1
|
Razavi M, Primavera R, Vykunta A, Thakor AS. Silicone-based bioscaffolds for cellular therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111615. [DOI: 10.1016/j.msec.2020.111615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
|
2
|
Kang PL, Lin YH, Settu K, Yen CS, Yeh CY, Liu JT, Chen CJ, Chang SJ. A Facile Fabrication of Biodegradable and Biocompatible Cross-Linked Gelatin as Screen Printing Substrates. Polymers (Basel) 2020; 12:polym12051186. [PMID: 32456005 PMCID: PMC7284702 DOI: 10.3390/polym12051186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
This study focuses on preparation and valuation of the biodegradable, native, and modified gelatin film as screen-printing substrates. Modified gelatin film was prepared by crosslinking with various crosslinking agents and the electrode array was designed by screen-printing. It was observed that the swelling ratio of C-2, crosslinked with glutaraldehyde and EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) was found to be lower (3.98%) than that of C-1 (crosslinked with only glutaraldehyde) (8.77%) and C-0 (without crosslinking) (28.15%). The obtained results indicate that the swelling ratios of both C-1 and C-2 were found to be lower than that of C-0 (control one without crosslinking). The Young's modulus for C-1 and C-2 was found to be 8.55 ± 0.57 and 23.72 ± 2.04 kPa, respectively. Hence, it was conveyed that the mechanical strength of C-2 was found to be two times higher than that of C-l, suggesting that the mechanical strength was enhanced upon dual crosslinking in this study also. The adhesion study indicates that silver ink adhesion on the gelation surface is better than that of carbon ink. In addition, the electrical response of C-2 with a screen-printed electrode (SPE) was found to be the same as the commercial polycarbonate (PC) substrate. The result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay suggested that the silver SPE on C-2 was non-cytotoxic toward L929 fibroblast cells proliferation. The results indicated that C-2 gelatin is a promising material to act as a screen-printing substrate with excellent biodegradable and biocompatible properties.
Collapse
Affiliation(s)
- Pei-Leun Kang
- Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (P.-L.K.); (Y.-H.L.)
| | - Yu-Hsin Lin
- Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; (P.-L.K.); (Y.-H.L.)
| | - Kalpana Settu
- Department of Electrical Engineering, National Taipei University, New Taipei 23741, Taiwan;
| | - Ching-Shu Yen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; (C.-S.Y.); (C.-Y.Y.)
| | - Chin-Yi Yeh
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; (C.-S.Y.); (C.-Y.Y.)
| | - Jen-Tsai Liu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.-T.L.); (C.-J.C.); (S.-J.C.); Tel.: +886-76151100-7467 (S.-J.C.)
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.-T.L.); (C.-J.C.); (S.-J.C.); Tel.: +886-76151100-7467 (S.-J.C.)
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan; (C.-S.Y.); (C.-Y.Y.)
- Correspondence: (J.-T.L.); (C.-J.C.); (S.-J.C.); Tel.: +886-76151100-7467 (S.-J.C.)
| |
Collapse
|
3
|
Jalili K, Abbasi F, Behboodpour L. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach. J Mech Behav Biomed Mater 2019; 93:118-129. [PMID: 30785077 DOI: 10.1016/j.jmbbm.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/01/2022]
Abstract
Nanomechanical characteristics of end grafted polymer brushes were studied by AFM based, colloidal probe nanoindentation measurements. A high-density polymer brush of poly(2-hydroxyethyl methacrylate) (PHEMA) was precisely prepared on the surface of a flexible poly(dimethylsiloxane) (PDMS) substrate oxidized in ultraviolet/ozone (UVO). Exposure times less than 10min resulted in laterally homogeneous oxidized surfaces, characterized by a SiOx thickness ∼35nm and an increased modulus up to 9MPa, as shown by AFM nanoindentation measurements. We have demonstrated that a high surface density of up to ∼0.63chains/nm2 of the well-defined PHEMA brushes can be grown from the surface of oxidized PDMS by surface-initiated atom transfer radical polymerization (SI-ATRP) from trimethoxysilane derivatives mixed-SAM. The reversible nanomechanical changes of PHEMA layer between extended (hydrated state) and collapsed (dehydrated state) chain upon immersing in selective and non-selective solvents were investigated by in situ AFM nanoindentation analysis in liquid environments. The elastic modulus derived from force-indentation curves obtained for swollen PHEMA grafted chains in water was estimated to be equal 2.7±0.2MPa, which is almost two orders of magnitude smaller than the modulus of dry PHEMA brush. Additionally, under cyclohexane immersion, the modulus of the PHEMA layer decreased by one order of magnitude, indicating a more compact chain packing at the PDMS surface.
