1
|
Li T, Liu B, Jiang Y, Lou Y, Chen K, Zhang D. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold. Biomed Mater 2020; 16:015025. [DOI: 10.1088/1748-605x/abca11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Therapeutic effects of in vivo-differentiated stem cell and Matricaria chamomilla L. Oil in diabetic rabbit. J Diabetes Metab Disord 2020; 19:453-460. [PMID: 32550197 DOI: 10.1007/s40200-020-00530-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Background The main goal of diabetes therapy is to control blood glucose levels. Objectives In this study, the effect of Matricaria chamomilla L. oil as an herbal agent, on therapeutic properties of poly L-lactic acid-based (PLLA) scaffold loaded with differentiated stem cells, is examined in the diabetic rabbit. Methods Adipose mesenchymal stem cells (AMSCs) were isolated from male New Zealand White rabbits and after seeding on the PLLA scaffold differentiated in the pancreatic region. In vivo differentiation of AMSCs toward pancreatic progenitor cells was evaluated by quantitative analysis of gene expressions and immunohistochemistry. Then, one normal and five diabetic groups including blank diabetic, scaffold, oil + scaffold, and differentiated cell + scaffold or oil + scaffold were assessed after 21 days of treatment. After the assessment, the diabetic groups were evaluated by clinical parameters and pancreatic histological sections. Results It was found that AMSCs were differentiated to insulin-producing cells (IPCs) in the pancreatic environment which then used for implantation. Blood glucose in the oil + scaffold, cell + scaffold, and oil + cell + scaffold groups showed a significant decrease after 21 days. In the above mentioned three groups, insulin secretion was increased significantly. Chamomile oil also caused a significant decrease in High-density lipoprotein (HDL), Low-density lipoprotein (LDL), and total cholesterol levels. According to histological sections results, in cell + scaffold and oil + cell + scaffold groups, β cells were significantly increased compared to blank diabetic group. Conclusions Together these data demonstrated chamomile oil along with in vivo-differentiated stem cell is a promising new treatment for diabetes.
Collapse
|
3
|
Xie C. Bio‐inspired nanofunctionalisation of biomaterial surfaces: a review. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Chaoming Xie
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031People's Republic of China
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduSichuan610031People's Republic of China
| |
Collapse
|
4
|
Richbourg NR, Peppas NA, Sikavitsas VI. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J Tissue Eng Regen Med 2019; 13:1275-1293. [PMID: 30946537 PMCID: PMC6715496 DOI: 10.1002/term.2859] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/11/2022]
Abstract
Tissue engineering and regenerative medicine rely extensively on biomaterial scaffolds to support cell adhesion, proliferation, and differentiation physically and chemically in vitro and in vivo. Changes to the surface characteristics of the scaffolds have the greatest impact on cell response. Here, we discuss five dominant surface modification approaches used to biomimetically improve the most common scaffolds for tissue engineering, those based on aliphatic polyesters. Scaffolds of aliphatic polyesters such as poly(l-lactic acid), poly(l-lactic-co-glycolic acid), and poly(ε-caprolactone) are often used in tissue engineering because they provide desirable, tunable properties such as ease of manufacturing, good mechanical properties, and nontoxic degradation products. However, cell-surface interactions necessary for tissue engineering are limited on these materials by their smooth postfabrication surfaces, hydrophobicity, and lack of recognizable biochemical binding sites. The surface modification techniques that have been developed for synthetic polymer scaffolds reduce initial barriers to cell adhesion, proliferation, and differentiation. Topographical modification, protein adsorption, mineral coating, functional group incorporation, and biomacromolecule immobilization each contribute through varying mechanisms to improving cell interactions with aliphatic polyester scaffolds. Furthermore, rational combination of methods from these categories can provide nuanced, specific environments for targeted tissue development.
Collapse
Affiliation(s)
- Nathan R Richbourg
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Vassilios I Sikavitsas
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
5
|
Maskless Surface Modification of Polyurethane Films by an Atmospheric Pressure He/O₂ Plasma Microjet for Gelatin Immobilization. MICROMACHINES 2018; 9:mi9040195. [PMID: 30424128 PMCID: PMC6187667 DOI: 10.3390/mi9040195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
A localized maskless modification method of polyurethane (PU) films through an atmospheric pressure He/O2 plasma microjet (APPμJ) was proposed. The APPμJ system combines an atmospheric pressure plasma jet (APPJ) with a microfabricated silicon micronozzle with dimension of 30 μm, which has advantages of simple structure and low cost. The possibility of APPμJ in functionalizing PU films with hydroxyl (–OH) groups and covalent grafting of gelatin for improving its biocompatibility was demonstrated. The morphologies and chemical compositions of the modified surface were analyzed by scanning electronic microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The fluorescent images show the modified surface can be divided into four areas with different fluorescence intensity from the center to the outside domain. The distribution of the rings could be controlled by plasma process parameters, such as the treatment time and the flow rate of O2. When the treatment time is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively local functionalized with the diameter of 170 μm. In addition, the modification mechanism of PU films by the APPμJ is investigated. The localized polymer modified by APPμJ has potential applications in the field of tissue engineering.
