI: 10.3390/diagnostics13010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Although known since the first half of the twentieth century, the evolution of spectroscopic techniques has undergone a strong acceleration after the 2000s, driven by the successful development of new computer technologies suitable for analyzing the large amount of data obtained. Today's applications are no longer limited to analytical chemistry, but are becoming useful instruments in the medical field. Their versatility, rapidity, the volume of information obtained, especially when applied to biological fluids that are easy to collect, such as urine, could provide a novel diagnostic tool with great potential in the early detection of different diseases. This review aims to summarize the existing literature regarding spectroscopy analyses of urine samples, providing insight into potential future applications.
Collapse
Affiliation(s)
- Francesco Vigo
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Correspondence:
| | - Alessandra Tozzi
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| | - Muriel Disler
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Alessia Gisi
- Faculty of Medicine, University of Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | | | - Tilemachos Kavvadias
- Department of Gynecology and Obstetrics, University Hospital of Basel Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
4
|
Lopes C, Chaves J, Ortigão R, Dinis‐Ribeiro M, Pereira C. Gastric cancer detection by non-blood-based liquid biopsies: A systematic review looking into the last decade of research. United European Gastroenterol J 2022; 11:114-130. [PMID: 36461757 PMCID: PMC9892482 DOI: 10.1002/ueg2.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) screening is arguable in most Western countries. Liquid biopsies are a great promise to answer the unmet need for less invasive diagnostic biomarkers in GC. Thus, we aimed at systematically reviewing the current knowledge on liquid biopsy-based biomarkers in GC screening. A systematic search on PubMed/MEDLINE and Scopus databases was performed on published articles reporting the use of non-blood specimen (saliva, gastric juice [GJ], urine and stool) on GC diagnosis. 3208 records were retrieved by June 2022. After removal of duplicate records, 2379 abstracts were screened, and 84 full texts included in this systematic review. More than 90% of studies were reported on Asian populations. Overall, 9 studies explored stool-, 12 saliva-, and 29 urine-derived biomarkers for GC detection. Additionally, 37 studies, representing the majority, analyzed GJ, focusing on nucleic acid molecules. Several miRNAs and lncRNA molecules have been associated with GC risk, particularly miR-21 (area under the curve [AUC] = 0.97, 95% CI: 0.94-1.00). Considering salivary biomarkers, the best described model in validation sets included the soybean agglutinin and Vicia villosa agglutinin lectins (AUC = 0.89, 95% CI: 0.80-0.99). Most studies in urine carried out metabolomic approaches, with two discriminatory models presenting AUC values superior to 0.97. This systematic review emphasizes the potential role of non-blood-based biomarkers, although further validation, particularly in Western countries, is mandatory, namely for non-invasive screening and/or monitoring, as well as the use of GJ as a tool to enhance upper gastrointestinal endoscopy accuracy.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal,ICBAS‐UP – Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
| | - Jéssica Chaves
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Raquel Ortigão
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Mário Dinis‐Ribeiro
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal
| |
Collapse
|
5
|
Constantinou M, Hadjigeorgiou K, Abalde-Cela S, Andreou C. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS APPLIED NANO MATERIALS 2022; 5:12276-12299. [PMID: 36210923 PMCID: PMC9534173 DOI: 10.1021/acsanm.2c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful analytical technique for the detection of small analytes with great potential for medical diagnostic applications. Its high sensitivity and excellent molecular specificity, which stems from the unique fingerprint of molecular species, have been applied toward the detection of different types of cancer. The noninvasive and rapid detection offered by SERS highlights its applicability for point-of-care (PoC) deployment for cancer diagnosis, screening, and staging, as well as for predicting tumor recurrence and treatment monitoring. This review provides an overview of the progress in label-free (direct) SERS-based chemical detection for cancer diagnosis with the main focus on the advances in the design and preparation of SERS substrates on the basis of metal nanoparticle structures formed via bottom-up strategies. It begins by introducing a synopsis of the working principles of SERS, including key chemometric approaches for spectroscopic data analysis. Then it introduces the advances of label-free sensing with SERS in cancer diagnosis using biofluids (blood, urine, saliva, sweat) and breath as the detection media. In the end, an outlook of the advances and challenges in cancer diagnosis via SERS is provided.