Collapse
Affiliation(s)
- K Jalili
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran; Max Planck Institute for Polymer Research, 10 Ackermannweg, 55128 Mainz, Germany.
| | - F Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - L Behboodpour
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
4
|
Jiménez NT, Carlos Munévar J, González JM, Infante C, Lara SJP. In vitro response of dental pulp stem cells in 3D scaffolds: A regenerative bone material. Heliyon 2018; 4:e00775. [PMID: 30263971 PMCID: PMC6156910 DOI: 10.1016/j.heliyon.2018.e00775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional-porous scaffolds of bone graft substitutes play a critical role in both cell targeting and transplantation strategies. These scaffolds provide surfaces that facilitate the response of stem cells related to attachment, survival, migration, proliferation, and differentiation. Objective The aim of this study was to evaluate the in vitro behavior of human dental pulp mesenchymal stem cells cultured on scaffolds of polylactic/polyglycolic acid with and without hydroxyapatite. Method We performed an in vitro experimental study using dental pulp stem cells obtained from samples of premolars, molars. The cells were cultured on scaffolds with osteogenic differentiation medium. Cell proliferation, adhesion and cell differentiation to an osteoblastic linage in the biomaterial were evaluated at three different time points: 7, 15 and 30 days. Each experiment was performed in triplicate. Analysis of the data was performed with the Split Plot block and MANOVA model. Results The differentiation capability of hDPSCs towards the osteoblast lineage was better in the scaffold of PLGA/HA at 7, 15 and 30 days, as indicated by the high expression of osteogenic markers RUNX2, ALP, OPN and COL-I, compared with differentiation in the PLGA scaffold. No statistically significant differences were found in cell adhesion between the two types of scaffolds. Conclusion The PLGA/HA scaffold provided better physical and chemical signals, as judged by the ability of dental pulp stem cells to adhere, proliferate and differentiate toward the osteogenic lineage.
Collapse
Affiliation(s)
- Nury Tatiana Jiménez
- Master in Dentistry, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Carlos Munévar
- Unit of Oral Basic Investigation, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - José Manuel González
- Master in Dentistry, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Clementina Infante
- Master in Dentistry, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
5
|
García-Garrido C, Pérez- Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Wang J, Loye AM, Ketkaew J, Schroers J, Kyriakides TR. Hierarchical Micro- and Nanopatterning of Metallic Glass to Engineer Cellular Responses. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennie Wang
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, United States
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Ayomiposi M. Loye
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jittisa Ketkaew
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, United States
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Jan Schroers
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, United States
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Themis R. Kyriakides
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, United States
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Department of Pathology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Su WT, Pan YJ. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng 2016; 13:046005. [DOI: 10.1088/1741-2560/13/4/046005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Prittinen J, Jiang Y, Ylärinne JH, Pakkanen TA, Lammi MJ, Qu C. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:424-31. [PMID: 25175232 DOI: 10.1016/j.msec.2014.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/27/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α1(II), procollagen α1(X), and procollagen α2(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α1(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α2(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes.
Collapse
Affiliation(s)
- Juha Prittinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Yu Jiang
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Janne H Ylärinne
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Tapani A Pakkanen
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Mikko J Lammi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Chengjuan Qu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
|
10
|
Li J, Wu M, Chu J, Sochol R, Patel S. Engineering micropatterned surfaces to modulate the function of vascular stem cells. Biochem Biophys Res Commun 2014; 444:562-7. [PMID: 24486489 DOI: 10.1016/j.bbrc.2014.01.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/21/2014] [Indexed: 01/31/2023]
Abstract
Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.
Collapse
Affiliation(s)
- Jennifer Li
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Michelle Wu
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Julia Chu
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Ryan Sochol
- Berkeley Sensor and Actuator Center, University of California, Berkeley, 668 Sutardja Dai Hall, Berkeley, CA 94720, United States
| | - Shyam Patel
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States.
| |
Collapse
|
11
|
Response of bone marrow derived connective tissue progenitor cell morphology and proliferation on geometrically modulated microtextured substrates. Biomed Microdevices 2014; 15:385-96. [PMID: 23378044 DOI: 10.1007/s10544-012-9727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Varying geometry and layout of microposts on a cell culture substrate provides an effective technique for applying mechanical stimuli to living cells. In the current study, the optimal geometry and arrangement of microposts on the polydimethylsiloxane (PDMS) surfaces to enhance cell growth behavior were investigated. Human bone marrow derived connective tissue progenitor cells were cultured on PDMS substrates comprising unpatterned smooth surfaces and cylindrical post microtextures that were 10 μm in diameter, 4 heights (5, 10, 20 and 40 μm) and 3 pitches (10, 20, and 40 μm). With the same 10 μm diameter, post heights ranging from 5 to 40 μm resulted in a more than 535 fold range of rigidity from 0.011 nNμm⁻¹ (40 μm height) up to 5.888 nNμm⁻¹(5 μm height). Even though shorter microposts result in higher effective stiffness, decreasing post heights below the optimal value, 5 μm height micropost in this study decreased cell growth behavior. The maximum number of cells was observed on the post microtextures with 20 μm height and 10 μm inter-space, which exhibited a 675 % increase relative to the smooth surfaces. The cells on all heights of post microtextures with 10 μm and 20 μm inter-spaces exhibited highly contoured morphology. Elucidating the cellular response to various external geometry cues enables us to better predict and control cellular behavior. In addition, knowledge of cell response to surface stimuli could lead to the incorporation of specific size post microtextures into surfaces of implants to achieve surface-textured scaffold materials for tissue engineering applications.
Collapse
|
12
|
Song P, Hu R, Tng DJH, Yong KT. Moving towards individualized medicine with microfluidics technology. RSC Adv 2014. [DOI: 10.1039/c3ra45629c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal 2013; 2013:863157. [PMID: 24163634 PMCID: PMC3791836 DOI: 10.1155/2013/863157] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies.