Collapse
|
6
|
Zhang D, Xu S, Wu S, Gao C. Micropatterned poly(d,l-lactide-co-caprolactone) films entrapped with gelatin for promoting the alignment and directional migration of Schwann cells. J Mater Chem B 2018; 6:1226-1237. [DOI: 10.1039/c7tb03073h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gelatin entrapped and micropatterned poly(d,l-lactide-co-caprolactone) (PLCL) film promotes the alignment and directional migration of Schwann cells.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shengjun Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
7
|
Conoscenti G, Schneider T, Stoelzel K, Carfì Pavia F, Brucato V, Goegele C, La Carrubba V, Schulze-Tanzil G. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:449-459. [DOI: 10.1016/j.msec.2017.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
|
8
|
Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1797-1825. [PMID: 28707508 DOI: 10.1080/09205063.2017.1354674] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.
Collapse
Affiliation(s)
- Vahideh Raeisdasteh Hokmabad
- a Department of Chemistry , University of Zanjan , Zanjan , Iran.,b Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- b Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Ramazani
- a Department of Chemistry , University of Zanjan , Zanjan , Iran
| | - Roya Salehi
- c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Faculty of Advanced Medical Sciences, Department of Medical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
9
|
Fazili A, Gholami S, Minaie Zangi B, Seyedjafari E, Gholami M. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil. CELL JOURNAL 2016; 18:310-21. [PMID: 27602312 PMCID: PMC5011318 DOI: 10.22074/cellj.2016.4558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. MATERIALS AND METHODS In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. RESULTS Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm(-1) for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. CONCLUSION The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms.
Collapse
Affiliation(s)
- Afsaneh Fazili
- Department of Anatomy, School of Veterinary Medicine, University of Shiraz , Shiraz, Iran
| | - Soghra Gholami
- Department of Anatomy, School of Veterinary Medicine, University of Shiraz , Shiraz, Iran
| | - Bagher Minaie Zangi
- Department of Histology, Medical Sciences Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Sciences, Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zhang S, Xu K, Ge L, Darabi MA, Xie F, Derakhshanfar S, Liu Y, Xing MMQ, Wei H. A novel nano-silver coated and hydrogel-impregnated polyurethane nanofibrous mesh for ventral hernia repair. RSC Adv 2016. [DOI: 10.1039/c6ra10014g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patches for hernia repair have two existing concerns: antibacterial and tissue adhesion.
Collapse
Affiliation(s)
- Shibin Zhang
- Laboratory Animal Center
- Zunyi Medical College
- Zunyi
- China
- Department of Laboratory Animal Science
| | - Kaige Xu
- Department of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba
- Children's Research Institute of Manitoba
- Winnipeg
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences
- Chongqing
- China
| | - Mohammad Ali Darabi
- Department of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba
- Children's Research Institute of Manitoba
- Winnipeg
| | - Fei Xie
- Department of Laboratory Animal Science
- College of Basic Medical Science
- Third Military Medical University
- Chongqing
- China
| | - Soroosh Derakhshanfar
- Department of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba
- Children's Research Institute of Manitoba
- Winnipeg
| | - Yu Liu
- Department of Laboratory Animal Science
- College of Basic Medical Science
- Third Military Medical University
- Chongqing
- China
| | - Malcolm M. Q. Xing
- Department of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba
- Children's Research Institute of Manitoba
- Winnipeg
| | - Hong Wei
- Department of Laboratory Animal Science
- College of Basic Medical Science
- Third Military Medical University
- Chongqing
- China
| |
Collapse
|
11
|
Shamaz BH, Anitha A, Vijayamohan M, Kuttappan S, Nair S, Nair MB. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. NANOTECHNOLOGY 2015; 26:405101. [PMID: 26373968 DOI: 10.1088/0957-4484/26/40/405101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.
Collapse
Affiliation(s)
- Bibi Halima Shamaz
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | | | | | | | | | | |
Collapse
|
12
|
Ge L, Li Q, Jiang J, You X, Liu Z, Zhong W, Huang Y, Xing MMQ. Integration of nondegradable polystyrene and degradable gelatin in a core-sheath nanofibrous patch for pelvic reconstruction. Int J Nanomedicine 2015; 10:3193-201. [PMID: 25995629 PMCID: PMC4425333 DOI: 10.2147/ijn.s75802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pelvic organ prolapse (POP) is a serious health issue affecting many adult women. Complications of POP include pelvic pressure, pelvic pain, and problems in emptying their bowels or bladder. Sometimes, POP may even cause urinary outflow obstruction and lead to bladder or kidney infections. Currently, synthetic and naturally derived materials have been chosen for treatment of POP to reduce the high recurrence rates after surgical interventions. However, existing materials for POP treatment cannot meet the clinical requirements in terms of biocompatibility, mechanics, and minimal risk of rejection. Especially, erosion in synthetic polymers and rapid degradation in natural polymers limit their further applications in clinics. To address these concerns, we report a novel POP replacement using core-sheath polystyrene/gelatin electrospun nanofiber mesh. The outside gelatin sheath provides a hydrophilic surface and implantable integrity between host and guest, while the inner PS core offers the necessary mechanical support. The composite mesh shows graft accommodation in pelvic submucosa after implantation in vivo, as shown in hematoxylin-eosin staining and T helper cell phenotype and macrophage phenotype stainings. Qualitative analysis of inducible nitric oxide synthase, arginase, interferon-γ, and interleukin-10 gene expressions also indicates that the implanted composite mesh switches to accommodation mode 2 weeks postimplantation. Thus, these novel core-sheath polystyrene/gelatin nanofibrous membranes are promising in pelvic reconstruction.
