1
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Liu L, Luo P, Liao H, Yang K, Yang S, Tu M. Effects of aligned PLGA/SrCSH composite scaffolds on in vitro growth and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35366. [PMID: 38247249 DOI: 10.1002/jbm.b.35366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Strontium (Sr) has important functions in bone remodeling. Incorporating strontium-doped α-calcium sulfate hemihydrate (SrCSH) into poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds were expected to increase its bio-activity and provide a potential material for bone tissue engineering. In the present study, Sr-containing aligned PLGA/SrCSH fibrous scaffolds similar to the architecture of natural bone were prepared via wet spinning. CCK-8 assay revealed that Sr-containing scaffolds possessed better bioactivity and supported favorable cell growth effectively. The aligned PLGA/SrCSH fibers exerted a contact effect on cell attachment, inducing regular cell alignment and influencing a series of cell behaviors. Releasing of high concentration Sr from a-PLGA/SrCSH scaffolds could induce high expression levels of BMP-2, increase ALP activity and upregulate RUNX-2 expression, and further promote the expressions of COL-I and OCN and the maximum mineralization. This study demonstrated that Sr and ordered structure in a-PLGA/SrCSH fibrous scaffolds could synergistically enhance the osteogenic differentiation of umbilical cord mesenchymal stem cells (UCMSCs) by regulating cell arrangement and expressions of osteogenic genes.
Collapse
Affiliation(s)
- Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Pin Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| | - Honghong Liao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, P. R. China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
4
|
Golafshan N, Castilho M, Daghrery A, Alehosseini M, van de Kemp T, Krikonis K, de Ruijter M, Dal-Fabbro R, Dolatshahi-Pirouz A, Bhaduri SB, Bottino MC, Malda J. Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12735-12749. [PMID: 36854044 PMCID: PMC11022588 DOI: 10.1021/acsami.2c21256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Morteza Alehosseini
- Technical University of Denmark, Department of Health Technology, Lyngby, Denmark
| | - Tom van de Kemp
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Konstantinos Krikonis
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Mylene de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Sarit B. Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio, United States
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, Virginia, United States
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
6
|
Ren J, Murray R, Wong CS, Qin J, Chen M, Totsika M, Riddell AD, Warwick A, Rukin N, Woodruff MA. Development of 3D Printed Biodegradable Mesh with Antimicrobial Properties for Pelvic Organ Prolapse. Polymers (Basel) 2022; 14:polym14040763. [PMID: 35215676 PMCID: PMC8877663 DOI: 10.3390/polym14040763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
To address the increasing demand for safe and effective treatment options for pelvic organ prolapse (POP) due to the worldwide ban of the traditional polypropylene meshes, this study introduced degradable polycaprolactone (PCL)/polyethylene glycol (PEG) composite meshes fabricated with melt-electrowriting (MEW). Two PCL/PEG mesh groups: 90:10 and 75:25 (PCL:PEG, wt%) were fabricated and characterized for their degradation rate and mechanical properties, with PCL meshes used as a control. The PCL/PEG composites showed controllable degradation rates by adjusting the PEG content and produced mechanical properties, such as maximal forces, that were higher than PCL alone. The antibacterial properties of the meshes were elicited by coating them with a commonly used antibiotic: azithromycin. Two dosage levels were used for the coating: 0.5 mg and 1 mg per mesh, and both dosage levels were found to be effective in suppressing the growth of S. aureus bacteria. The biocompatibility of the meshes was assessed using human immortalized adipose derived mesenchymal stem cells (hMSC). In vitro assays were used to assess the cell viability (LIVE/DEAD assay), cell metabolic activity (alamarBlue assay) and cell morphology on the meshes (fluorescent and electron microscopy). The cell attachment was found to decrease with increased PEG content. The freshly drug-coated meshes showed signs of cytotoxicity during the cell study process. However, when pre-released for 14 days in phosphate buffered saline, the initial delay in cell attachment on the drug-coated mesh groups showed full recovery at the 14-day cell culture time point. These results indicated that the PCL/PEG meshes with antibiotics coating will be an effective anti-infectious device when first implanted into the patients, and, after about 2 weeks of drug release, the mesh will be supporting cell attachment and proliferation. These meshes demonstrated a potential effective treatment option for POP that may circumvent the issues related to the traditional polypropylene meshes.
