1
|
Zhai CY, Ma A, Wang W, Zhu T, Huanyu L, Lan W, Yu T, Lan J, Wang Z. In Vivo and In Vitro Study of a Multifunctional SF/nHAp Corrosion-Resistant Bio-Coating Prepared on MAO Magnesium Alloy via Ultrasonic Spraying. ACS Biomater Sci Eng 2025; 11:2290-2305. [PMID: 40066752 DOI: 10.1021/acsbiomaterials.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Magnesium alloys are often used in bone repair surgeries due to their biodegradability and excellent elastic modulus, making them a promising alternative to traditional nondegradable implants like titanium alloys. However, their rapid degradation rate limits their use as implants in the body. To enhance the corrosion resistance and bioactivity of magnesium alloys, we applied an ultrasonic spray coating on microarc oxidized (MAO) AZ31 magnesium alloy, using a mixture of silk fibroin (SF) and nanohydroxyapatite (nHAp). This SF/nHAp composite embeds directly into the micropores on the MAO-treated surface without additional physical or chemical treatment, forming a stable interlocked coating structure. The effects of different spray parameters on coating adhesion and interface characteristics were investigated, leading to the development of a corrosion-resistant and highly biocompatible composite coating. Further biological evaluations were conducted through subcutaneous implantation, assessing the in vivo degradation of the samples and the surrounding tissue response from multiple perspectives. A novel concept of in vivo tissue-reactive coatings was proposed, suggesting that highly biocompatible coating materials, in the early stages postimplantation, enable surrounding fibrous tissues to closely adhere to the surface, thereby slowing material degradation. As a result, the highly bioactive MAO-SF/nHAp coating significantly enhances the corrosion resistance of magnesium alloys, reduces hydrogen evolution, promotes regeneration of surrounding tissues, and minimizes postimplant inflammation. This approach offers a new strategy to improve the biocompatibility and corrosion resistance of magnesium alloys in vivo, suggesting that the overall evaluation of biodegradable magnesium alloys should focus more on assessing in-body corrosion.
Collapse
Affiliation(s)
- Chuan Yao Zhai
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - AnQuan Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - TianTian Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Liu Huanyu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - WeiPeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - TianJiao Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - ZhiFeng Wang
- Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Ben Amara H, Martinez DC, Iskhakova K, Emanuelsson L, Norlindh B, Johansson Loo A, Wieland DCF, Zeller-Plumhoff B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Shah FA, Palmquist A, Omar O, Thomsen P. Multifaceted bone response to immunomodulatory magnesium implants: Osteopromotion at the interface and adipogenesis in the bone marrow. Biomaterials 2025; 314:122779. [PMID: 39305536 DOI: 10.1016/j.biomaterials.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 11/10/2024]
Abstract
Orthopedic implants made of biodegradable magnesium (Mg) provide an alternative to nondegradable implants for fracture repair. Widely reported to be pro-osteogenic, Mg implants are also believed to be anti-inflammatory and anti-osteoclastic, but this is difficult to reconcile with the early clinical inflammation observed around these implants. Here, by surveying implant healing in a rat bone model, we determined the cellular responses and structural assembly of bone correlated with the surface changes of Mg implants inherent in degradation. We show that, compared to titanium, both high-purity (99.998 %) and clinical-grade, rare earth-alloyed (MgYREZr) Mg implants create an initial, transient proinflammatory environment that facilitates inducible nitric oxide synthase-mediated macrophage polarization, osteoclastogenesis, and neoangiogenesis programs. While this immunomodulation subsequently reinforces reparative osteogenesis at the surface of both Mg implants, the faster degradation of high-purity Mg implants, but not MgYREZr implants, elicits a compositional alteration in the interfacial bone and a previously unknown proadipogenic response with persistent low-grade inflammation in the surrounding bone marrow. Beyond the need for rigorous tailoring of Mg implants, these data highlight the need to closely monitor osseointegration not only at the immediate implant surface but also in the peri-implant bone and adjacent bone marrow.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Diana C Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - D C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | | | | | - Tomasz Plocinski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
3
|
Yu M, Wang S, Lin D. Mechanism and Application of Biomaterials Targeting Reactive Oxygen Species and Macrophages in Inflammation. Int J Mol Sci 2024; 26:245. [PMID: 39796102 PMCID: PMC11720555 DOI: 10.3390/ijms26010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, an adaptive reaction to harmful stimuli, is a necessary immune system response and can be either acute or chronic. Since acute inflammation tends to eliminate harmful stimuli and restore equilibrium, it is generally advantageous to the organism. Chronic inflammation, however, is caused by either increased inflammatory signaling or decreased pro-anti-inflammatory signaling. According to current studies, inflammation is thought to be a major factor in a number of chronic diseases, including diabetes, cancer, arthritis, inflammatory bowel disease, and obesity. Consequently, reducing inflammation is essential for both preventing and delaying diseases. The application of biomaterials in the treatment of inflammatory illnesses has grown in recent years. A variety of biomaterials can be implanted either by themselves or in conjunction with other bioactive ingredients and therapeutic agents. The mechanisms of action and therapeutic applications of well-known anti-inflammatory biomaterials are the main topics of this article.