Collapse
|
14
|
Jalili K, Abbasi F, Milchev A. Surface Microdynamics Phase Transition and Internal Structure of High-Density, Ultrathin PHEMA-b-PNIPAM Diblock Copolymer Brushes on Silicone Rubber. Macromolecules 2013. [DOI: 10.1021/ma4003962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Jalili
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - F. Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - A. Milchev
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Particle-collision and porogen-leaching technique to fabricate polymeric porous scaffolds with microscale roughness of interior surfaces. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1264-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li D, Lu X, Lin H, Ren F, Leng Y. Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:489-502. [PMID: 23132401 DOI: 10.1007/s10856-012-4810-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
Chitosan (CS)/bovine serum albumin (BSA) micropatterns were prepared on functionalized Ti surfaces by micro-transfer molding (μ-TM). μ-TM realized the spatially controlled immobilization of cells and offered a new way of studying the interaction between micropatterns and cells. Two kinds of micropatterns were produced: (1) microgrooves representing a discontinuously grooved co-micropattern, with the rectangular CS region separated by BSA walls; (2) microcylinders representing a continuously interconnected co-micropattern, with the net-like CS region separated by BSA cylinders. A comparison of cell behaviors on the two types of micropatterns indicated that the shape rather than the size had a dominant effect on cell proliferation. The micropattern size in the same range of cell diameters favored cell proliferation. However, cell differentiation was more sensitive to the size rather than to the shape of the micropatterns. In conclusion, cell behavior can be regulated by micropatterns integrating different materials.
Collapse
Affiliation(s)
- Dan Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | | | | | | | | |
Collapse
|
17
|
Rychly J. Biointerface Technology. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Jeon K, Oh HJ, Lim H, Kim JH, Lee DH, Lee ER, Park BH, Cho SG. Self-renewal of embryonic stem cells through culture on nanopattern polydimethylsiloxane substrate. Biomaterials 2012; 33:5206-20. [DOI: 10.1016/j.biomaterials.2012.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
|
19
|
A novel and simple microcontact printing technique for tacky, soft substrates and/or complex surfaces in soft tissue engineering. Acta Biomater 2012; 8:1267-72. [PMID: 21945825 DOI: 10.1016/j.actbio.2011.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/08/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022]
Abstract
Microcontact printing (μCP) has attracted much interest due to its simplicity and wide range of applications. However, when conventional μCP is applied to soft and/or tacky substrates, substrate sagging and difficulty in stamp removal cause non-conformance in the patterns. Moreover, it is almost impossible to apply conventional μCP on complex or wavy surfaces. In this study, we developed a novel yet simple trans-print method to create efficient micropatterning on soft and/or tacky substrates such as polydimethylsiloxane and polyacrylamide gel, and also on curved surfaces, by introducing polyvinyl alcohol film as a trans-print media. This technique is simple as it only involves one trans-print step and is also cost-effective. Most importantly, this technique is also versatile and we have proven this by printing various designs on more complex non-flat surfaces using various proteins as inks. The quality of the trans-printed pattern was excellent with high reproducibility and resolution as verified by immunostaining. Human mesenchymal stem cells cultured on these patterns displayed good conformance on the soft and tacky substrates printed using this technique. These results suggest that this novel trans-print technique can be extended to a potentially generic methodology for μCP of other proteins and biomolecules, other shapes and sizes, and cells, and will also be useful in three-dimensional micropatterning for soft tissue engineering.
Collapse
|
20
|
Control of cell nucleus shapes via micropillar patterns. Biomaterials 2011; 33:1730-5. [PMID: 22133552 DOI: 10.1016/j.biomaterials.2011.11.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/13/2011] [Indexed: 12/19/2022]
Abstract
We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion.
Collapse
|
21
|
Guaccio A, Guarino V, Perez MAA, Cirillo V, Netti PA, Ambrosio L. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: Experimental and theoretical evidences. Biotechnol Bioeng 2011; 108:1965-76. [DOI: 10.1002/bit.23113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/17/2011] [Accepted: 02/14/2011] [Indexed: 12/14/2022]
|
22
|
Yen GS, Fujimoto BS, Schneider T, Huynh DTK, Jeffries GDM, Chiu DT. A rapid and economical method for profiling feature heights during microfabrication. LAB ON A CHIP 2011; 11:974-977. [PMID: 21229183 DOI: 10.1039/c0lc00470g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quality control is an important and integral part to any microfabrication process. While the widths of features often can be easily assessed by light microscopy, the heights of the fabricated structures are more difficult to determine. Here, we present a rapid, accurate, and low-cost method to measure the heights of microfabricated structures during and after the fabrication process. This technique is based on white-light interferometry, which offers accuracy on the submicrometre scale.
Collapse
Affiliation(s)
- Gloria S Yen
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rychly J. Biointerface Technology. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Pelaez-Vargas A, Gallego-Perez D, Ferrell N, Fernandes MH, Hansford D, Monteiro FJ. Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:670-676. [PMID: 20964878 DOI: 10.1017/s1431927610094158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
While there has been rapid development of microfabrication techniques to produce high-resolution surface modifications on a variety of materials in the last decade, there is still a strong need to produce novel alternatives to induce guided tissue regeneration on dental implants. High-resolution microscopy provides qualitative and quantitative techniques to study cellular guidance in the first stages of cell-material interactions. The purposes of this work were (1) to produce and characterize the surface topography of isotropic and anisotropic microfabricated silica thin films obtained by sol-gel processing, and (2) to compare the in vitro biological behavior of human bone marrow stem cells on these surfaces at early stages of adhesion and propagation. The results confirmed that a microstamping technique can be used to produce isotropic and anisotropic micropatterned silica coatings. Atomic force microscopy analysis was an adequate methodology to study in the same specimen the sintering derived contraction of the microfabricated coatings, using images obtained before and after thermal cycle. Hard micropatterned coatings induced a modulation in the early and late adhesion stages of cell-material and cell-cell interactions in a geometry-dependent manner (i.e., isotropic versus anisotropic), as it was clearly determined, using scanning electron and fluorescence microscopies.