Collapse
Affiliation(s)
- Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
- Department of Mechanical and Manufacturing Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture,Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, People’s Republic of China
| | - Qingtao Li
- Department of Mechanical and Manufacturing Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Junzi Jiang
- Department of Mechanical and Manufacturing Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Xiaoyan You
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Wen Zhong
- Department of Textile Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB, Canada
| | - Yong Huang
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Malcolm MQ Xing
- Department of Mechanical and Manufacturing Engineering, Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Chan LK, Leung VY, Tam V, Lu WW, Sze K, Cheung KM. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomater 2013; 9:5262-72. [PMID: 23000521 DOI: 10.1016/j.actbio.2012.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/02/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
Abstract
Low back pain that is associated with disc degeneration contributes to a huge economic burden in the worldwide healthcare system. Traditional methods, such as spinal fusion, have been adopted to relieve mechanical back pain, but this is compromised by decreased spinal motion. Tissue engineering has attracted much attention, and aims to correct the changes fundamentally occurring in the discs by a combination of cell biology, molecular biology and engineering. Synthetic materials including poly(l-lactic acid) or poly(glycolic acid) and biomolecules like hyaluronic acid or collagen have been adopted in the development of disc scaffolds for studying therapeutic approaches. Nevertheless, the complex biological and mechanical environment of the intervertebral disc (IVD) makes the synthesis of an artificial IVD with biomaterials a difficult task. Thus the aim of this study was to develop a natural disc scaffold for culturing disc cells for future development of biological disc constructs. We adopted a combination of currently used decellularization techniques to decellularize bovine IVD to create a complete endplate-to-endplate IVD scaffold. By altering the chemical and physical decellularization parameters, we reported the removal of up to 70% of the endogenous cells, and were able to preserve the glycosaminoglycan content, collagen fibril architecture and mechanical properties of the discs. The reintroduction of nucleus pulposus cells into the scaffold indicated a high survival rate over 7days, with cell penetration. We have shown here that conventional methods used for decellularizing thin tissues can also be applied to large organs, such as IVD. Our findings suggest the potential of using decellularized IVD as a scaffold for IVD bioengineering and culturing of cells in the context of the IVD niche.
Collapse
|
14
|
Effect of biopolymers on the characteristics and cytocompatibility of biocomposite nanofibrous scaffolds. Polym J 2013. [DOI: 10.1038/pj.2012.234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Choi MO, Kim YJ. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. Int J Biol Macromol 2012; 50:1188-94. [DOI: 10.1016/j.ijbiomac.2012.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022]
|
16
|
Protein adsorption and cytocompatibility of poly(L-lactic acid) surfaces modified with biomacromolecules. J Appl Polym Sci 2012. [DOI: 10.1002/app.36976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Meng ZX, Zeng QT, Sun ZZ, Xu XX, Wang YS, Zheng W, Zheng YF. Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques. Colloids Surf B Biointerfaces 2012; 94:44-50. [PMID: 22326650 DOI: 10.1016/j.colsurfb.2012.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/30/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022]
Abstract
Surface entrapment is a convenient method to immobilize the natural macromolecules on the surface of synthetic polymers. In this study, the gelatin modified and sodium alginate/gelatin modified PLGA nanofibrous membranes were fabricated via surface entrapment and entrapment-graft techniques. The surface morphology of the each single modified PLGA nanofiber was as smooth as that of untreated PLGA nanofibers. The results of water angle contact measurements and tensile tests showed that the surface entrapment cannot only improve the hydrophilicity but also enhance mechanical properties of the modified nanofibrous membranes. In addition, the sodium alginate/gelatin modified electrospun PLGA nanofibrous membrane exhibited higher hydrophilicity and better biocompatibility than the simply gelatin modified PLGA nanofibrous membrane, which suggested the surface entrapment is a facile and efficient approach to surface modification for electrospun nanofibours membranes.
Collapse
Affiliation(s)
- Z X Meng
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Shin YM, Lee YB, Shin H. Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ɛ-caprolactone) substrates for tunable cell behaviors. Colloids Surf B Biointerfaces 2011; 87:79-87. [DOI: 10.1016/j.colsurfb.2011.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/10/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
|
19
|
Shin YM, Park H, Shin H. Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization. Macromol Res 2011. [DOI: 10.1007/s13233-011-0815-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Chen JP, Su CH. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 2011; 7:234-243. [PMID: 20728584 DOI: 10.1016/j.actbio.2010.08.015] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 11/28/2022]
Abstract
Electrospun poly(lactic acid) (PLLA) nanofibers (NF) were modified with cationized gelatin (CG) to improve their compatibility with chondrocytes and to show in vitro and in vivo the potential applications of CG-grafted PLLA nanofibrous membranes (CG-PLLA NFM) as a cartilage tissue engineering scaffold. PLLA NF were first treated with oxygen plasma to introduce -COOH groups on the surface, followed by covalent grafting of CG molecules onto the fiber surface, using water-soluble carbodiimide as the coupling agent. The effects of CG grafting and properties of NFM were characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis, atomic force microscope, X-ray photoelectron spectra and Fourier transform infrared spectroscopy. In vitro studies indicated that CG-PLLA NFM could enhance viability, proliferation and differentiation of rabbit articular chondrocytes compared with pristine PLLA NFM. SEM observations of the cell-scaffold construct confirmed the tight attachment of chondrocytes to CG-PLLA NF and in-growth of cells into the interior of the membrane with proper maintenance of cell morphology. Improved cell differentiation in CG-PLLA NFM was confirmed by enhanced glycoaminoglycan and collagen secretion, histological analysis and reverse transcription-polymerase chain reaction studies, which showed that the cells were able to maintain the expression of characteristic markers (collagen II, aggregan and SOX 9) of chondrocytes. Subcutaneous implantation of the cell-scaffold constructs with autologous chondrocytes also confirmed the formation of ectopic cartilage tissues after 28 days by histological examination and immunostaining.