Collapse
|
4
|
Li S, Chen Z, Yu H, Chang W, Zhou J, Wu G, Sun X, Sun H, Wang K. Association of magnesium deficiency scores with risk of rheumatoid arthritis and osteoarthritis in adults: a cross-sectional population-based study. Clin Rheumatol 2024; 43:3973-3982. [PMID: 39453544 DOI: 10.1007/s10067-024-07203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The magnesium depletion score (MDS) is a scoring system developed to predict magnesium deficiency based on pathophysiological factors that affect renal reabsorption. The relationship between systemic magnesium status and arthritis is unclear. The purpose of this study was to determine the association between the MDS and rheumatoid arthritis (RA) as well as osteoarthritis (OA). METHODS This study was conducted through a cross-sectional survey of 20,513 adults aged ≥ 20 years who participated in NHANES from 2007 to 2018. The four dimensions of the MDS included diuretics, proton pump inhibitors, glomerular filtration rate, and excessive alcohol consumption. Univariate and multivariable-weighted logistic regression were used to assess the associations between MDS and RA/OA, and a test for trend was performed to analyze the presence of a dose-response relationship. Subgroup analyses and interaction tests were performed according to confounders. RESULTS After adjustment for all covariates, we found a graded dose-response relationship between MDS and RA or OA. When MDS was considered as a continuous variable, each onefold increase in MDS was associated with a 1.21-fold increase in the odds of having RA (OR = 1.21, 1.10, 1.33) and a 1.12-fold increase in the odds of having OA (OR = 1.12, 1.04, 1.21). There was an interaction of sex in the effect of MDS on RA (Pinteraction = 0.004) and age in the effect of MDS on OA (Pinteraction = 0.006). In addition, these associations were further confirmed in sensitivity and subgroup analyses. CONCLUSIONS Our study identified significant dose-response associations between MDS and both RA and OA. More biological mechanisms are needed in the future to validate and clarify the results of this study.
Collapse
Affiliation(s)
- Shuxiang Li
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhuo Chen
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Haoyun Yu
- Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Wenliao Chang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jian Zhou
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Guofeng Wu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaoliang Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Kun Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
5
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
6
|
Riyaz S, Sun Y, Helmholz H, Medina TP, Medina OP, Wiese B, Will O, Albaraghtheh T, Mohamad FH, Hövener JB, Glüer CC, Römer RW. Inflammatory response toward a Mg-based metallic biomaterial implanted in a rat femur fracture model. Acta Biomater 2024; 185:41-54. [PMID: 38969080 DOI: 10.1016/j.actbio.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The immune system plays an important role in fracture healing, by modulating the pro-inflammatory and anti-inflammatory responses occurring instantly upon injury. An imbalance in these responses can lead to adverse outcomes, such as non-union of fractures. Implants are used to support and stabilize complex fractures. Biodegradable metallic implants offer the potential to avoid a second surgery for implant removal, unlike non-degradable implants. However, considering our dynamic immune system it is important to conduct in-depth studies on the immune response to these implants in living systems. In this study, we investigated the immune response to Mg and Mg-10Gd in vivo in a rat femur fracture model with external fixation. In vivo imaging using liposomal formulations was used to monitor the fluorescence-related inflammation over time. We combine ex vivo methods with our in vivo study to evaluate and understand the systemic and local effects of the implants on the immune response. We observed no significant local or systemic effects in the Mg-10Gd implanted group compared to the SHAM and Mg implanted groups over time. Our findings suggest that Mg-10Gd is a more compatible implant material than Mg, with no adverse effects observed in the early phase of fracture healing during our 4-week study. STATEMENT OF SIGNIFICANCE: Degradable metallic implants in form of Mg and Mg-10Gd intramedullary pins were assessed in a rat femur fracture model, alongside a non-implanted SHAM group with special respect to the potential to induce an inflammatory response. This pre-clinical study combines innovative non-invasive in vivo imaging techniques associated with multimodal, ex vivo cellular and molecular analytics. The study contributes to the development and evaluation of degradable biometals and their clinical application potential. The study results indicate that Mg-10Gd did not exhibit any significant harmful effects compared to the SHAM and Mg groups.