Collapse
Affiliation(s)
- A Pelaez-Vargas
- INEB - Instituto de Engenharia Biomédica and Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
25
|
Choi J, Curtis SJ, Roy DM, Flesken-Nikitin A, Nikitin AY. Local mesenchymal stem/progenitor cells are a preferential target for initiation of adult soft tissue sarcomas associated with p53 and Rb deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2645-58. [PMID: 20864684 DOI: 10.2353/ajpath.2010.100306] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cell of origin and pathogenesis of the majority of adult soft tissue sarcomas (STS) remains poorly understood. Because mutations in both the P53 and RB tumor suppressor genes are frequent in STS in humans, we inactivated these genes by Cre-loxP-mediated recombination in mice with floxed p53 and Rb. Ninety-three percent of mice developed spindle cell/pleomorphic sarcomas after a single subcutaneous injection of adenovirus carrying Cre-recombinase. Similar to human STS, these sarcomas overexpress Cxcr4, which contributes to their invasive properties. Using irradiation chimeras generated by transplanting bone marrow cells from mice carrying either the Rosa26StoploxPLacZ or the Z/EG reporter, as well as the floxed p53 and Rb genes, into irradiated p53loxP/loxPRbloxP/loxP mice, it was determined that sarcomas do not originate from bone marrow-derived cells, such as macrophages, but arise from the local resident cells. At the same time, dermal mesenchymal stem cells isolated by strict plastic adherence and low levels of Sca-1 expression (Sca-1low, CD31negCD45neg) have shown enhanced potential for malignant transformation according to soft agar, invasion, and tumorigenicity assays, after the conditional inactivation of both p53 and Rb. Sarcomas formed after transplantation of these cells have features typical for undifferentiated high-grade pleomorphic sarcomas. Taken together, our studies indicate that local Sca-1low dermal mesenchymal stem/progenitor cells are preferential targets for malignant transformation associated with deficiencies in both p53 and Rb.
Collapse
Affiliation(s)
- Jinhyang Choi
- Department of Biomedical Sciences, Cornell University, T2 014A VRT Campus Road, Ithaca, NY 14853-6401, USA
| | | | | | | | | |
Collapse
|
26
|
Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. LAB ON A CHIP 2010; 10:939-56. [PMID: 20358102 DOI: 10.1039/b921695b] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.
Collapse
Affiliation(s)
- Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | | | | |
Collapse
|
27
|
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98:178-205. [PMID: 20816235 DOI: 10.1016/s0091-679x(10)98008-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrices of mammals undergo coordinated synthesis and degradation, dynamic remodeling processes that enable tissue adaptations to a broad range of environmental factors, including applied mechanical forces. The soft and mineralized connective tissues of mammals also exhibit a wide repertoire of mechanical properties, which enable their tissue-specific functions and modulate cellular responses to forces. The expression of genes in response to applied forces are important for maintaining the support, attachment, and function of various organs including kidney, heart, liver, lung, joint, and periodontium. Several high-prevalence diseases of extracellular matrices including arthritis, heart failure, and periodontal diseases involve pathological levels of mechanical forces that impact the gene expression repertoires and function of bone, cartilage, and soft connective tissues. Recent work on the application of mechanical forces to cultured connective tissue cells and various in vivo force models have enabled study of the regulatory networks that control mechanically induced gene expression in connective tissue cells. In addition to the influence of mechanical forces on the expression of type 1 collagen, which is the most abundant protein of mammals, new work has shown that the expression of a wide range of matrix, signaling, and cytoskeletal proteins are regulated by exogenous mechanical forces and by the forces generated by cells themselves. In this chapter, we first discuss the fundamental nature of the extracellular matrix in health and the impact of mechanical forces. Next we consider the utilization of several, widely employed model systems for mechanical stimulation of cells. Finally, we consider in detail how application of tensile forces to cultured cardiac fibroblasts can be used for the characterization of the signaling systems by which mechanical forces regulate myofibroblast differentiation that is seen in cardiac pressure overload.
Collapse
Affiliation(s)
- Matthew W C Chan
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
28
|
Kim EJ, Boehm CA, Mata A, Fleischman AJ, Muschler GF, Roy S. Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater 2010; 6:160-9. [PMID: 19539062 DOI: 10.1016/j.actbio.2009.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 microm in diameter and 6 microm in height, with 10 microm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin alpha5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points.