Collapse
Affiliation(s)
- Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan, ROC.
| | | |
Collapse
|
21
|
Liu ZM, Gu Q, Xu ZK, Groth T. Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci 2010; 10:1043-54. [PMID: 20602423 DOI: 10.1002/mabi.201000086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Layer-by-layer assembly of biogenic polyelectrolytes (PEL) was carried out on the surface of poly (L-lactide) to generate polyelectrolyte multilayers (PEM) that foster osteogenic differentiation of human mesenchymal stem cell (hMSC). Gelatin (GEL), hyaluronic acid (HA) and heparin (HEP) were chosen as polyanions, while chitosan (CHI) was employed as polycation. Multilayer formation was monitored by surface plasmon resonance and water contact angle measurements showing that layer formation process and surface wetting properties depended on the type of polyanions. While HEP as strong PEL led to thicker and more hydrophilic PEM, layer mass was lower for weak polyanions GEL and HA. Short-term adhesion studies with hMSC showed strong adhesion and spreading of cells on PEM composed of GEL/CHI and low spreading, motile phenotype and aggregation of hMSC on HEP/CHI or HA/CHI. Long term studies over three weeks were carried out to follow growth and differentiation of hMSC on the PEM. Weak osteogenic differentiation of hMSC was observed on GEL/CHI if cells were cultured in normal medium while no osteogenic phenotypes were observed on HEP/CHI or HA/CHI. When cells were cultured in osteogenic differentiation medium, however, PEM composed of HEP/CHI or HA/CHI promoted differentiation of hMSC towards osteoblasts, while PEM composed of GEL/CHI failed to do so. Overall, the composition of PEMs can be used as additional tool to control osteogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Zhen-Mei Liu
- Biomedical Materials Group, Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
22
|
Alvarez-Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas VI. Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD-functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor. J Tissue Eng Regen Med 2010; 5:464-75. [DOI: 10.1002/term.338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 05/28/2010] [Indexed: 02/02/2023]
|
23
|
Nanotube surface triggers increased chondrocyte extracellular matrix production. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Jabbari E, He X, Valarmathi MT, Sarvestani AS, Xu W. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J Biomed Mater Res A 2009; 89:124-37. [PMID: 18431754 DOI: 10.1002/jbm.a.31936] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In situ crosslinkable biomaterials with degradation profiles that can be tailored to a particular application are indispensable for treating irregularly shaped defects and for fabrication of shape-selective scaffolds. The objective of this work was to synthesize ultra low molecular weight functionalized PLA and PLGA macromers that can be grafted with bioactive peptides and crosslinked in situ to fabricate biodegradable functional scaffolds. In situ crosslinkable lactide-co-glycolide macromer (cMLGA; "c" for crosslinkable, "M" for macromer, and "LGA" for lactide-co-glycolide) was synthesized by anionic polymerization of lactide and glycolide monomers followed by condensation polymerization with fumaryl chloride. The cMLA (100% L-lactide) and cMLGA macromers formed porous crosslinked scaffolds with NVP as the crosslinker. The mass loss of the crosslinked cMLA and cMLGA was linear with incubation time in vitro (zero-order degradation) and the degradation rate depended on the ratio of lactide to glycolide. cMLGA scaffold with 1:1 lactide to glycolide ratio completely degraded after 4 weeks while the cMLA lost less than 40% of its initial mass after 35 weeks. When cMLA scaffold was functionalized with acrylated integrin-binding Ac-GRGD amino acid sequence, bone marrow stromal (BMS) cells attached and spread on the cMLA scaffold and exhibited focal-point cell adhesion. The mRNA expression levels of collagen-1alpha, osteonectin, and osteopontin for BMS cells seeded in the scaffolds with 1 and 5% Ac-GRGD were upregulated compared with those without Ac-GRGD. cMLGA is attractive as in situ crosslinkable macromer for fabrication of functional scaffolds with degradation characteristics that can be tailored to a particular application.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
25
|
El-Ayoubi R, Eliopoulos N, Diraddo R, Galipeau J, Yousefi AM. Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy. Tissue Eng Part A 2009. [PMID: 19230126 DOI: 10.1089/tea.2006.0418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biomaterials capable of efficient gene delivery by embedded cells provide a fundamental tool for the treatment of acquired or hereditary diseases. A major obstacle is maintaining adequate nutrient and oxygen diffusion to cells within the biomaterial. In this study, we combined the solid free-form fabrication and porogen leaching techniques to fabricate three-dimensional scaffolds, with bimodal pore size distribution, for cell-based gene delivery. The objective of this study was to design micro-/macroporous scaffolds to improve cell viability and drug delivery. Murine bone marrow-derived mesenchymal stromal cells (MSCs) genetically engineered to secrete erythropoietin (EPO) were seeded onto poly-L-lactide (PLLA) scaffolds with different microporosities. Over a period of 2 weeks in culture, an increase in cell proliferation and metabolic activity was observed with increasing scaffold microporosity. The concentration of EPO detected in supernatants also increased with increasing microporosity level. Our study shows that these constructs can promote cell viability and release of therapeutic proteins, and clearly demonstrates their capacity for a dual role as scaffolds for tissue regeneration and as delivery systems for soluble gene products.