Collapse
Affiliation(s)
- Sana Riyaz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Yu Sun
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Tuula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - Oula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Björn Wiese
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tamadur Albaraghtheh
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany; Helmholtz-Zentrum hereon GmbH, Institute of Surface Science, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Farhad Haj Mohamad
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Claus Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Regine Willumeit Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| |
Collapse
|
7
|
Rahim MI, Waqas SFUH, Lienenklaus S, Willbold E, Eisenburger M, Stiesch M. Effect of titanium implants along with silver ions and tetracycline on type I interferon-beta expression during implant-related infections in co-culture and mouse model. Front Bioeng Biotechnol 2023; 11:1227148. [PMID: 37929187 PMCID: PMC10621036 DOI: 10.3389/fbioe.2023.1227148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Type I interferon-beta (IFN-β) is a crucial component of innate and adaptive immune systems inside the host. The formation of bacterial biofilms on medical implants can lead to inflammatory diseases and implant failure. Biofilms elicit IFN-β production inside the host that, in turn, restrict bacterial growth. Biofilms pose strong antibiotic resistance, whereas surface modification of medical implants with antibacterial agents may demonstrate strong antimicrobial effects. Most of the previous investigations were focused on determining the antibacterial activities of implant surfaces modified with antibacterial agents. The present study, for the first time, measured antibacterial activities and IFN-β expression of titanium surfaces along with silver or tetracycline inside co-culture and mouse models. A periodontal pathogen: Aggregatibacter actinomycetemcomitans reported to induce strong inflammation, was used for infection. Silver and tetracycline were added to the titanium surface using the heat evaporation method. Macrophages showed reduced compatibility on titanium surfaces with silver, and IFN-β expression inside cultured cells significantly decreased. Macrophages showed compatibility on implant surfaces with tetracycline, but IFN-β production significantly decreased inside seeded cells. The decrease in IFN-β production inside macrophages cultured on implant surfaces with silver and tetracycline was not related to the downregulation of Ifn-β gene. Bacterial infection significantly upregulated mRNA expression levels of Isg15, Mx1, Mx2, Irf-3, Irf-7, Tlr-2, Tnf-α, Cxcl-1, and Il-6 genes. Notably, mRNA expression levels of Mx1, Irf7, Tlr2, Tnf-α, Cxcl1, and Il-6 genes inside macrophages significantly downregulated on implant surfaces with silver or tetracycline. Titanium with tetracycline showed higher antibacterial activities than silver. The in vivo evaluation of IFN-β expression around implants was measured inside transgenic mice constitutive for IFN-β expression. Of note, the non-invasive in vivo imaging revealed a significant decrease in IFN-β expression around subcutaneous implants with silver compared to titanium and titanium with tetracycline in sterile or infected situations. The histology of peri-implant tissue interfaces around infected implants with silver showed a thick interface with a significantly higher accumulation of inflammatory cells. Titanium implants with silver and tetracycline remained antibacterial in mice. Findings from this study unequivocally indicate that implant surfaces with silver decrease IFN-β expression, a crucial component of host immunity.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Syed Fakhar-ul-Hassnain Waqas
- Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Elmar Willbold
- Department of Orthopedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Ben Amara H, Martinez DC, Shah FA, Loo AJ, Emanuelsson L, Norlindh B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Palmquist A, Omar O, Thomsen P. Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioact Mater 2023; 26:353-369. [PMID: 36942009 PMCID: PMC10024189 DOI: 10.1016/j.bioactmat.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Implants made of magnesium (Mg) are increasingly employed in patients to achieve osteosynthesis while degrading in situ. Since Mg implants and Mg2+ have been suggested to possess anti-inflammatory properties, the clinically observed soft tissue inflammation around Mg implants is enigmatic. Here, using a rat soft tissue model and a 1-28 d observation period, we determined the temporo-spatial cell distribution and behavior in relation to sequential changes of pure Mg implant surface properties and Mg2+ release. Compared to nondegradable titanium (Ti) implants, Mg degradation exacerbated initial inflammation. Release of Mg degradation products at the tissue-implant interface, culminating at 3 d, actively initiated chemotaxis and upregulated mRNA and protein immunomodulatory markers, particularly inducible nitric oxide synthase and toll-like receptor-4 up to 6 d, yet without a cytotoxic effect. Increased vascularization was demonstrated morphologically, preceded by high expression of vascular endothelial growth factor. The transition to appropriate tissue repair coincided with implant surface enrichment of Ca and P and reduced peri-implant Mg2+ concentration. Mg implants revealed a thinner fibrous encapsulation compared with Ti. The detailed understanding of the relationship between Mg material properties and the spatial and time-resolved cellular processes provides a basis for the interpretation of clinical observations and future tailoring of Mg implants.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana C. Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Furqan A. Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Tomasz Plocinski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Corresponding author. Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Box 412, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
9
|
Kwesiga MP, Gillette AA, Razaviamri F, Plank ME, Canull AL, Alesch Z, He W, Lee BP, Guillory RJ. Biodegradable magnesium materials regulate ROS-RNS balance in pro-inflammatory macrophage environment. Bioact Mater 2023; 23:261-273. [PMID: 36439083 PMCID: PMC9678810 DOI: 10.1016/j.bioactmat.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The relationship between reactive oxygen and nitrogen species (ROS-RNS) secretion and the concomitant biocorrosion of degradable magnesium (Mg) materials is poorly understood. We found that Mg foils implanted short term in vivo (24 h) displayed large amounts of proinflammatory F4/80+/iNOS + macrophages at the interface. We sought to investigate the interplay between biodegrading Mg materials (98.6% Mg, AZ31 & AZ61) and macrophages (RAW 264.7) stimulated with lipopolysaccharide (RAW 264.7LPS) to induce ROS-RNS secretion. To test how these proinflammatory ROS-RNS secreting cells interact with Mg corrosion in vitro, Mg and AZ61 discs were suspended approximately 2 mm above a monolayer of RAW 264.7 cells, either with or without LPS. The surfaces of both materials showed acute (24 h) changes when incubated in the proinflammatory RAW 264.7LPS environment. Mg discs incubated with RAW 264.7LPS macrophages showed greater corrosion pitting, while AZ61 showed morphological and elemental bulk product changes via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). X-ray photoelectron spectroscopy (XPS) analysis showed a reduction in the Ca/P ratio of the surface products for AZ61 disc incubated with RAW 264.7LPS, but not the Mg discs. Moreover, RAW 264.7LPS macrophages were found to be more viable in the acute biodegradative environment generated by Mg materials, as demonstrated by calcein-AM and cleaved (active) caspase-3 staining (CC3). LPS stimulation caused an increase in ROS-RNS, and a decrease in antioxidant peroxidase activity. Mg and AZ61 were found to change this ROS-RNS balance, independently of physiological antioxidant mechanisms. The findings highlight the complexity of the cellular driven acute inflammatory responses to different biodegradable Mg, and how it can potentially affect performance of these materials.