Collapse
|
29
|
Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Kostov YV, Roy S. Modulating human connective tissue progenitor cell behavior on cellulose acetate scaffolds by surface microtextures. J Biomed Mater Res A 2009; 90:1198-205. [PMID: 18680188 DOI: 10.1002/jbm.a.32160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Soft lithography techniques are used to fabricate cellulose acetate (CA) scaffolds with surface microtextures to observe growth characteristics of the progeny of human marrow-derived connective tissue progenitor cells (CTPs). Human CTPs were collected and cultured on CA scaffolds comprised postmicrotextures and smooth surfaces for up to 30 days. Cells on the smooth surfaces migrated without any preferred orientation for up to 30 days. On microtextures, cells tended to direct their processes toward posts and other cells on day 9. By day 30, cells on microtextures covered the surface with extracellular matrix. DNA quantification revealed approximately threefold more cells on microtextures than on the smooth surfaces. The alkaline phosphatase (AP) mRNA expression was slightly higher on smooth surfaces on day 9. However, by day 30, AP mRNA showed higher expression on microtextures. The mRNA expression of collagen type I was increased on microtextures by day 30, whereas smooth surfaces demonstrated similar expression. The osteocalcin mRNA expression was increased on postmicrotextures relative to smooth surfaces by day 30.
Collapse
Affiliation(s)
- Eun Jung Kim
- BioMEMS Laboratory, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Myllymaa K, Myllymaa S, Korhonen H, Lammi MJ, Saarenpää H, Suvanto M, Pakkanen TA, Tiitu V, Lappalainen R. Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2337-47. [PMID: 19507005 DOI: 10.1007/s10856-009-3792-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/21/2009] [Indexed: 05/09/2023]
Abstract
The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C(3)N(4)-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C(3)N(4)-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C(3)N(4)-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C(3)N(4)-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C(3)N(4)-Si coating.
Collapse
Affiliation(s)
- Katja Myllymaa
- Department of Physics, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface. Biomed Microdevices 2009; 12:13-21. [DOI: 10.1007/s10544-009-9353-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Mata A, Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Roy S. A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials 2009; 30:4610-7. [PMID: 19524292 DOI: 10.1016/j.biomaterials.2009.05.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/10/2009] [Indexed: 11/29/2022]
Abstract
A three-dimensional (3D) structure comprising precisely defined micro-architecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 microm diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds.
Collapse
Affiliation(s)
- Alvaro Mata
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp SI. Micropatterning of bioactive self-assembling gels. SOFT MATTER 2009; 5:1228-1236. [PMID: 20047022 PMCID: PMC2680507 DOI: 10.1039/b819002j] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microscale topographical features have been known to affect cell behavior. An important target in this area is to integrate top down techniques with bottom up self-assembly to create three-dimensional (3D) patterned bioactive mimics of extracellular matrices. We report a novel approach toward this goal and demonstrate its use to study the behavior of human mesenchymal stem cells (hMSCs). By incorporating polymerizable acetylene groups in the hydrophobic segment of peptide amphiphiles (PAs), we were able to micro-pattern nanofiber gels of these bioactive materials. PAs containing the cell adhesive epitope arginine-glycine-aspartic acid-serine (RGDS) were allowed to self-assemble within microfabricated molds to create networks of either randomly oriented or aligned ~30 nm diameter nanofiber bundles that were shaped into topographical patterns containing holes, posts, or channels up to 8 μm in height and down to 5 μm in lateral dimensions. When topographical patterns contained nanofibers aligned through flow prior to gelation, the majority of hMSCs aligned in the direction of the nanofibers even in the presence of hole microtextures and more than a third of them maintained this alignment when encountering perpendicular channel microtextures. Interestingly, in topographical patterns with randomly oriented nanofibers, osteoblastic differentiation was enhanced on hole microtextures compared to all other surfaces.
Collapse
Affiliation(s)
- Alvaro Mata
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. E-mail: ; Fax: (+312) 503-2482; Tel: (+312) 503-6713
| | - Lorraine Hsu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ramille Capito
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. E-mail: ; Fax: (+312) 503-2482; Tel: (+312) 503-6713
| | - Conrado Aparicio
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. E-mail: ; Fax: (+312) 503-2482; Tel: (+312) 503-6713
| | - Karl Henrikson
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA
| | - Samuel I. Stupp
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. E-mail: ; Fax: (+312) 503-2482; Tel: (+312) 503-6713
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Feingberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
34
|
Wu MH. Simple poly(dimethylsiloxane) surface modification to control cell adhesion. SURF INTERFACE ANAL 2009. [DOI: 10.1002/sia.2964] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Kim SJ, Lee JK, Kim JW, Jung JW, Seo K, Park SB, Roh KH, Lee SR, Hong YH, Kim SJ, Lee YS, Kim SJ, Kang KS. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2953-2962. [PMID: 18360798 DOI: 10.1007/s10856-008-3413-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 02/22/2008] [Indexed: 05/26/2023]
Abstract
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.
Collapse
Affiliation(s)
- Sun-Jung Kim
- Adult Stem Cell Research, College of Veterinary Medicine, Seoul National University, 151-742 Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
del Campo A, Arzt E. Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces. Chem Rev 2008; 108:911-45. [PMID: 18298098 DOI: 10.1021/cr050018y] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Aránzazu del Campo
- Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - Eduard Arzt
- Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| |
Collapse
|
37
|
Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. ACTA ACUST UNITED AC 2007; 13:1837-44. [PMID: 17590149 DOI: 10.1089/ten.2006.0156] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney.