Collapse
Affiliation(s)
- Rouwayda El-Ayoubi
- Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
Lai JY, Lin PK, Hsiue GH, Cheng HY, Huang SJ, Li YT. Low Bloom Strength Gelatin as a Carrier for Potential Use in Retinal Sheet Encapsulation and Transplantation. Biomacromolecules 2008; 10:310-9. [DOI: 10.1021/bm801039n] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Po-Kang Lin
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Ging-Ho Hsiue
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Hsiao-Yun Cheng
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Shu-Jung Huang
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Ya-Ting Li
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| |
Collapse
|
27
|
Kalson NS, Richardson S, Hoyland JA. Strategies for regeneration of the intervertebral disc. Regen Med 2008; 3:717-29. [DOI: 10.2217/17460751.3.5.717] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Low back pain resulting from degenerative disc disease is the most common cause of disability in the UK. Current low back pain treatments are aimed at either treating the symptoms of pain, or removing the source of pain itself, but do not address the biological basis of the disease. Our increasing understanding of the molecular biological basis for degenerative disc disease has enabled the development of strategies aimed at tackling the causes of degeneration. Here we review the progress that has been made in strategies using cells, biomaterials and growth factors aimed at regenerating the human intervertebral disc.
Collapse
Affiliation(s)
- NS Kalson
- Tissue Injury and Repair Group, School of Clinical & Laboratory Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - S Richardson
- Tissue Injury and Repair Group, School of Clinical & Laboratory Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - JA Hoyland
- Tissue Injury and Repair Group, School of Clinical & Laboratory Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
28
|
Shin YM, Kim KS, Lim YM, Nho YC, Shin H. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co--caprolactone) substrates. Biomacromolecules 2008; 9:1772-81. [PMID: 18558737 DOI: 10.1021/bm701410g] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlled adhesion and continuous growth of human mesenchymal stem cells (hMSCs) are essential for scaffold-based delivery of hMSCs in tissue engineering applications. The main goal of this study is to develop biofunctionalized synthetic substrates to actively control adhesion, spreading, and proliferation of hMSCs. gamma-Ray irradiation was employed to graft acrylic acid (AAc) to biodegeradable poly(L-lactide-co--caprolactone) (PLCL) films. Gelatin, a natural polymer, was then immobilized on the AAc grafted PLCL film (AAc-PLCL) to induce biomimetic interactions with the cells. The graft yield of AAc increased as the irradiation dose and AAc concentration increased, and the presence of gelatin (gelatin-AAc-PLCL) following immobilization was confirmed using ESCA. To investigate cell responses, hMSCs isolated from a human mandible were cultured on the various substrates and their adhesion, spreading, and proliferation were examined. After three days of culture, the DNA concentration from the cells cultured on gelatin-AAc-PLCL film was 2.9-fold greater than that on the PLCL film. Immunofluorescent staining of hMSCs cultured on the gelatin-AAc-PLCL films demonstrated homogeneous localization of F-Actin and vinculin in their cytoplasm, while mature adhesive structure was not observed from the cells cultured on other substrates. Furthermore, the ratio of projected area of adherent single cells on gelatin-AAc-PLCL films was significantly larger (116.80 +/- 12.78%) than that on the PLCL films (30.11 +/- 5.07%). Our results suggest that gelatin-immobilized PLCL substrates may be potentially used in tissue engineering, particularly as a stem cell delivery carrier for the regeneration of target tissue.
Collapse
Affiliation(s)
- Young Min Shin
- Department of Bioengineering and Cardiology Division, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
29
|
El-Ayoubi R, Eliopoulos N, Diraddo R, Galipeau J, Yousefi AM. Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy. Tissue Eng Part A 2008; 14:1037-48. [DOI: 10.1089/ten.tea.2006.0418] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rouwayda El-Ayoubi
- Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec, Canada
| | - Nicoletta Eliopoulos
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Robert Diraddo
- Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec, Canada
| | - Jacques Galipeau
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Azizeh-Mitra Yousefi
- Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec, Canada
| |
Collapse
|
30
|
Mohan N, Nair PD. Polyvinyl alcohol-poly(caprolactone) Semi IPN scaffold with implication for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2008; 84:584-94. [PMID: 17618513 DOI: 10.1002/jbm.b.30906] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polycaprolactone is an FDA approved aliphatic polyester that is widely used as a scaffold for tissue engineering. It is hydrophobic and doesn't have any reactive functional groups on the polymer for further modification. Blending with other hydrophilic polymers like polyvinyl alcohol helps to generate a hybrid polymer with better properties. In this study we have been able to fabricate a novel porous 3D scaffold of Semi-IPN Poly (caprolactone)-Poly (vinyl alcohol). The Semi IPN is phase mixed and has synergistic properties of its constituent polymers. The hybrid scaffold is nontoxic and highly hydrophilic with greater percentage of swelling and is also amenable for further modification with bioactive peptides. Although porous with an open interconnected porous structure, the scaffold has adequate mechanical strength to withstand the load imparted by the cells during in vitro culture. Porcine chondrocytes seeded within the unmodified scaffolds secrete extra cellular matrix components revealing that the hybrid scaffold has immense potential for tissue engineering applications.