Collapse
|
10
|
Kozakiewicz M, Gabryelczak I. Bone Union Quality after Fracture Fixation of Mandibular Head with Compression Magnesium Screws. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2230. [PMID: 35329682 PMCID: PMC8950275 DOI: 10.3390/ma15062230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
For some years now, fixation devices created with resorbable magnesium alloys for the mandibular head have been clinically available and are beginning to be used. It is thus valuable to evaluate the quality of unions in these cases. The aim of this study was radiological comparison of magnesium versus titanium open reduction and rigid fixations in the mandible condylar head. Thirty-one patients were treated for fractures of the mandibular head with magnesium WE43 alloy headless compression screws (diameter 2.3 mm) and, as a reference group, 29 patients were included with similar construction titanium screws (diameter 1.8 mm). The 12-month results of the treatment were evaluated by the texture analysis of CT. Near similar treatment results were found with magnesium screws in traditional titanium fixation. Magnesium screws result in a higher density of the bone structure in the mandibular head. Conclusions: The quantitative evaluation of bone union after surgical treatment of mandibular head fracture with magnesium compression headless screws indicates that stable consolidation was achieved. Undoubtedly, the resorption process of the screws was found to be incomplete after 12 months, evidenced by a marked densification of the bone structure at the fracture site.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland;
| | | |
Collapse
|
11
|
Song Y, Qin G, Du L, Hu H, Han Y. In vitro and in vivo assessment of biocompatibility of AZ31 alloy as biliary stents: a preclinical approach. Arch Med Sci 2022; 18:195-205. [PMID: 35154540 PMCID: PMC8826861 DOI: 10.5114/aoms.2020.92675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Biomaterial technology due to its lack of or minimal side effects in tissues has great potential. Traditionally biomaterials used were cobalt-chromium, stainless steel and nitinol alloys. Biomaterials such as magnesium (Mg) and zinc (Zn) have good biocompatibility and consequently can be a potential material for medical implants. To date, the effects of AZ31 alloy stent on cell apoptosis are still unclear. The current investigation was designed to determine the effect of AZ31 alloy stent on necrosis and apoptosis of common bile duct (CBD) epithelial cells. MATERIAL AND METHODS We experimented with application of different concentrations of AZ31 alloy stent to primary mouse extrahepatic bile epithelial cells (MEBECs) and estimated the effect on apoptosis and necrotic cells. Apoptosis and pro-apoptosis expression were estimated through real-time PCR. For in vivo protocol, we used rabbits, implanted the AZ31 bile stent, and estimated its effect on the CBD. AZ31 (40%) concentration showed an effect on the apoptotic and necrotic cells. RESULTS Real-time PCR revealed that AZ31 (40%) concentration increased the apoptotic genes such as NF-κB, caspase-3, Bax and Bax/Bcl-2 ratio as compared to the control group. In the in vivo experiment, AZ31 alloy stents were implanted into the CBD and showed an effect on the alteration the hematological, hepatic and non-hepatic parameters. CONCLUSIONS To conclude, it can be stated that AZ31 induces apoptosis via alteration in genes including nuclear factor kappa-B (NF-κB), caspase-3, Bax and Bax/Bcl-2 ratio and improved the hematological, hepatic and non-hepatic parameters.
Collapse
Affiliation(s)
- Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Gaoping Qin
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Lixue Du
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haitian Hu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yong Han
- Material Science and Engineering, Xi’an Jiaotong University, Beilin District, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Helmholz H, Will O, Penate-Medina T, Humbert J, Damm T, Luthringer-Feyerabend B, Willumeit-Römer R, Glüer CC, Penate-Medina O. Tissue responses after implantation of biodegradable Mg alloys evaluated by multimodality 3D micro-bioimaging in vivo. J Biomed Mater Res A 2021; 109:1521-1529. [PMID: 33590952 DOI: 10.1002/jbm.a.37148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The local response of tissue triggered by implantation of degradable magnesium-based implant materials was investigated in vivo in a murine model. Pins (5.0 mm length by 0.5 mm diameter) made of Mg, Mg-10Gd, and Ti were implanted in the leg muscle tissue of C57Bl/6N mice (n = 6). Implantation was generally well tolerated as documented by only a mild short term increase in a multidimensional scoring index. Lack of difference between the groups indicated that the response was systemic and surgery related rather than material dependent. Longitudinal in vivo monitoring utilizing micro-computed tomography over 42 days demonstrated the highest and most heterogeneous degradation for Mg-10Gd. Elemental imaging of the explants by micro X-ray fluorescence spectrometry showed a dense calcium-phosphate-containing degradation layer. In order to monitor resulting surgery induced and/or implant material associated local cell stress, sphingomyelin based liposomes containing indocyanine green were administered. An initial increase in fluorescent signals (3-7 days after implantation) indicating cell stress at the site of the implantation was measured by in vivo fluorescent molecular tomography. The signal decreased until the 42nd day for all materials. These findings demonstrate that Mg based implants are well tolerated causing only mild and short term adverse reactions.