Collapse
Affiliation(s)
- Jiongyu Ren
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (J.R.); (M.C.)
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Rebecca Murray
- Herston Biofabrication Institute, Metro North Health, Brisbane, QLD 4029, Australia; (R.M.); (N.R.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Redcliffe Hospital, Metro North Health, Redcliffe, QLD 4020, Australia; (A.D.R.); (A.W.)
| | - Cynthia S. Wong
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital, Melbourne, VIC 3065, Australia;
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; (J.Q.); (M.T.)
| | - Michael Chen
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (J.R.); (M.C.)
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Herston Biofabrication Institute, Metro North Health, Brisbane, QLD 4029, Australia; (R.M.); (N.R.)
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; (J.Q.); (M.T.)
| | - Andrew D. Riddell
- Redcliffe Hospital, Metro North Health, Redcliffe, QLD 4020, Australia; (A.D.R.); (A.W.)
- Northside Clinical Unit, School of Clinical Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Warwick
- Redcliffe Hospital, Metro North Health, Redcliffe, QLD 4020, Australia; (A.D.R.); (A.W.)
| | - Nicholas Rukin
- Herston Biofabrication Institute, Metro North Health, Brisbane, QLD 4029, Australia; (R.M.); (N.R.)
- Redcliffe Hospital, Metro North Health, Redcliffe, QLD 4020, Australia; (A.D.R.); (A.W.)
| | - Maria A. Woodruff
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (J.R.); (M.C.)
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Correspondence:
| |
Collapse
|
7
|
Mesoporous Bioglasses Enriched with Bioactive Agents for Bone Repair, with a Special Highlight of María Vallet-Regí’s Contribution. Pharmaceutics 2022; 14:pharmaceutics14010202. [PMID: 35057097 PMCID: PMC8778065 DOI: 10.3390/pharmaceutics14010202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout her impressive scientific career, Prof. María Vallet-Regí opened various research lines aimed at designing new bioceramics, including mesoporous bioactive glasses for bone tissue engineering applications. These bioactive glasses can be considered a spin-off of silica mesoporous materials because they are designed with a similar technical approach. Mesoporous glasses in addition to SiO2 contain significant amounts of other oxides, particularly CaO and P2O5 and therefore, they exhibit quite different properties and clinical applications than mesoporous silica compounds. Both materials exhibit ordered mesoporous structures with a very narrow pore size distribution that are achieved by using surfactants during their synthesis. The characteristics of mesoporous glasses made them suitable to be enriched with various osteogenic agents, namely inorganic ions and biopeptides as well as mesenchymal cells. In the present review, we summarize the evolution of mesoporous bioactive glasses research for bone repair, with a special highlight on the impact of Prof. María Vallet-Regí´s contribution to the field.
Collapse
|
8
|
Kim HS, Kim M, Kim D, Choi EJ, Do SH, Kim G. 3D macroporous biocomposites with a microfibrous topographical cue enhance new bone formation through activation of the MAPK signaling pathways. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kirankumar S, Gurusamy N, Rajasingh S, Sigamani V, Vasanthan J, Perales SG, Rajasingh J. Modern approaches on stem cells and scaffolding technology for osteogenic differentiation and regeneration. Exp Biol Med (Maywood) 2021; 247:433-445. [PMID: 34648374 DOI: 10.1177/15353702211052927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of bone repair has always been a natural mystery. Although bones do repair themselves, supplemental treatment is required for the initiation of the self-regeneration process. Predominantly, surgical procedures are employed for bone regeneration. Recently, cell-based therapy for bone regeneration has proven to be more effective than traditional methods, as it eliminates the immune risk and painful surgeries. In clinical trials, various stem cells, especially mesenchymal stem cells, have shown to be more efficient for the treatment of several bone-related diseases, such as non-union fracture, osteogenesis imperfecta, osteosarcoma, and osteoporosis. Furthermore, the stem cells grown in a suitable three-dimensional scaffold support were found to be more efficient for osteogenesis. It has been shown that the three-dimensional bioscaffolds support and simulate an in vivo environment, which helps in differentiation of stem cells into bone cells. Bone regeneration in patients with bone disorders can be improved through modification of stem cells with several osteogenic factors or using stem cells as carriers for osteogenic factors. In this review, we focused on the various types of stem cells and scaffolds that are being used for bone regeneration. In addition, the molecular mechanisms of various transcription factors, signaling pathways that support bone regeneration and the senescence of the stem cells, which limits bone regeneration, have been discussed.