Collapse
Affiliation(s)
- Neethu Mohan
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, India.
| | | |
Collapse
|
31
|
Abousleiman RI, Sikavitsas VI. Bioreactors for tissues of the musculoskeletal system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:243-59. [PMID: 17120789 DOI: 10.1007/978-0-387-34133-0_17] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muskuloskeletal tissue includes bone, cartilage, ligament, skeletal muscle and tendons. These tissues malfunction either due to a natural injury, trauma, or a disorder. In all cases natural regeneration needs to be enhanced by medication and, in many instances, by surgery. Surgical techniques are limited to suturing, autografts or allografts. Tissue engineering stems from the challenge presented by the limited resources for natural implants and the ineffectiveness of previous curing techniques. The challenge in tissue engineering resides in the design of a functional bioreactor that would: (1) house the engineered construct under sterile conditions; and (2) provide the appropriate stimuli that would result in a neotissue with biochemical and biomechanical properties comparable to in situ tissue. The various types and designs of bioreactors for the regeneration of musculoskeletal tissue, including spinner flask, rotating wall vessel, flow perfusion, and mechanical loading devices are presented in this paper.
Collapse
Affiliation(s)
- Rita I Abousleiman
- Oklahoma University Bioengineering Center, The University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
32
|
Shen H, Hu X, Yang F, Bei J, Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials 2007; 28:4219-30. [PMID: 17618682 DOI: 10.1016/j.biomaterials.2007.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Surface characteristics greatly influence attachment and growth of cells on biomaterials. Although polylactone-type biodegradable polymers have been widely used as scaffold materials for tissue engineering, lack of cell recognition sites, poor hydrophilicity and low surface energy lead to a bad cell affinity of the polymers, which limit the usage of polymers as scaffolds in tissue engineering. In the present study, surface of poly (L-lactide-co-glycolide) (PLGA) was modified by a method of combining oxygen plasma treatment with anchorage of cationized gelatin. Modification effect of the method was compared with other methods of oxygen plasma treatment, cationized gelatin or gelatin coating and combining oxygen plasma treatment with anchorage of gelatin. The change of surface property was compared by contact angles, surface energy, X-ray photoelectron spectra (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) measurement. The optimum oxygen pretreatment time determined by surface energy was 10 min when the power was 50 W and the oxygen pressure was 20 Pa. Analysis of the stability of gelatin and cationized gelatin anchored on PLGA by XPS, ATR-FTIR, contact angles and surface energy measurement indicated the cationized gelatin was more stable than gelatin. The result using mouse NIH 3T3 fibroblasts as model cells to evaluate cell affinity in vitro showed the cationized gelatin-anchored PLGA (OCG-PLGA) was more favorable for cell attachment and growth than oxygen plasma treated PLGA (O-PLGA) and gelatin-anchored PLGA (OG-PLGA). Moreover cell affinity of OCG-PLGA could match that of collagen-anchored PLGA (AC-PLGA). So the surface modification method combining oxygen plasma treatment with anchorage of cationized gelatin provides a universally effective way to enhance cell affinity of polylactone-type biodegradable polymers.
Collapse
Affiliation(s)
- Hong Shen
- BNLMS, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
33
|
Liu Z, Jiao Y, Zhang Z, Zhou C. Surface modification of poly(
L
‐lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts‐like compatibility. J Biomed Mater Res A 2007; 83:1110-1116. [PMID: 17584905 DOI: 10.1002/jbm.a.31453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Surface modification of biomaterials has been adopted over the years to improve their biocompatibility. In this study, aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films, chitosan and its derivatives, carboxymethyl chitosan (CMC) and N-methylene phosphonic chitosan (NPC), were used to modify the surface of PLLA films by an entrapment method. The surface properties of original and modified PLLA films were measured by using water contact angle measurement and X-ray photoelectron spectroscopy (XPS). Subsequently, the cytocompatibility of these PLLA films was investigated by testing osteoblasts-like cytocompatibility, cell attachment, cell proliferation, alkaline phosphatase activity, and cell cycle. Experimental results indicated that the hydrophilicity of the modified films was improved and the surface of the modified PLLA films became enriched with chitosan and its derivatives. Moreover, the surface modification with chitosan and its derivatives significantly promoted osteoblasts-like compatibility of PLLA films. This surface modification, combining the individual advantages of PLLA with good mechanical property and chitosan as well as its derivatives with good cytocompatibility, is a promising method to prepare desirable biomaterials.