Collapse
Affiliation(s)
- Jeffrey T Borenstein
- Biomedical Engineering Center, Charles Stark Draper Laboratory, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lim JY, Donahue HJ. Cell Sensing and Response to Micro- and Nanostructured Surfaces Produced by Chemical and Topographic Patterning. ACTA ACUST UNITED AC 2007; 13:1879-91. [PMID: 17583997 DOI: 10.1089/ten.2006.0154] [Citation(s) in RCA: 362] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemical and topographic substrate surface patterning is recognized as a powerful tool for regulating cell functions. We discuss the relative role of scale and pattern of chemically and topographically patterned surfaces in regulating cell behavior. Chemical patterning achieved using spatial cell-adhesive molecular organization regulates different cell functions depending on its scale (micropattern for cell patterning and derived cell functions, nanopattern for collective cell functions such as adhesion, proliferation, and differentiation). In chemical patterning, a direct and specific cell-sensing mechanism such as integrin-ligand binding governs. Alternatively, topographic modification affects different cell functions depending on its pattern (anisotropic ridges and grooves for contact-guided cell alignment, isotropic textures having randomly or evenly distributed topographic features for collective functions). For all topographic patterns, micro- or nanotopographic scale determines whether specific cell reactions occur. If the topography effect were assessed under the same surface chemistry, cell adaptation processes would play a major role in cell sensing and response to topography, largely independent of mediation via differences in adsorbed proteins. Controlling scale and pattern in chemical and topographic substrate patterning would help significantly to develop purpose-specific cell-regulating cues in various biomedical applications, including tissue engineering, implants, cell-based biosensors, microarrays, and basic cell biology.
Collapse
Affiliation(s)
- Jung Yul Lim
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Center for Biomedical Devices and Functional Tissue Engineering, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | | |
Collapse
|
39
|
Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 2007; 60:137-57. [PMID: 17683921 DOI: 10.1016/j.colsurfb.2007.06.019] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 06/14/2007] [Accepted: 06/19/2007] [Indexed: 11/18/2022]
Abstract
The response of host organism in macroscopic, cellular and protein levels to biomaterials is, in most cases, closely associated with the materials' surface properties. In tissue engineering, regenerative medicine and many other biomedical fields, surface engineering of the bio-inert synthetic polymers is often required to introduce bioactive species that can promote cell adhesion, proliferation, viability and enhanced ECM-secretion functions. Up to present, a large number of surface engineering techniques for improving biocompatibility have been well established, the work of which generally contains three main steps: (1) surface modification of the polymeric materials; (2) chemical and physical characterizations; and (3) biocompatibility assessment through cell culture. This review focuses on the principles and practices of surface engineering of biomedical polymers with regards to particular aspects depending on the authors' research background and opinions. The review starts with an introduction of principles in designing polymeric biomaterial surfaces, followed by introduction of surface modification techniques to improve hydrophilicity, to introduce reactive functional groups and to immobilize functional protein molecules. The chemical and physical characterizations of the modified biomaterials are then discussed with emphasis on several important issues such as surface functional group density, functional layer thickness, protein surface density and bioactivity. Three most commonly used surface composition characterization techniques, i.e. ATR-FTIR, XPS, SIMS, are compared in terms of their penetration depth. Ellipsometry, CD, EPR, SPR and QCM's principles and applications in analyzing surface proteins are introduced. Finally discussed are frequently applied methods and their principles to evaluate biocompatibility of biomaterials via cell culture. In this section, current techniques and their developments to measure cell adhesion, proliferation, morphology, viability, migration and gene expression are reviewed.
Collapse
Affiliation(s)
- Zuwei Ma
- Department of Polymer Science and Engineering, Zhejiang University, and Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Hangzhou 310027, China
| | | | | |
Collapse
|
40
|
Kim B, K Peterson ETK, Papautsky I. Long-term stability of plasma oxidized PDMS surfaces. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5013-6. [PMID: 17271441 DOI: 10.1109/iembs.2004.1404385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hydrophilicity of untreated polydimethylsiloxane (PDMS) surfaces is problematic in applications where adhesion of proteins and cells is desirable. In this work, we investigated the effects of variables involved with plasma surface oxidation including time, power, monomer extraction, and storage conditions over 45 days. In order to maintain a hydrophilic surface for the longest time, the storage condition was the most influential factor above all other variables. Investigated changes in plasma treatment time, and power had less profound effects. Furthermore, only marginal differences in extracted and non-extracted PDMS were observed.