Collapse
Affiliation(s)
- Marios Constantinou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Katerina Hadjigeorgiou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Sara Abalde-Cela
- International
Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Chrysafis Andreou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| |
Collapse
|
6
|
Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer 2022; 126:1125-1139. [PMID: 34893761 PMCID: PMC8661339 DOI: 10.1038/s41416-021-01659-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Despite significant improvements in the way breast cancer is managed and treated, it continues to persist as a leading cause of death worldwide. If detected and diagnosed early, when tumours are small and localised, there is a considerably higher chance of survival. However, current methods for detection and diagnosis lack the required sensitivity and specificity for identifying breast cancer at the asymptomatic or very early stages. Thus, there is a need to develop more rapid and reliable methods, capable of detecting disease earlier, for improved disease management and patient outcome. Raman spectroscopy is a non-destructive analytical technique that can rapidly provide highly specific information on the biochemical composition and molecular structure of samples. In cancer, it has the capacity to probe very early biochemical changes that accompany malignant transformation, even prior to the onset of morphological changes, to produce a fingerprint of disease. This review explores the application of Raman spectroscopy in breast cancer, including discussion on its capabilities in analysing both ex-vivo tissue and liquid biopsy samples, and its potential in vivo applications. The review also addresses current challenges and potential future uses of this technology in cancer research and translational clinical application.
Collapse
|
7
|
Dawuti W, Zheng X, Liu H, Zhao H, Dou J, Sun L, Chu J, Lin R, Lü G. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagnosis Photodyn Ther 2022; 38:102811. [PMID: 35304310 DOI: 10.1016/j.pdpdt.2022.102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
In this paper, we investigated the feasibility of using urine surface-enhanced Raman spectroscopy (SERS) for the rapid screening of patients with liver cirrhosis and hepatocellular carcinoma (HCC). The SERS spectra were recorded from the urine of 49 liver cirrhosis, 55 HCC, and 50 healthy volunteers using a Raman spectrometer. The normalized mean Raman spectra showed the difference of specific biomolecules associated with the illnesses, and the metabolism of specific nucleic acids and amino acids is abnormal in patients with liver cirrhosis and HCC. Based on the SVM algorithm, the urine SERS method could identify liver cirrhosis (sensitivity 88.9%, specificity 83.3%, and accuracy 85.9%) and HCC (sensitivity 85.5%, specificity 84.0%, and accuracy 84.8%). It has a higher diagnostic sensitivity for HCC than serum Alpha fetoprotein (AFP). This exploratory study showed that the urine SERS spectra combined with the SVM algorithm has indicated great potential in the noninvasive identification of liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Wubulitalifu Dawuti
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiangxiang Zheng
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jingrui Dou
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
8
|
Gao S, Lin Y, Zhao X, Gao J, Xie S, Gong W, Yu Y, Lin J. Label-free surface enhanced Raman spectroscopy analysis of blood serum via coffee ring effect for accurate diagnosis of cancers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120605. [PMID: 34802933 DOI: 10.1016/j.saa.2021.120605] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is considered as an ultrasensitive, non-invasive as well as rapid detection technology for cancer diagnosis. In this study, we developed a novel blood serum analysis strategy using coffee ring effect-assisted label-free SERS for different types of cancer screening. Additionally, the pretreated Ag nanoparticles (Ag NPs) were mixed with the serum from liver cancer patients (n = 40), prostate cancer patients (n = 32) and healthy volunteers (n = 30) for SERS measurement. The droplets of Ag NPs-serum mixture formed the coffee ring on the peripheral after air-drying, and thus extremely enhancing Raman signal and ensuring the stability and reliability of SERS detection. Partial least square (PLS) and support vector machine (SVM) algorithms were utilized to establish the diagnosis model for SERS spectra data classifying, yielding the high diagnostic accuracy of 98.04% for normal group and two types of cancers simultaneously distinguishing. More importantly, for the unknown testing set, an ideal diagnostic accuracy of 100% could be achieved by PLS-SVM algorithm for differentiating cancers from the normal group. The results from this exploratory work demonstrate that serum SERS detection combined with PLS-SVM diagnostic algorithm and coffee ring effect has great potential for the noninvasive and label-free detection of cancer.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and the Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, China; Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yamin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Xin Zhao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiamin Gao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shusen Xie