Collapse
Affiliation(s)
- Zonghua Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China 510632
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China 510632
| | - Ziyong Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China 510632
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China 510632
| |
Collapse
|
34
|
Alvarez-Barreto JF, Shreve MC, Deangelis PL, Sikavitsas VI. Preparation of a Functionally Flexible, Three-Dimensional, Biomimetic Poly(L-Lactic Acid) Scaffold with Improved Cell Adhesion. ACTA ACUST UNITED AC 2007; 13:1205-17. [PMID: 17518730 DOI: 10.1089/ten.2006.0330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(L-lactic acid) (PLLA) is widely used in tissue-engineering applications because of its degradation characteristics and mechanical properties, but it possesses an inert nature, affecting cell-matrix interactions. It is desirable to modify the surface of PLLA to create biomimetic scaffolds that will enhance tissue regeneration. We prepared a functionally flexible, biomimetic scaffold by derivatizing the surface of PLLA foams into primary amines, activated pyridylthiols, or sulfhydryl groups, allowing a wide variety of modifications. Poly(L-lysine) (polyK) was physically entrapped uniformly throughout the scaffold surface and in a controllable fashion by soaking the foams in an acetone-water mixture and later in a polyK solution in dimethylsulfoxide. Arginine-glycine-aspartic acid-cysteine (RGDC) adhesion peptide was linked to the polyK via creating disulfide bonds introduced through the use of the linker N-succinimidyl-3-(2-pyridylthiol)-propionate. Presence of RGDC on the surface of PLLA 2-dimensional (2-D) disks and 3-D scaffolds increased cell surface area and the number of adherent mesenchymal stem cells. We have proposed a methodology for creating biomimetic scaffolds that is easy to execute, flexible, and nondestructive.
Collapse
Affiliation(s)
- Jose F Alvarez-Barreto
- School of Chemical, Biological and Materials Engineering, Bioengineering Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
35
|
Alvarez-Barreto JF, Sikavitsas VI. Improved Mesenchymal Stem Cell Seeding on RGD-Modified Poly(L-lactic acid) Scaffolds using Flow Perfusion. Macromol Biosci 2007; 7:579-88. [PMID: 17457938 DOI: 10.1002/mabi.200600280] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arg-Gly-Asp (RGD) has been widely utilized to increase cell adhesion to three-dimensional scaffolds for tissue engineering. However, cell seeding on these scaffolds has only been carried out statically, which yields low cell seeding efficiencies. We have characterized, for the first time, the seeding of rat mesenchymal stem cells on RGD-modified poly(L-lactic acid) (PLLA) foams using oscillatory flow perfusion. The incorporation of RGD on the PLLA foams improves scaffold cellularity in a dose-dependent manner under oscillatory flow perfusion seeding. When compared to static seeding, oscillatory flow perfusion is the most efficient seeding technique. Cell detachment studies show that cell adhesion is dependent on the applied flow rate, and that cell attachment is strengthened at higher levels of RGD modification.
Collapse
Affiliation(s)
- Jose F Alvarez-Barreto
- School of Chemical, Biological and Materials Engineering, University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
36
|
Selvam S, Thomas PB, Trousdale MD, Stevenson D, Schechter JE, Mircheff AK, Jacob JT, Smith RE, Yiu SC. Tissue-engineered tear secretory system: functional lacrimal gland acinar cells cultured on matrix protein-coated substrata. J Biomed Mater Res B Appl Biomater 2007; 80:192-200. [PMID: 16850479 DOI: 10.1002/jbm.b.30584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dry eye is a general term that refers to a myriad of ophthalmic disorders resulting in the inadequate wetting of the corneal surface by the tear film. Dry eyes are typically treated by the application of artificial tears. However, patients with lacrimal insufficiencies such as Stevens-Johnson syndrome, chemical and thermal injuries, or ocular cicatricial pemphigoid have very limited options because of the short duration and action of lubricating agents. As a therapeutic strategy, we are working to develop a bioengineered tear secretory system for such patients. This article describes the growth and physiological properties of purified rabbit lacrimal gland acinar cells (pLGACs) on several matrix protein-coated polymers such as silicone, collagen I, copolymers of poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), poly-L-lactic acid (PLLA), and Thermanox plastic cell culture coverslips. Monolayers of acinar cells were established on all of the polymeric substrata. An assay of beta-hexosaminidase activity in the supernatant medium showed significant increases in protein secretion, following stimulation with 100 microM carbachol on matrix protein-coated and uncoated polymers such as silicone, PLGA 85:15, and PLLA. Our study demonstrates that PLLA supported the morphological and physiological properties of purified rabbit lacrimal gland epithelial cells more successfully than the others.
Collapse
Affiliation(s)
- Shivaram Selvam
- Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res A 2006; 77:112-8. [PMID: 16392137 DOI: 10.1002/jbm.a.30521] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study is to elucidate the interaction between the cell and the surface of poly(L-lactide) (PLLA) samples, which were modified using a low-temperature plasma treatment apparatus at atmospheric pressure. The plasma treatments were carried out in the atmospheres of air, carbon dioxide (CO2), and perfluoro propane (C3F8) gas. The PLLA samples before and after the plasma treatment were analyzed by XPS and their contact angles with water. Furthermore, the cell adhesion capability and cell mass culturing tests on the PLLA samples were carried out using MC3T3-E1 cells. The results showed that the contact angle of the samples, which was plasma treated in air or in CO2 gas, decreased compared with that of the untreated samples. On the other hand, the contact angle of the samples, which was plasma treated in the C3F8 gas, increased compared with the untreated plasma samples. The cell response on the PLLA samples plasma treated in air or in the CO2 gas were significantly superior to that of the PLLA samples, which was plasma treated in the C3F8 gas.