Collapse
Affiliation(s)
- Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Selene G Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Saveleva MS, Ivanov AN, Chibrikova JA, Abalymov AA, Surmeneva MA, Surmenev RA, Parakhonskiy BV, Lomova MV, Skirtach AG, Norkin IA. Osteogenic Capability of Vaterite-Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration. Macromol Biosci 2021; 21:e2100266. [PMID: 34608754 DOI: 10.1002/mabi.202100266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Indexed: 01/01/2023]
Abstract
In current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration. Hybrid two-layered polycaprolactone scaffolds coated with vaterite (PCL/CaCO3 ) are studied during their 28-days implantation period in a rat femur defect. After this period, the study of tissue formation in the defected area is performed by the histological study of femur cross-sections. Immobilization of alkaline phosphatase (ALP) into PCL/CaCO3 scaffolds accelerates new bone tissue formation and defect repair. PCL/CaCO3 and PCL/CaCO3 /ALP scaffolds reveal 37.3% and 62.9% areas, respectively, filled with newly formed bone tissue in cross-sections compared to unmineralized PCL scaffold (17.5%). Bone turnover markers are monitored on the 7th and 28th days after implantation and reveal an increase of osteocalcin level for both PCL/CaCO3 and PCL/CaCO3 /ALP compared with PCL indicating the activation of osteogenesis. These findings indicate that vaterite, as an osteoconductive component of polymeric scaffolds, promotes osteogenesis, supports angiogenesis, and facilitates bone defect repair.
Collapse
Affiliation(s)
- Mariia S Saveleva
- Remotely Controlled Systems for Theranostics Laboratory, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia.,Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University named after V. I. Razumovsky, Bolshaya Kazachya 112, Saratov, 410012, Russia
| | - Julia A Chibrikova
- Central Research Laboratory, Saratov State Medical University named after V. I. Razumovsky, Bolshaya Kazachya 112, Saratov, 410012, Russia
| | - Anatolii A Abalymov
- Remotely Controlled Systems for Theranostics Laboratory, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia.,Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin's Avenue 30, Tomsk, 634050, Russia
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin's Avenue 30, Tomsk, 634050, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Maria V Lomova
- Remotely Controlled Systems for Theranostics Laboratory, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia.,Scientific and Educational Center, Bauman Moscow State Technical University, 2-ya Baumanskaya 5, Moscow, 105005, Russia
| | - Andre G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Igor A Norkin
- Central Research Laboratory, Saratov State Medical University named after V. I. Razumovsky, Bolshaya Kazachya 112, Saratov, 410012, Russia
| |
Collapse
|
11
|
Ren J, Kohli N, Sharma V, Shakouri T, Keskin-Erdogan Z, Saifzadeh S, Brierly GI, Knowles JC, Woodruff MA, García-Gareta E. Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers (Basel) 2021; 13:3399. [PMID: 34641215 PMCID: PMC8512525 DOI: 10.3390/polym13193399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that a composite of 3D porous melt-electrowritten poly-ɛ-caprolactone (PCL) coated throughout with a porous and slowly biodegradable fibrin/alginate (FA) matrix would accelerate bone repair due to its angiogenic potential. Scanning electron microscopy showed that the open pore structure of the FA matrix was maintained in the PCL/FA composites. Fourier transform infrared spectroscopy and differential scanning calorimetry showed complete coverage of the PCL fibres by FA, and the PCL/FA crystallinity was decreased compared with PCL. In vitro cell work with osteoprogenitor cells showed that they preferentially bound to the FA component and proliferated on all scaffolds over 28 days. A chorioallantoic membrane assay showed more blood vessel infiltration into FA and PCL/FA compared with PCL, and a significantly higher number of bifurcation points for PCL/FA compared with both FA and PCL. Implantation into a rat cranial defect model followed by microcomputed tomography, histology, and immunohistochemistry after 4- and 12-weeks post operation showed fast early bone formation at week 4, with significantly higher bone formation for FA and PCL/FA compared with PCL. However, this phenomenon was not extrapolated to week 12. Therefore, for long-term bone regeneration, tuning of FA degradation to ensure syncing with new bone formation is likely necessary.