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China; Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Aitekenov S, Sultangaziyev A, Abdirova P, Yussupova L, Gaipov A, Utegulov Z, Bukasov R. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit Rev Anal Chem 2022; 53:1561-1590. [PMID: 35157535 DOI: 10.1080/10408347.2022.2036941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This review surveys Infrared, Raman/SERS and Brillouin spectroscopies for medical diagnostics and detection of biomarkers in biofluids, that include urine, blood, saliva and other biofluids. These optical sensing techniques are non-contact, noninvasive and relatively rapid, accurate, label-free and affordable. However, those techniques still have to overcome some challenges to be widely adopted in routine clinical diagnostics. This review summarizes and provides insights on recent advancements in research within the field of vibrational spectroscopy for medical diagnostics and its use in detection of many health conditions such as kidney injury, cancers, cardiovascular and infectious diseases. The six comprehensive tables in the review and four tables in supplementary information summarize a few dozen experimental papers in terms of such analytical parameters as limit of detection, range, diagnostic sensitivity and specificity, and other figures of merits. Critical comparison between SERS and FTIR methods of analysis reveals that on average the reported sensitivity for biomarkers in biofluids for SERS vs FTIR is about 103 to 105 times higher, since LOD SERS are lower than LOD FTIR by about this factor. High sensitivity gives SERS an edge in detection of many biomarkers present in biofluids at low concentration (nM and sub nM), which can be particularly advantageous for example in early diagnostics of cancer or viral infections.HighlightsRaman, Infrared spectroscopies use low volume of biofluidic samples, little sample preparation, fast time of analysis and relatively inexpensive instrumentation.Applications of SERS may be a bit more complicated than applications of FTIR (e.g., limited shelf life for nanoparticles and substrates, etc.), but this can be generously compensated by much higher (by several order of magnitude) sensitivity in comparison to FTIR.High sensitivity makes SERS a noninvasive analytical method of choice for detection, quantification and diagnostics of many health conditions, metabolites, and drugs, particularly in diagnostics of cancer, including diagnostics of its early stages.FTIR, particularly ATR-FTIR can be a method of choice for efficient sensing of many biomarkers, present in urine, blood and other biofluids at sufficiently high concentrations (mM and even a few µM)Brillouin scattering spectroscopy detecting visco-elastic properties of probed liquid medium, may also find application in clinical analysis of some biofluids, such as cerebrospinal fluid and urine.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Perizat Abdirova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Yussupova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
10
|
Lin Y, Gao J, Tang S, Zhao X, Zheng M, Gong W, Xie S, Gao S, Yu Y, Lin J. Label-free diagnosis of breast cancer based on serum protein purification assisted surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120234. [PMID: 34343842 DOI: 10.1016/j.saa.2021.120234] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 05/20/2023]
Abstract
Serum protein is generally used to assess the severity of disease, as well as cancer progression and prognosis. Herein, a simple and rapid serum proteins analysis method combined with surface-enhanced Raman spectroscopy (SERS) technology was applied for breast cancer detection. The cellulose acetate membrane (CA) was employed to extract human serum proteins from 30 breast cancer patients and 45 healthy volunteers and then extracted proteins were mixed with silver nanoparticles for SERS measurement. Additionally, we also mainly assessed the use of different ratios of proteins-silver nanoparticles (Ag NPs) mixture to generate maximum SERS signal for clinical samples detection. Two multivariate statistical analyses, principal component analysis-linear discriminate analysis (PCA-LDA) and partial least square-support vector machines (PLS-SVM) were used to analyze the obtained serum protein SERS spectra and establish the diagnostic model. The results demonstrate that the PLS-SVM model provides superior performance in the classification of breast cancer diagnosis compared with PCA-LDA. This exploratory work demonstrates that the label-free SERS analysis technique combined with CA membrane purified serum proteins has great potential for breast cancer diagnosis.