Collapse
Affiliation(s)
- Heike Helmholz
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Olga Will
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tuula Penate-Medina
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Timo Damm
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Berengere Luthringer-Feyerabend
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Oula Penate-Medina
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
13
|
Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Izquierdo R, Azkargorta M, Elortza F, Gurruchaga M, Suay J, Goñi I. Characterization of magnesium doped sol-gel biomaterial for bone tissue regeneration: The effect of Mg ion in protein adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112114. [PMID: 33965118 DOI: 10.1016/j.msec.2021.112114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Magnesium is the fourth most abundant element in the human body with a wide battery of functions in the maintenance of normal cell homeostasis. In the bone, this element incorporates in the hydroxyapatite structure and it takes part in mineral metabolism and regulates osteoclast functions. In this study, sol-gel materials with increasing concentrations of MgCl2 (0.5, 1, and 1.5%) were synthesized and applied onto Ti surfaces as coatings. The materials were first physicochemically characterized. In vitro responses were examined using the MC3T3-E1 osteoblastic cells and RAW264.7 macrophages. Human serum protein adsorption was evaluated employing nLC-MS/MS. The incorporation of Mg did not affect the crosslinking of the sol-gel network, and a controlled release of Mg was observed; it was not cytotoxic at any of the tested concentrations. The cytoskeleton arrangement of MC3T3-E1 cells cultured on the Mg-doped materials changed in comparison with controls; the cells became more elongated, with protruded lamellipodia and increased cell surface. The expression of integrins (ITGA5 and ITGB1) was boosted by Mg-coatings. The ALP activity and expression of TGF-β, OSX and RUNX2 genes were also increased. In RAW264.7 cells, TNF-α secretion was reduced, while TGF-β and IL-4 expression rose. These changes correlated with the altered protein adsorption patterns. The Mg-doped coatings showed increased adsorption of anti-inflammatory (CLUS, IC1, CFAH, and VTNC), cell adhesion (DSG1, FILA2, and DESP) and tissue regeneration (VTNC and CYTA) proteins. This integrated approach to biomaterial characterization revealed the potential of Mg in bone tissue regeneration.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, Dumlupınar D100 Karayolu, 98, 34720 Istanbul, Turkey
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Isabel Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
14
|
Ng JY, Zhu X, Mukherjee D, Zhang C, Hong S, Kumar Y, Gokhale R, Ee PLR. Pristine Gellan Gum-Collagen Interpenetrating Network Hydrogels as Mechanically Enhanced Anti-inflammatory Biologic Wound Dressings for Burn Wound Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1470-1482. [PMID: 35014496 DOI: 10.1021/acsabm.0c01363] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gellan gum is a biologically inert natural polymer that is increasingly favored as a material-of-choice to form biorelevant hydrogels. However, as a burn wound dressing, native gellan gum hydrogels do not drive host's biology toward regeneration and are mechanically inadequate wound barriers. To overcome these issues, we fabricateda gellan gum-collagen full interpenetrating network (full-IPN) hydrogel that can house adipose-derived mesenchymal stem cells (ADSCs) and employ their multilineage differentiation potential and produce wound-healing paracrine factors to reduce inflammation and promote burn wound regeneration. Herein, a robust temperature-dependent simultaneous IPN (SIN) hydrogel fabrication process was demonstrated using applied rheology for the first time. Subsequently after fabrication, mechanical characterization assays showed that the IPN hydrogels were easy to handle without deforming and retained sufficient mass to effect ADSCs' anti-inflammation property in a simulated wound environment. The IPN hydrogels' increased stiffness proved conducive for mechanotransduced cell adhesion. Scanning electron microscopy revealed theIPN's porous network, which enabled encapsulated ADSCs to spread and proliferate, for up to 3 weeks of culture, further shown by cells' dynamic filopodia extension observed in 3D confocal images. Successful incorporation of ADSCs accorded the IPN hydrogels with biologic wound-dressing properties, which possess the ability to promote human dermal fibroblast migration and secrete an anti-inflammatory paracrine factor, TSG-6 protein, as demonstrated in the 2D scratch wound assay and ELISA, respectively. More importantly, upon application onto murine full thickness burn wounds, our biologic wound dressing enhanced early wound closure, reduced inflammation, and promoted complete skin regeneration. Altogether, our results highlight the successful mechanical and biological enhancement of the inert matrix of gellan gum. Through completely natural procedures, a highly applicable biologic wound dressing is introduced for cell-based full thickness burn wound therapy.
Collapse
Affiliation(s)
- Jian Yao Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Xiao Zhu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Devika Mukherjee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Chi Zhang
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Shiqi Hong
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Yogesh Kumar
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Rajeev Gokhale
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge Road, 119077, Singapore
| |
Collapse
|
15
|
Change in Pull-Out Force during Resorption of Magnesium Compression Screws for Osteosynthesis of Mandibular Condylar Fractures. MATERIALS 2021; 14:ma14020237. [PMID: 33418924 PMCID: PMC7825024 DOI: 10.3390/ma14020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnesium has been used as degradable fixation material for osteosynthesis, but it seems that mechanical strength is still a current issue in these fixations. The aim of this study was to evaluate the axial pull-out force of compression headless screws made of magnesium alloy during their resorption. METHODS The tests included screws made for osteosynthesis of the mandible head: 2.2 mm diameter magnesium alloy MgYREZr (42 screws) and 2.5 mm diameter polylactic-co-glycolic acid (PLGA) (42 pieces, control). The screws were resorbed in Sørensen's buffer for 2, 4, 8, 12, and 16 weeks, and force was measured as the screw was pulled out from the polyurethane block. RESULTS The force needed to pull the screw out was significantly higher for MgYREZr screws than for PLGA ones (p < 0.01). Within eight weeks, the pull-out force for MgYREZr significantly decreased to one third of its initial value (p < 0.01). The dynamics of this decrease were greater than those of the pull-out force for PLGA screws (p < 0.05). After these eight weeks, the values for metal and polymer screws equalized. It seems that the described reduction of force requires taking into account when using magnesium screws. This will provide more stable resorbable metallic osteosynthesis.