Collapse
Affiliation(s)
- Jiongyu Ren
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Nupur Kohli
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
- Department of Mechanical Engineering, Imperial College London, London SW7 1AL, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
| | - Taleen Shakouri
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| | - Zalike Keskin-Erdogan
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| | - Siamak Saifzadeh
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD 4059, Australia;
| | - Gary I. Brierly
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Jonathan C. Knowles
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Maria A. Woodruff
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| |
Collapse
|
12
|
Schafer S, Al-Qaddo H, Gosau M, Smeets R, Hartjen P, Friedrich RE, Nada OA, Vollkommer T, Rashad A. Cytocompatibility of Bone Substitute Materials and Membranes. In Vivo 2021; 35:2035-2040. [PMID: 34182478 DOI: 10.21873/invivo.12472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM With the demographic change and associated chronic bone loss, the need for cytocompatible bone replacement materials arise in modern medicine. The aim of this in vitro study was to investigate the cytocompatibility of eleven different bone substitute materials and membranes. MATERIALS AND METHODS Seven bone substitute materials and four membranes were assessed in vitro. The specimens were tested based on their interaction with MC3T3 pre-osteoblasts, through the utilization of viability, proliferation, and cytotoxicity assays. Cell vitality was evaluated using live-dead staining. RESULTS Although we found minor differences in cytocompatibility among the assessed materials, all tested materials can be considered as cytocompatible with a viability of more than 70% of the negative control, which indicates the non-toxic range as defined in current, international standards (DIN EN ISO 10993-5:2009, German Institute for Standardization, Berlin, Germany). Direct live-dead staining assays confirmed satisfactory cytocompatibility of all tested membranes. CONCLUSION All examined bone substitute materials and membranes were found to be cytocompatible. In order to assess whether the observed minor differences can impact regenerative processes, further in vivo studies need to be conducted.
Collapse
Affiliation(s)
- Sogand Schafer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; .,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Hayder Al-Qaddo
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ola A Nada
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashkan Rashad
- Department of Oral, Maxillofacial and Facial Plastic Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
13
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
14
|
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B 2021; 8:9404-9427. [PMID: 32970087 DOI: 10.1039/d0tb01379j] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regulatory role of the immune system in maintaining bone homeostasis and restoring its functionality, when disturbed due to trauma or injury, has become evident in recent years. The polarization of macrophages, one of the main constituents of the immune system, into the pro-inflammatory or anti-inflammatory phenotype has great repercussions for cellular crosstalk and the subsequent processes needed for proper bone regeneration such as angiogenesis and osteogenesis. In certain scenarios, the damaged osseous tissue requires the placement of synthetic bone grafts to facilitate the healing process. Inorganic biomaterials such as bioceramics or bioactive glasses are the most widely used due to their resemblance to the mineral phase of bone and superior osteogenic properties. The immune response of the host to the inorganic biomaterial, which is of an exogenous nature, might determine its fate, leading either to active bone regeneration or its failure. Therefore, various strategies have been employed, like the modification of structural/chemical features or the incorporation of bioactive molecules, to tune the interplay with the immune cells. Understanding how these particular modifications impact the polarization of macrophages and further osteogenic and osteoclastogenic events is of great interest in view of designing a new generation of osteoimmunomodulatory materials that support the regeneration of osseous tissue during all stages of bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain. and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Solanki AK, Lali FV, Autefage H, Agarwal S, Nommeots-Nomm A, Metcalfe AD, Stevens MM, Jones JR. Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomater Res 2021; 25:1. [PMID: 33451366 PMCID: PMC7811269 DOI: 10.1186/s40824-020-00202-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bioactive glasses are traditionally associated with bonding to bone through a hydroxycarbonate apatite (HCA) surface layer but the release of active ions is more important for bone regeneration. They are now being used to deliver ions for soft tissue applications, particularly wound healing. Cobalt is known to simulate hypoxia and provoke angiogenesis. The aim here was to develop new bioactive glass compositions designed to be scaffold materials to locally deliver pro-angiogenic cobalt ions, at a controlled rate, without forming an HCA layer, for wound healing applications. METHODS New melt-derived bioactive glass compositions were designed that had the same network connectivity (mean number of bridging covalent bonds between silica tetrahedra), and therefore similar biodegradation rate, as the original 45S5 Bioglass. The amount of magnesium and cobalt in the glass was varied, with the aim of reducing or removing calcium and phosphate from the