Collapse
Affiliation(s)
- Yamin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiamin Gao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shuzhen Tang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Xin Zhao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Mengmeng Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shusen Xie
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Siqi Gao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China; School of opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China.
| |
Collapse
|
11
|
El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021; 94:120-142. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
12
|
A New Look into Cancer-A Review on the Contribution of Vibrational Spectroscopy on Early Diagnosis and Surgery Guidance. Cancers (Basel) 2021; 13:cancers13215336. [PMID: 34771500 PMCID: PMC8582426 DOI: 10.3390/cancers13215336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Cancer is a leading cause of death worldwide, with the detection of the disease in its early stages, as well as a correct assessment of the tumour margins, being paramount for a successful recovery. While breast cancer is one of most common types of cancer, head and neck cancer is one of the types of cancer with a lower prognosis and poor aesthetic results. Vibrational spectroscopy detects molecular vibrations, being sensitive to different sample compositions, even when the difference was slight. The use of spectroscopy in biomedicine has been extensively explored, since it allows a broader assessment of the biochemical fingerprint of several diseases. This literature review covers the most recent advances in breast and head and neck cancer early diagnosis and intraoperative margin assessment, through Raman and Fourier transform infrared spectroscopies. The rising field of spectral histopathology was also approached. The authors aimed at expounding in a more concise and simple way the challenges faced by clinicians and how vibrational spectroscopy has evolved to respond to those needs for the two types of cancer with the highest potential for improvement regarding an early diagnosis, surgical margin assessment and histopathology. Abstract In 2020, approximately 10 million people died of cancer, rendering this disease the second leading cause of death worldwide. Detecting cancer in its early stages is paramount for patients’ prognosis and survival. Hence, the scientific and medical communities are engaged in improving both therapeutic strategies and diagnostic methodologies, beyond prevention. Optical vibrational spectroscopy has been shown to be an ideal diagnostic method for early cancer diagnosis and surgical margins assessment, as a complement to histopathological analysis. Being highly sensitive, non-invasive and capable of real-time molecular imaging, Raman and Fourier transform infrared (FTIR) spectroscopies give information on the biochemical profile of the tissue under analysis, detecting the metabolic differences between healthy and cancerous portions of the same sample. This constitutes tremendous progress in the field, since the cancer-prompted morphological alterations often occur after the biochemical imbalances in the oncogenic process. Therefore, the early cancer-associated metabolic changes are unnoticed by the histopathologist. Additionally, Raman and FTIR spectroscopies significantly reduce the subjectivity linked to cancer diagnosis. This review focuses on breast and head and neck cancers, their clinical needs and the progress made to date using vibrational spectroscopy as a diagnostic technique prior to surgical intervention and intraoperative margin assessment.
Collapse
|
13
|
Ma Y, Chen Y, Tian Y, Gu C, Jiang T. Contrastive Study of In Situ Sensing and Swabbing Detection Based on SERS-Active Gold Nanobush-PDMS Hybrid Film. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1975-1983. [PMID: 33544589 DOI: 10.1021/acs.jafc.0c06562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) with fast and intuitive property has been extensively utilized in the field of food safety. Here, we demonstrated a novel noble metal-polymer hybrid film as a SERS substrate for food fungicide analysis. Benefiting from its transparency and flexibility, poly(dimethylsiloxane) (PDMS) film was chosen as a versatile supporting matrix to grow gold nanobushes (Au NBs) through a seed-mediated process. The as-prepared AuNB-PDMS hybrid film performed satisfactorily in testing 4-nitrothiophenol (4NTP) and exhibited an enhancement factor (EF) of 2.56 × 106. Moreover, the high sensitivity and elastic properties make the hybrid film a promising substrate in practical detection. Hence, the in situ sensing of TBZ, carbaryl, and their mixture was finally realized using the developed hybrid film, which exhibited higher sensitivity than that obtained by the swabbing method. This high-performance SERS substrate based on the flexible and transparent AuNB-PDMS hybrid film has great potential applications in the fast in situ monitoring of biochemical molecules.