Collapse
|
16
|
Wang Q, Xu L, Helmholz H, Willumeit-Römer R, Luthringer-Feyerabend BJC. Effects of degradable magnesium on paracrine signaling between human umbilical cord perivascular cells and peripheral blood mononuclear cells. Biomater Sci 2020; 8:5969-5983. [PMID: 32975550 DOI: 10.1039/d0bm00834f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human mesenchymal stem cells (MSC) interact with numerous immune cells that can promote regenerative processes and inhibit inflammatory responses. We hypothesised that the cross-talk between human umbilical cord perivascular cells (HUCPV; an alternative source of MSC) and peripheral blood mononuclear cells (PBMC) could be influenced by degradable transwell magnesium (Mg). To study the correlations between paracrine signaling and specific cellular behaviour during the host response to Mg, we used a transwell coculture system for up to 7 days. The proliferation and viability of both cell types were not significantly influenced by Mg. When HUCPV were cultured with degradable Mg, a moderate inflammation (e.g., lower secretions of pro-inflammatory interleukin 1 beta and IL2, and tumour necrosis factor alpha, interferon gamma, anti-inflammatory interleukins 4, 5, 10, 13, and 1 receptor antagonists and granulocyte colony stimulating factor), and an increased pro-healing M2 macrophage phenotype were observed. Moreover, when PBMC were cultured with degradable Mg, the expression of migration/wound healing related cytokines (interleukin 8, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α/β) was upregulated, accompanied by an increase in the migration ability of HUCPV (cell scratch assay). In addition, an increased pro-osteogenic potential was demonstrated via an increase of osteoblastic markers (e.g., alkaline phosphatase activity, specific gene expression and cytokine release). These results collectively imply that Mg possesses osteo-immunomodulatory properties. They also help to design Mg-based bone substitute biomaterials capable of exhibiting desired immune reactions and good clinical performance.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany.
| | | | | | | | | |
Collapse
|
17
|
Kozakiewicz M. Are Magnesium Screws Proper for Mandibular Condyle Head Osteosynthesis? MATERIALS 2020; 13:ma13112641. [PMID: 32531885 PMCID: PMC7321625 DOI: 10.3390/ma13112641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Recently, magnesium alloys have gained a significant amount of recognition as potential biomaterials for degradable implants for craniofacial bone screws. Purpose: The aim of this work was to compare screws made specifically for mandibular head osteosynthesis from different materials. Materials and Methods: Screws measuring 14 mm made by one manufacturer specifically for mandibular head osteosynthesis out of the following materials were selected: magnesium (MgYREZr), titanium (Ti6Al7Nb), and polymer (PLGA). The axial pull-out strength and torsional properties were investigated. Results: Each type of screw presented different pull-out forces (Kruskal–Wallis test, p < 0.001). The magnesium screw had the highest pull-out force of 399 N (cracked without the screw out being pulled out), followed by the titanium screw, with a force of 340 N, and the PLGA screw, with a force of 138 N (always cracked at the base of the screw head without the screw being pulled out). ANOVA was performed for the maximal torques before damage to the screw (torsional properties), revealing that the maximal torque of the magnesium screw was 16 N·cm, while that of the titanium screw was 19 N·cm. The magnesium screw was significantly weaker than the titanium screw (p < 0.05). The measured torque and pull-out force were not related to each other (p > 0.05). Conclusion: Among the screws compared, the metal biodegradable magnesium screw seems to be the most suitable material for multiscrew mandibular head osteosynthesis, considering the condition of the fragile screwdriver socket.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 1st Gen. J. Haller Pl., 90-647 Lodz, Poland
| |
Collapse
|
18
|
Sun L, Li X, Xu M, Yang F, Wang W, Niu X. In vitro immunomodulation of magnesium on monocytic cell toward anti-inflammatory macrophages. Regen Biomater 2020; 7:391-401. [PMID: 32793384 PMCID: PMC7415003 DOI: 10.1093/rb/rbaa010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/20/2022] Open
Abstract
Biodegradable magnesium (Mg) has shown great potential advantages over current bone fixation devices and vascular scaffold technologies; however, there are few reports on the immunomodulation of corrosive Mg products, the micron-sized Mg particles (MgMPs). Human monocytic leukemia cell line THP-1 was set as the in vitro cell model to estimate the immunomodulation of MgMPs on cell proliferation, apoptosis, polarization and inflammatory reaction. Our results indicated high-concentration of Mg2+ demoted the proliferation of the THP-1 cells and, especially, THP-1-derived macrophages, which was a potential factor that could affect cell function, but meanwhile, cell apoptosis was almost not affected by Mg2+. In particular, the inflammation regulatory effects of MgMPs were investigated. Macrophages exposed to Mg2+ exhibited down-regulated expressions of M1 subtype markers and secretions of pro-inflammatory cytokines, up-regulated expression of M2 subtype marker and secretion of anti-inflammatory cytokine. These results indicated Mg2+ could convert macrophages from M0 to M2 phenotype, and the bioeffects of MgMPs on human inflammatory cells were most likely due to the Mg2+-induced NF-κB activation reduction. Together, our results proved Mg2+ could be used as a new anti-inflammatory agent to suppress inflammation in clinical applications, which may provide new ideas for studying the immunomodulation of Mg-based implants on human immune system.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Menghan Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No. 38 XueYuan Road, Haidian District, Beijing 100191, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