compositions. Electrospun poly(ε-caprolactone)/bioactive glass composites were also produced. Glasses were tested for ion release in dissolution studies and their influence on Hypoxia-Inducible Factor 1-alpha (HIF-1α) and expression of Vascular Endothelial Growth Factor (VEGF) from fibroblast cells was investigated. RESULTS Dissolution tests showed the silica rich layer differed depending on the amount of MgO in the glass, which influenced the delivery of cobalt. The electrospun composites delivered a more sustained ion release relative to glass particles alone. Exposing fibroblasts to conditioned media from these composites did not cause a detrimental effect on metabolic activity but glasses containing cobalt did stabilise HIF-1α and provoked a significantly higher expression of VEGF (not seen in Co-free controls). CONCLUSIONS The composite fibres containing new bioactive glass compositions delivered cobalt ions at a sustained rate, which could be mediated by the magnesium content of the glass. The dissolution products stabilised HIF-1α and provoked a significantly higher expression of VEGF, suggesting the composites activated the HIF pathway to stimulate angiogenesis.
Collapse
Affiliation(s)
- Anu K Solanki
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ferdinand V Lali
- The Griffin Institute, Northwick Park & St Mark's Hospitals Campus, Watford Road, Harrow, HA1 3UJ, UK
| | - Hélène Autefage
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shweta Agarwal
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Nommeots-Nomm
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Pang L, Paxton NC, Ren J, Liu F, Zhan H, Woodruff MA, Bo A, Gu Y. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47993-48006. [PMID: 33044824 DOI: 10.1021/acsami.0c14831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) printing technologies are widely applied in various industries and research fields and are currently the subject of intensive investigation and development. However, high-performance materials that are suitable for 3D printing are still in short supply, which is a major limitation for 3D printing, particularly for biomedical applications. The physicochemical properties of single constituent materials may not be sufficient to meet the needs of modern biotechnology development and production. To enhance the materials' performance and broaden their applications, this work designed and tested a series of titanate nanofiller (nanowire and nanotube)-enhanced polycaprolactone (PCL) composites that were 3D-printable and provided superior mechanical properties. By grafting two different functional groups (phenyl- and thiol-terminated ligands), the nanofiller surface showed improved hydrophobicity, which significantly improved their dispersion in the PCL matrix. After characterizing the surface modification, we evaluated the significance of the homogeneity of the ceramic nanofiller in terms of printability, formability, and mechanical strength. Melt electrowriting additive manufacturing was used to fabricate microfibers of PCL and PCL/nanofiller composites. Improved nanofiller dispersion enabled intact and uniform sample morphology, and in contrast, nanofiller aggregation greatly varied the viscosity during the printing process, which could result in poorly printed structures. Importantly, the modified ceramic/PCL composite delivered enhanced and stable mechanical properties, where its Young's modulus was measured to be 1.67 GPa, which is more than 7 times higher compared to that of pristine PCL (0.22 GPa). Retaining the cell safety properties (comparable to PCL), the concept of enhancing biocompatible polymers with modified nanofillers shows great potential in the field of customized 3D printing for biomedicine.
Collapse
Affiliation(s)
- Le Pang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Naomi C Paxton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jiongyu Ren
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Fan Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430305, China
| | - Haifei Zhan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Arixin Bo
- INM-Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
17
|
Cho YS, Quan M, Kang NU, Jeong HJ, Hong MW, Kim YY, Cho YS. Strategy for enhancing mechanical properties and bone regeneration of 3D polycaprolactone kagome scaffold: Nano hydroxyapatite composite and its exposure. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Buivydiene D, Dabasinskaite L, Krugly E, Kliucininkas L. Formation of PA12 fibres via melt electrospinning process: parameter analysis and optimisation. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Melt electrospinning is a fast-emerging technique for fibre formation. While the process is similar to solution electrospinning, the absence of solvents broadens the applications, avoiding the potential toxicity of solvent residues and enables the usage of non-dissolvable polymers. In this article, the influence of selected melt electrospinning process parameters (tip-to-collector distance, voltage, and melt temperature) on fibre diameter and diameter distribution was investigated. The screening experiments indicated that the lowest fibre diameter median was 2.19 μm. Based on the dependencies between each process parameter and median fibre diameter, the authors used response-surface plots to determine the optimal conditions to produce fibres with the desired fibre diameters. The lowest fibre diameters were obtained with the following process parameter input values: temperature, 348°C; voltage, 19 kV; and tip-to-collector distance, 3 cm. The obtained fibres indicated that the average value of fibre diameter medians decreased in comparison to the screening experiment and the median fibre diameter for the sample “Optim.” was 1.27 μm.