Collapse
Affiliation(s)
- B Kim
- Department of Electrical & Computer Engineering & Computer Science, Cincinnati University, OH, USA
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Martin Brehmer
- a Institute of Organic Chemistry , Johannes Gutenberg University , D‐55099 , Mainz , Germany
| | - Lars Conrad
- a Institute of Organic Chemistry , Johannes Gutenberg University , D‐55099 , Mainz , Germany
| | - Lutz Funk
- a Institute of Organic Chemistry , Johannes Gutenberg University , D‐55099 , Mainz , Germany
| |
Collapse
|
42
|
Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 2006; 7:281-93. [PMID: 16404506 DOI: 10.1007/s10544-005-6070-2] [Citation(s) in RCA: 562] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polydimethylsiloxane (PDMS Sylgard 184, Dow Corning Corporation) pre-polymer was combined with increasing amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5, respectively. These materials were processed by spin coating and subjected to common micro-fabrication, micro-machining, and biomedical processes: chemical immersion, oxygen plasma treatment, sterilization, and exposure to tissue culture media. The PDMS formulations were analyzed by gravimetry, goniometry, tensile testing, nano-indentation, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Spin coating of PDMS was formulation dependent with film thickness ranging from 308 microm on PDMS1 to 171 microm on PDMS5 at 200 revolutions per minute (rpm). Ultimate tensile stress (UTS) increased from 3.9 MPa (PDMS1) to 10.8 MPa (PDMS3), and then decreased down to 4.0 MPa (PDMS5). Autoclave sterilization (AS) increased the storage modulus (sigma) and UTS in all formulations, with the highest increase in UTS exhibited by PDMS5 (218%). PDMS surface hydrophilicity and micro-textures were generally unaffected when exposed to the different chemicals, except for micro-texture changes after immersion in potassium hydroxide and buffered hydrofluoric, nitric, sulfuric, and hydrofluoric acids; and minimal changes in contact angle after immersion in hexane, hydrochloric acid, photoresist developer, and toluene. Oxygen plasma treatment decreased the contact angle of PDMS2 from 109 degrees to 60 degrees. Exposure to tissue culture media resulted in increased PDMS surface element concentrations of nitrogen and oxygen.
Collapse
Affiliation(s)
- Alvaro Mata
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115
| | | | | |
Collapse
|
43
|
Zhu A, Chen R, Chan-Park MB. Patterning of a Random Copolymer of Poly[lactide-co-glycotide-co-(ɛ-caprolactone)] by UV Embossing for Tissue Engineering. Macromol Biosci 2006; 6:51-7. [PMID: 16374770 DOI: 10.1002/mabi.200500168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The random copolymer, poly[lactide-co-glycotide-co-(epsilon-caprolactone)] (PLGACL) diacrylate was prepared by ring-opening polymerization of L-lactide, glycolide, and epsilon-caprolactone initiated with tetra(ethylene glycol). The diacrylated polymers were extensively characterized. With a UV embossing method, these copolymers were successfully fabricated into microchannels separated by microwalls with a high aspect (height/width) ratio. The PLGACL network films showed good cytocompatibility. Varieties of microstructures were fabricated, such as 10 x 40 x 60, 10 x 80 x 60, 25 x 40 x 60, or 25 x 80 x 60 microm(3) structures (microwall width x microchannel width x microwall height). The results demonstrated that smooth muscle cells (SMCs) can grow not only on the microchannel surfaces but also on the surfaces of the microwall and sidewall. The SMCs aligned along the 25 microm wide microwall with an elongated morphology and proliferated very slowly in comparison to those on the smooth surface with a longer cell-culture term. Few cells could attach and spread on the surface of the 40 microm wide microchannel, while the cells flourished on the 80 microm, or more than 80 microm, wide microchannel with a spindle morphology. The biophysical mechanism mediated by the micropattern geometry is discussed. Overall, the present micropattern, consisting of biodegradable and cytocompatible PLGACL, provides a promising scaffold for tissue engineering.
Collapse
Affiliation(s)
- Aiping Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China.
| | | | | |
Collapse
|
44
|
Biomedical Application of Patterned Polymer Films Prepared by Self-organization. ACTA ACUST UNITED AC 2006. [DOI: 10.1380/jsssj.27.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Roca-Cusachs P, Rico F, Martínez E, Toset J, Farré R, Navajas D. Stability of microfabricated high aspect ratio structures in poly(dimethylsiloxane). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5542-8. [PMID: 15924487 DOI: 10.1021/la046931w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The stability of structures microfabricated in soft elastomeric polymers is an important concern in most applications that use these structures. Although relevant for several applications, the collapse to the ground of high aspect ratio structures (ground collapse) is still poorly understood. The stability of soft microfabricated high aspect ratio structures versus ground collapse was experimentally assessed, and a new model of ground collapse involving adhesion was developed. Sets of posts with diameters from 0.36 to 2.29 microm were fabricated in poly(dimethylsiloxane) and tested in air or immersed in water and ethanol to change the work of adhesion. The critical aspect ratio (the highest length-to-width ratio for which a post is not at risk of collapsing) was determined as a function of the diameter. The critical aspect ratio in air ranged from 2 to 4 and increased with the diameter. Work of adhesion was found to be determinant for and inversely correlated to stability. These results highlight the role played by adhesion and offer the possibility of improving stability by reducing the work of adhesion. The ground collapse model developed accounted for the main features of structure stability. The results indicate that ground collapse can be a limiting factor in the design of soft polymer structures.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Morphological changes in neurons by self-organized patterned films. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2005. [DOI: 10.1380/ejssnt.2005.159] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Lee JN, Jiang X, Ryan D, Whitesides GM. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11684-91. [PMID: 15595798 DOI: 10.1021/la048562+] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper describes the influence of the composition of poly(dimethylsiloxane) (PDMS) on the attachment and growth of several different types of mammalian cells: primary human umbilical artery endothelial cells (HUAECs), transformed 3T3 fibroblasts (3T3s), transformed osteoblast-like MC3T3-E1 cells, and HeLa (transformed epithelial) cells. Cells grew on PDMS having different ratios of base to curing agent: 10:1 (normal PDMS, PDMSN), 10:3 (PDMSCA), and 10:0.5 (PDMSB). They were also grown on "extracted PDMS" (normal PDMS that has reduced quantities of low molecular-weight oligomers, PDMSN,EX) and normal PDMS that had been extracted and then oxidized (PDMSN,EX,OX); all surfaces were exposed to a solution of fibronectin prior to cell attachment. Generally, fibronectin-coated PDMS is a suitable substrate for culturing mammalian cells. Compatibility of cells on some surfaces, however, was dependent on the cell type: PDMSN,EX,OX caused cell detachment of 3T3 fibroblasts and MC3T3-E1 cells, and PDMSCA caused detachment of HUAECs and HeLa cells. Growth of cells on PDMSN, PDMSN,EX, and PDMSB was comparable to growth on tissue culture-treated polystyrene for most of the cell types. All cells grew at similar rates on PDMS substrates regardless of the stiffness of the substrate, for substrates having Young's moduli ranging from E=0.60 +/- 0.04 to 2.6 +/- 0.2 MPa (for PDMSB and PDMSN,EX, respectively).