19
|
Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater 2020; 101:598-608. [PMID: 31610341 DOI: 10.1016/j.actbio.2019.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022]
Abstract
Biodegradability and mechanical properties of magnesium alloys are attractive for orthopaedic and cardiovascular applications. In order to study their cytotoxicity usually bone cells are used. However, after implantation, diverse and versatile cells are recruited and interact. Among the first ones coming into play are cells of the immune system, which are responsible for the inflammatory reaction. Macrophages play a central role in the inflammatory process due to the production of cytokines involved in the tissue healing but also in the possible failure of the implants. In order to evaluate the in vitro influence of the degradation products of magnesium-based alloys on cytokine release, the extracts of pure magnesium and two magnesium alloys (with gadolinium and silver as alloying elements) were examined in an inflammatory in vitro model. Human promonocytic cells (U937 cells) were differentiated into macrophages and further cultured with magnesium-based extracts for 1 and 3 days (simulating early and late inflammatory reaction phases), either at 37 °C or at 39 °C (mimicking normal and inflammatory conditions, respectively). All extracts exhibit very good cytocompatibility on differentiated macrophages. Results suggest that M1 and even more M2 profiles of macrophage were stimulated by the extracts of Mg. Furthermore, Mg-10Gd and Mg-2Ag extracts introduced a nuancing effect by rather inhibiting macrophage M1 profile. Magnesium-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair. STATEMENT OF SIGNIFICANCE: Macrophage are the key-cells during inflammation and can influence the fate of tissue healing and implant performance. Magnesium-based implants are biodegradable and bioactive. Here we selected an in vitro system to model early and late inflammation and effect of pyrexia (37 °C versus 39 °C). We showed the beneficial and nuancing effects of magnesium (Mg) and the selected alloying elements (silver (Ag) and gadolinium (Gd)) on the macrophage polarisation. Mg extracts exacerbated simultaneously the macrophage M1 and M2 profiles while Mg-2Ag and Mg-10Gd rather inhibited the M1 differentiation. Furthermore, 39 °C exhibited protective effect by either decreasing cytokine production or promoting anti-inflammatory ones, with or without extracts. Mg-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair.
Collapse
Affiliation(s)
- M D Costantino
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Schuster
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - H Helmholz
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Meyer-Rachner
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - R Willumeit-Römer
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - B J C Luthringer-Feyerabend
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany.
| |
Collapse
|
20
|
Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: A review. J Mech Behav Biomed Mater 2018; 87:68-79. [DOI: 10.1016/j.jmbbm.2018.07.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/23/2017] [Accepted: 07/13/2018] [Indexed: 01/09/2023]
|
21
|
Gao C, Li C, Wang C, Qin Y, Wang Z, Yang F, Liu H, Chang F, Wang J. Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. JOURNAL OF ALLOYS AND COMPOUNDS 2017; 726:1072-1084. [DOI: 10.1016/j.jallcom.2017.08.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
22
|
Cheng P, Han P, Zhao C, Zhang S, Zhang X, Chai Y. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction. Sci Rep 2016; 6:26434. [PMID: 27210585 PMCID: PMC4876376 DOI: 10.1038/srep26434] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/03/2016] [Indexed: 11/09/2022] Open
Abstract
Patients after anterior cruciate ligament (ACL) reconstruction surgery commonly encounters graft failure in the initial phase of rehabilitation. The inhibition of graft degradation is crucial for the successful reconstruction of the ACL. Here, we used biodegradable high-purity magnesium (HP Mg) screws in the rabbit model of ACL reconstruction with titanium (Ti) screws as a control and analyzed the graft degradation and screw corrosion using direct pull-out tests, microCT scanning, and histological and immunohistochemical staining. The most noteworthy finding was that tendon graft fixed by HP Mg screws exhibited biomechanical properties substantially superior to that by Ti screws and the relative area of collagen fiber at the tendon-bone interface was much larger in the Mg group, when severe graft degradation was identified in the histological analysis at 3 weeks. Semi-quantitative immunohistochemical results further elucidated that the MMP-13 expression significantly decreased surrounding HP Mg screws with relatively higher Collagen II expression. And HP Mg screws exhibited uniform corrosion behavior without displacement or loosening in the femoral tunnel. Therefore, our results demonstrated that Mg screw inhibited graft degradation and improved biomechanical properties of tendon graft during the early phase of graft healing and highlighted its potential in ACL reconstruction.