Collapse
Affiliation(s)
- Dalia Buivydiene
- Faculty of Chemical Technology , Kaunas University of Technology , Radvilenu pl. 19 , LT-50254 Kaunas , Lithuania
| | - Lauryna Dabasinskaite
- Faculty of Chemical Technology , Kaunas University of Technology , Radvilenu pl. 19 , LT-50254 Kaunas , Lithuania
| | - Edvinas Krugly
- Faculty of Chemical Technology , Kaunas University of Technology , Radvilenu pl. 19 , LT-50254 Kaunas , Lithuania
| | - Linas Kliucininkas
- Faculty of Chemical Technology , Kaunas University of Technology , Radvilenu pl. 19 , LT-50254 Kaunas , Lithuania
| |
Collapse
|
19
|
Tsai SW, Yu WX, Hwang PA, Hsu YW, Hsu FY. Fabrication and Characteristics of PCL Membranes Containing Strontium-Substituted Hydroxyapatite Nanofibers for Guided Bone Regeneration. Polymers (Basel) 2019; 11:polym11111761. [PMID: 31717839 PMCID: PMC6918198 DOI: 10.3390/polym11111761] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In addition, hydroxyapatite is the major inorganic component and an essential composition of hard bone and teeth. Recently, numerous studies have demonstrated that strontium-substituted hydroxyapatite (SrHA) not only enhances osteogenesis but also inhibits adipogenesis of mesenchymal stem cells. Therefore, SrHA incorporated into PCL could be an alternative material for GBR. In this study, strontium-substituted hydroxyapatite nanofibers (SrHANFs) were fabricated by a sol-gel route followed by electrospinning. We then fabricated PCL-SrHANF membranes as cell culture substrates and assessed the cellular behavior of osteoblast-like cells. Based on the observations of alkaline phosphatase (ALP) activity, bone sialoprotein (BSP) and osteocalcin (OCN) immunofluorescence staining, and Alizarin Red-S staining of cells cultured on the PCL-SrHANF and PCL membranes, we concluded that SrHANFs can promote the differentiation and mineralization of osteoblast-like cells and that PCL-SrHANF membranes have potential for GBR applications.
Collapse
Affiliation(s)
- Shiao-Wen Tsai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 303, Taiwan;
- Department of Periodontics, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Wen-Xin Yu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-X.Y.); (P.-A.H.); (Y.-W.H.)
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-X.Y.); (P.-A.H.); (Y.-W.H.)
| | - Yu-Wei Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-X.Y.); (P.-A.H.); (Y.-W.H.)
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (W.-X.Y.); (P.-A.H.); (Y.-W.H.)
- Correspondence:
| |
Collapse
|
20
|
|
21
|
|
22
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
23
|
Youssef A, Hrynevich A, Fladeland L, Balles A, Groll J, Dalton PD, Zabler S. The Impact of Melt Electrowritten Scaffold Design on Porosity Determined by X-Ray Microtomography. Tissue Eng Part C Methods 2019; 25:367-379. [PMID: 31119986 PMCID: PMC6589500 DOI: 10.1089/ten.tec.2018.0373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Melt electrowriting is an AM technology that bridges the gap between solution electrospinning and melt microextrusion technologies. It can be applied to biomaterials and tissue engineering by making a spectrum of scaffolds with various laydown patterns at dimensions not previously studied. Using submicrometer X-ray tomography, a "fingerprint" of porosity for such scaffolds can be obtained and used as an important measure for quality control, to ensure that the scaffold fabricated is the one designed and allows the selection of specific scaffolds based on desired porosities.