Collapse
Affiliation(s)
- Jessamine Ng Lee
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
48
|
Abstract
Controlling the spatial organization of cells is vital in engineering tissues that require precisely defined cellular architectures. For example, functional nerves or blood vessels form only when groups of cells are organized and aligned in very specific geometries. Yet, scaffold designs incorporating spatially defined physical cues such as microscale surface topographies or spatial patterns of extracellular matrix to guide the spatial organization and behavior of cells cultured in vitro remain largely unexplored. Here we demonstrate a new approach for controlling the spatial organization, spreading, and orientation of cells on two micropatterned biomaterials: chitosan and gelatin. Biomaterials with grooves of defined width and depth were fabricated using a two-step soft lithography process. Selective attachment and spreading of cells within the grooves was ensured by covalently modifying the plateau regions with commercially available protein resistant triblock copolymers. Precise spatial control over cell spreading and orientation has been observed when human microvascular endothelial cells are cultured on these patterned biomaterials, suggesting the potential of this technique in creating tissue culture scaffolds with defined chemical and topographical features.
Collapse
Affiliation(s)
- Yu Chi Wang
- Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | |
Collapse
|
49
|
Mata A, Su X, Fleischman AJ, Roy S, Banks BA, Miller SK, Midura RJ. Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins. IEEE Trans Nanobioscience 2003; 2:287-94. [PMID: 15376920 DOI: 10.1109/tnb.2003.820268] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study investigated whether osteoblasts could attach to a culture substratum through a surface texture-dependent mechanism. Four test groups were used: (A) untextured, and three texture groups with maximum feature sizes of (B) <0.5 microm, (C) 2 microm, and (D) 4 microm, respectively. All surfaces were coated with the nonadhesive protein bovine serum albumin (BSA). Osteoblasts were allowed to adhere in serum-free medium for either 1 or 4 h, at which time nonadherent cells were removed. At 4 h, untextured surface A exhibited no cell attachment, while textured surfaces B, C, and D exhibited 9%, 32%, and 16% cell adhesion, respectively. At 16 h of incubation, adherent osteoblasts on textured surface C exhibited focal adhesion contacts and microfilament stress-fiber bundles. These results indicate that microtextured surfaces in the absence of exogenous adhesive proteins can facilitate osteoblast adhesion.
Collapse
Affiliation(s)
- Alvaro Mata
- Department of Biomedical Engineering (ND 20), Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195 USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures. Biomed Microdevices 2002; 4:267-75. [PMID: 16596170 PMCID: PMC1428792 DOI: 10.1023/a:1020950022074] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone marrow derived cells were cultured for nine days under conditions promoting osteoblastic differentiation on Smooth PDMS and PDMS Channel microtextures (11 microm high, 45 microm wide channels, and separated by 5 microm wide ridges). Glass tissue culture dish surfaces were used as controls. Cell numbers per colony, cell density within colonies, alignment of cells, area of colonies, and colony shapes were determined as a function of substrate surface topography. An alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces with cell process lengths of up to 80 microm. Cells on the Smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions creating colonies that covered significantly larger areas (0.96 and 1.05 mm(2), respectively) than colonies formed on PDMS Channel textures (0.64 mm(2)). In contrast, cells on PDMS Channel textures spread, proliferated, aligned along the channel axis, and created colonies that were more dense, and with lengths of longest colony axes that were significantly longer (3252 microm) than those on the Smooth PDMS (1265 microm) and control surfaces (1319 microm). Cells on PDMS Channel textures were aligned at an angle of 14.44 degrees relative to the channel axis, and the resulting colonies exhibited a significantly higher aspect ratio (13.72) compared to Smooth PDMS (1.57) and control surfaces (1.51).
Collapse
Affiliation(s)
- Alvaro Mata
- BioMEMS Laboratory, Department of Biomedical Engineering, The Cleveland Clinic Foundation
| | - Cynthia Boehm
- Bone Biology Laboratory, Department of Biomedical Engineering, The Cleveland Clinic Foundation
| | - Aaron J. Fleischman
- BioMEMS Laboratory, Department of Biomedical Engineering, The Cleveland Clinic Foundation
| | - George Muschler
- Bone Biology Laboratory, Department of Biomedical Engineering, The Cleveland Clinic Foundation
- Department of Orthopaedic Surgery, The Cleveland Clinic Foundation E-mail:
| | - Shuvo Roy
- BioMEMS Laboratory, Department of Biomedical Engineering, The Cleveland Clinic Foundation
| |
Collapse
|