Collapse
Affiliation(s)
- Pengfei Cheng
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Pei Han
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Changli Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoxiang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| | - Yimin Chai
- Department of Orthopaedic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
23
|
Degraded and osteogenic properties of coated magnesium alloy AZ31; an experimental study. J Orthop Surg Res 2016; 11:30. [PMID: 26975841 PMCID: PMC4791771 DOI: 10.1186/s13018-016-0362-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
Background Degraded and osteogenic property of coated magnesium alloy was evaluated for the fracture fixation in rabbits. Methods Magnesium alloy AZ31 with a different coating thickness by microarc oxidation was used, and the bilateral radial fracture model was created by the bite bone clamp. Thirty-six New Zealand white rabbits in weight of 2.5~3.0 kg were randomly divided into A, B, and C groups at four time points and other 3 rabbits as the control group without magnesium alloy. Coated magnesium alloy AZ31 was implanted on the fracture and fixed with silk thread. Indexes such as general observation, histology, X-ray, hematology, and mechanical properties were observed and detected at 2nd, 4th, 8th, and 12th week after implantation. Results Fracture in each rabbit was healed at 12th week after implantation. Among the three groups, the best results of general observation, histology, and X-ray appeared in A group without coating. However, A group showed the worst results from the perspective of mechanical properties about tensile strength and flexural strength, which failed to reach that of the natural bone at the 12th week. Comprehensive results displayed that C group with 20-μm coating was better than others in mechanical properties, while there is no difference between B and C groups in hematology. Conclusions Degradation rate is inversely proportional to the coating thickness. And magnesium alloy with a 20-μm coating is more suitable for the fracture fixation.
Collapse
|
24
|
Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1387-95. [PMID: 26956413 DOI: 10.1016/j.nano.2016.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/22/2022]
Abstract
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute.
Collapse
|
25
|
Rössig C, Angrisani N, Helmecke P, Besdo S, Seitz JM, Welke B, Fedchenko N, Kock H, Reifenrath J. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater 2015; 25:369-83. [PMID: 26188326 DOI: 10.1016/j.actbio.2015.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/10/2023]
Abstract
The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. STATEMENT OF SIGNIFICANCE An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous.
Collapse
|
26
|
Guo C, Li J, She C, Shao X, Teng B, Feng J, Zhang JV, Ren PG. Bioeffects of micron-size magnesium particles on inflammatory cells and bone turnover in vivo and in vitro. J Biomed Mater Res B Appl Biomater 2015; 104:923-31. [PMID: 25976168 DOI: 10.1002/jbm.b.33411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/13/2022]
Abstract
Magnesium (Mg) is a promising biodegradable metal offering many potential advantages over current scaffold technologies. Many studies have reported on the corrosion characteristics the Mg and its bioeffects in vitro and in vivo, but there are few studies on the biological effects of the corrosive products of Mg - the micron-size Mg particles (MgMPs). In this study, the effects of size-selected commercial MgMPs on bone turnover and macrophages were investigated in vivo and in vitro. We found that MgMPs were susceptible to engulfment by macrophages, leading to cell lysis, likely resulting from H2 gas production. We also found that the inflammatory cytokines IL-1, IL-6, and TNF-α were induced more strongly by titanium particles (TiMPs) group than by either MgMPs or control. Examination of the expression of bone remodeling markers revealed that MgMPs are beneficial for bone regeneration. Micro-CT scanning indicated that, 30 days postimplantation, unlike TiMPs, MgMPs had no adverse effect on either bone quality or quantity. We have investigated the bioeffects of micron-size MgMPs in vivo and in vitro, and our results indicate that MgMPs may promote bone regeneration without inducing inflammation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 923-931, 2016.
Collapse
Affiliation(s)
- Chengzhi Guo
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Chang She
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,Orthopedics Department, The second affiliated hospital of Soochow university, Suzhou, Jiangsu, 215000, China
| | - Xiangzhi Shao
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,Hunan University of Chinese Medicine, Changsha, Hunan, 410000, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Feng
- Orthopedics Department, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Jian V Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
27
|
Wang J, Smith CE, Sankar J, Yun Y, Huang N. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regen Biomater 2015; 2:59-69. [PMID: 26816631 PMCID: PMC4669031 DOI: 10.1093/rb/rbu015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022] Open
Abstract
Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Christopher E Smith
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Jagannathan Sankar
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Yeoheung Yun
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China and National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
28
|
Tian P, Liu X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen Biomater 2014; 2:135-51. [PMID: 26816637 PMCID: PMC4669019 DOI: 10.1093/rb/rbu013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] Open
Abstract
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
29
|
Bowen PK, Drelich J, Goldman J. Magnesium in the murine artery: probing the products of corrosion. Acta Biomater 2014; 10:1475-83. [PMID: 24296127 DOI: 10.1016/j.actbio.2013.11.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022]
Abstract
Many publications are available on the physiological and pseudophysiological corrosion of magnesium and its alloys for bioabsorbable implant application, yet few focus on the characterization of explanted materials. In this work, commercially pure magnesium wires were corroded in the arteries of rats for up to 1 month, removed, and both bulk and surface products characterized. Surface characterization using infrared spectroscopy revealed a duplex structure comprising heavily magnesium-substituted hydroxyapatite that later transformed into an A-type (carbonate-substituted) hydroxyapatite. To explain this transformation, an ion-exchange mechanism is suggested. Elemental mapping of the bulk products of biocorrosion revealed the elemental distribution of Ca, P, Mg and O in the outer and Mg, O and P in the inner layers. Carbon was not observed in any significant quantity from the inner corrosion layer, suggesting that carbonates are not a prevalent product of corrosion. Backscatter electron imaging of cross-sections showed that thinning or absence of the hydroxyapatite in the later stages of degradation is related to local thickening of the inner corrosion layer. Based on these experimental observations, mechanisms describing corrosion in the quasi-steady state and during terminal breakdown of the magnesium specimens are proposed.
Collapse
Affiliation(s)
- Patrick K Bowen
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jaroslaw Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|