Collapse
Affiliation(s)
- Masafumi Nakagawa
- Division of Oromaxillofacial Regeneration, Course for Integrated Oral Sciences and Stomatology, Osaka University Graduate School Of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Lee IC, Cheng LP, Young TH. Role of phase diagram of membrane formation system in controlling the crystallinity and degradation rate of PLLA membranes. J Biomed Mater Res A 2006; 76:842-50. [PMID: 16345093 DOI: 10.1002/jbm.a.30596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, the theoretical phase diagram of membrane formation system of ethanol, methylene chloride, and poly-L-lactide (PLLA) was studied. On the basis of the phase diagram, particulate and porous membranes, dominated by crystallization and liquid-liquid demixing, respectively, were prepared. Furthermore, degradation of PLLA membranes with particulate, porous, and dense morphologies was performed in phosphate buffered solution (PBS) at 37 degrees C for 168 days and was investigated by mass loss, scanning electron microscopy (SEM), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Besides the membrane morphology, a close relationship between the phase behavior of the membrane formation system and the membrane crystallinity was found, which in turn influenced the degradation rate of these membranes significantly. In the case of dense membranes, it showed the lowest initial crystallinity and the greatest rate of mass loss and molecular weight decrease compared with particulate and porous membranes. In contrast, the particulate membranes had the highest crystallinity and the slowest degradation rate in this study. Therefore, the phase diagram of membrane formation system could not only anticipate membrane morphology, but could also control the membrane crystallinity and degradation rate simultaneously.
Collapse
Affiliation(s)
- I-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | |
Collapse
|
39
|
Nagai M, Hayakawa T, Makimura M, Yoshinari M. Fibronectin immobilization using water-soluble carbodiimide on poly-L-lactic acid for enhancing initial fibroblast attachment. J Biomater Appl 2006; 21:33-47. [PMID: 16443618 DOI: 10.1177/0885328206055316] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study is to evaluate the influence of fibronectin immobilization on poly-L-lactic acid (PLA) films on the initial attachment of human gingival fibroblasts. Carboxylic acid groups are chemically introduced on the PLA films' surface by surface hydrolysis with 0.5 M NaOH. The contact angle of PLA surface with respect to double-distilled water decreases significantly after NaOH hydrolysis. X-ray photoelectron spectroscopy (XPS) also reveals significantly higher intensities of C(C=O)/C(C-O) after NaOH hydrolysis. Fibronectin is immobilized onto the hydrolyzed PLA surface through a condensation reaction between the carboxylic acid groups on the hydrolyzed PLA surface and the amino groups of fibronectin using water-soluble carbodiimide. XPS analysis shows that the fibronectin-immobilized PLA surface is enriched with nitrogen atoms. The immobilization of fibronectin significantly enhances the number of initially attached human gingival fibroblasts on the PLA surface. No obvious differences in morphology are noted between fibroblasts cultured on native PLA and on fibronectin-immobilized PLA. Fibronectin can be immobilized onto the PLA surface after NaOH hydrolysis and this is effective in enhancing the initial attachment of human gingival fibroblasts.
Collapse
Affiliation(s)
- Megumi Nagai
- Department of Laboratory Medicine for Dentistry, Nihon University School of Dentistry at Matsudo 2-870-1, Sakaecho Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | |
Collapse
|
40
|
Gerard C, Catuogno C, Amargier-Huin C, Grossin L, Hubert P, Gillet P, Netter P, Dellacherie E, Payan E. The effect of alginate, hyaluronate and hyaluronate derivatives biomaterials on synthesis of non-articular chondrocyte extracellular matrix. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:541-51. [PMID: 15928870 DOI: 10.1007/s10856-005-0530-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Accepted: 10/15/2004] [Indexed: 05/02/2023]
Abstract
Cartilage engineering consists of re-constructing functional cartilage by seeding chondrocytes in suitable biomaterials in vitro. The characteristics of neocartilage differ upon the type of biomaterial chosen. This study aims at determining the appropriate scaffold material for articular cartilage reconstruction using non articular chondrocytes harvested from rat sternum. For this purpose, the use of polysaccharide hydrogels such as alginate (AA) and hyaluronic acid (HA) was investigated. Several ratios of AA/HA were used as well as three derivatives obtained by chemical modification of HA (HA-C18, HA-C12(2.3), HA-C12(2.5)-TEG0.5). Sternal chondrocytes were successfully cultured in 3D alginate and alginate/HA scaffolds. HA retention in alginate beads was found to be higher in beads seeded with cells than in beads without cells. HA-C18 improved HA retention in beads but inhibited the chondrocyte synthesis process. Cell proliferation and metabolism were enhanced in all biomaterials when beads were mechanically agitated. Preliminary results have shown that the chondrocyte neo-synthesised matrix had acquired articular characteristics after 21 days culture.
Collapse
Affiliation(s)
- C Gerard
- Laboratoire de Pharmacologie, UMR 7561 CNRS UHP, Faculté de Médecine, 54505, Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|