Collapse
Affiliation(s)
- Yi Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Ying Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
14
|
Burkitt S, Mehraein M, Stanciauskas RK, Campbell J, Fraser S, Zavaleta C. Label-Free Visualization and Tracking of Gold Nanoparticles in Vasculature Using Multiphoton Luminescence. NANOMATERIALS 2020; 10:nano10112239. [PMID: 33198113 PMCID: PMC7696495 DOI: 10.3390/nano10112239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/29/2022]
Abstract
Gold nanoparticles continue to generate interest for use in several biomedical applications. Recently, researchers have been focusing on exploiting their dual diagnostic/therapeutic theranostic capabilities. Before clinical translation can occur, regulatory agencies will require a greater understanding of their biodistribution and safety profiles post administration. Previously, the real-time identification and tracking of gold nanoparticles in free-flowing vasculature had not been possible without extrinsic labels such as fluorophores. Here, we present a label-free imaging approach to examine gold nanoparticle (AuNP) activity within the vasculature by utilizing multiphoton intravital microscopy. This method employs a commercially available multiphoton microscopy system to visualize the intrinsic luminescent signal produced by a multiphoton absorption-induced luminescence effect observed in single gold nanoparticles at frame rates necessary for capturing real-time blood flow. This is the first demonstration of visualizing unlabeled gold nanoparticles in an unperturbed vascular environment with frame rates fast enough to achieve particle tracking. Nanoparticle blood concentration curves were also evaluated by the tracking of gold nanoparticle flow in vasculature and verified against known pre-injection concentrations. Half-lives of these gold nanoparticle injections ranged between 67 and 140 s. This label-free imaging approach could provide important structural and functional information in real time to aid in the development and effective analysis of new metallic nanoparticles for various clinical applications in an unperturbed environment, while providing further insight into their complex uptake and clearance pathways.
Collapse
Affiliation(s)
- Sean Burkitt
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | - Mana Mehraein
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | | | - Jos Campbell
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
| | - Scott Fraser
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (S.B.); (M.M.); (J.C.); (S.F.)
- Michelson Center for Convergent Biosciences, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Bridge Institute, University of Southern California, 1002 Child’s Way, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
15
|
Hong Y, Li Y, Huang L, He W, Wang S, Wang C, Zhou G, Chen Y, Zhou X, Huang Y, Huang W, Gong T, Zhou Z. Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum. JOURNAL OF BIOPHOTONICS 2020; 13:e201960176. [PMID: 31909563 DOI: 10.1002/jbio.201960176] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is garnering considerable attention for the swift diagnosis of pathogens and abnormal biological status, that is, cancers. In this work, a simple, fast and inexpensive optical sensing platform is developed by the design of SERS sampling and data analysis. The pretreatment of spectral measurement employed gold nanoparticle colloid mixing with the serum from patients with colorectal cancer (CRC). The droplet of particle-serum mixture formed coffee-ring-like region at the rim, providing strong and stable SERS profiles. The obtained spectra from cancer patients and healthy volunteers were analyzed by unsupervised principal component analysis (PCA) and supervised machine learning model, such as support-vector machine (SVM), respectively. The results demonstrate that the SVM model provides the superior performance in the classification of CRC diagnosis compared with PCA. In addition, the values of carcinoembryonic antigen from the blood samples were compiled with the corresponding SERS spectra for SVM calculation, yielding improved prediction results.
Collapse
Affiliation(s)
- Yan Hong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongqiang Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Libin Huang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Shouxu Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoyun Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanming Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu, China
| | - Wen Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu, China
| | - Tianxun Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer. Anal Bioanal Chem 2020; 412:1611-1618. [DOI: 10.1007/s00216-020-02391-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
|
17
|
Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev 2020; 49:7428-7453. [DOI: 10.1039/d0cs01019g] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes recent progress made using Raman spectroscopy and machine learning for potential universal medical diagnostic applications.
Collapse
Affiliation(s)
| | - Igor K. Lednev
- Department of Chemistry
- University at Albany
- SUNY
- Albany
- USA
| |
Collapse
|
18
|
Lin X, Wang Y, Wang L, Lu Y, Li J, Lu D, Zhou T, Huang Z, Huang J, Huang H, Qiu S, Chen R, Lin D, Feng S. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens Bioelectron 2019; 143:111599. [DOI: 10.1016/j.bios.2019.111599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022]
|