Collapse
Affiliation(s)
- Almoatazbellah Youssef
- Department for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg, Würzburg, Germany
| | - Andrei Hrynevich
- Department for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg, Würzburg, Germany
| | - Logan Fladeland
- Department for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg, Würzburg, Germany
- Chair of X-Ray Microscopy (LRM), University of Würzburg, Würzburg, Germany
| | - Andreas Balles
- Chair of X-Ray Microscopy (LRM), University of Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg, Würzburg, Germany
| | - Paul D. Dalton
- Department for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University Hospital Würzburg, Würzburg, Germany
| | - Simon Zabler
- Chair of X-Ray Microscopy (LRM), University of Würzburg, Würzburg, Germany
- Fraunhofer Institute for Integrated Circuits (IIS), Würzburg, Germany
| |
Collapse
|
24
|
Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics 2019; 11:E182. [PMID: 30991742 PMCID: PMC6523318 DOI: 10.3390/pharmaceutics11040182] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/03/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Electrospinning technologies have been applied in the field of tissue engineering as materials, with nanoscale-structures and high porosity, can be easily prepared via this method to bio-mimic the natural extracellular matrix (ECM). Tissue engineering aims to fabricate functional biomaterials for the repairment and regeneration of defective tissue. In addition to the structural simulation for accelerating the repair process and achieving a high-quality regeneration, the combination of biomaterials and bioactive molecules is required for an ideal tissue-engineering scaffold. Due to the diversity in materials and method selection for electrospinning, a great flexibility in drug delivery systems can be achieved. Various drugs including antibiotic agents, vitamins, peptides, and proteins can be incorporated into electrospun scaffolds using different electrospinning techniques and drug-loading methods. This is a review of recent research on electrospun nanofibrous scaffolds for tissue-engineering applications, the development of preparation methods, and the delivery of various bioactive molecules. These studies are based on the fabrication of electrospun biomaterials for the repair of blood vessels, nerve tissues, cartilage, bone defects, and the treatment of aneurysms and skin wounds, as well as their applications related to oral mucosa and dental fields. In these studies, due to the optimal selection of drugs and loading methods based on electrospinning, in vitro and in vivo experiments demonstrated that these scaffolds exhibited desirable effects for the repair and treatment of damaged tissue and, thus, have excellent potential for clinical application.
Collapse
Affiliation(s)
- Kaiqiang Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Haizhu Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC 3122, Australia.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
25
|
Paxton NC, Ren J, Ainsworth MJ, Solanki AK, Jones JR, Allenby MC, Stevens MM, Woodruff MA. Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium‐Substituted Bioactive Glass/Polycaprolactone Microfibers. Macromol Rapid Commun 2019; 40:e1900019. [DOI: 10.1002/marc.201900019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/04/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Naomi C. Paxton
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology (QUT) 60 Musk Ave Kelvin Grove QLD 4059 Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology (QUT) 60 Musk Ave Kelvin Grove QLD 4059 Australia
| | - Madison J. Ainsworth
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology (QUT) 60 Musk Ave Kelvin Grove QLD 4059 Australia
| | - Anu K. Solanki
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College London London SW7 2BP UK
| | - Julian R. Jones
- Department of MaterialsImperial College London London SW7 2BP UK
| | - Mark C. Allenby
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology (QUT) 60 Musk Ave Kelvin Grove QLD 4059 Australia
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College London London SW7 2BP UK
| | - Maria A. Woodruff
- Institute of Health and Biomedical Innovation (IHBI)Queensland University of Technology (QUT) 60 Musk Ave Kelvin Grove QLD 4059 Australia
| |
Collapse
|
26
|
Chitosan based polymer/bioglass composites for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:955-967. [DOI: 10.1016/j.msec.2018.12.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 01/12/2023]
|
27
|
Fuchs A, Youssef A, Seher A, Hochleitner G, Dalton PD, Hartmann S, Brands RC, Müller-Richter UDA, Linz C. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration - a pilot study in vitro. BMC Oral Health 2019; 19:28. [PMID: 30709394 PMCID: PMC6359770 DOI: 10.1186/s12903-019-0717-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/21/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The spectrum of indications for the use of membranes and scaffolds in the field of oral and maxillofacial surgery includes, amongst others, guided bone regeneration (GBR). Currently available membrane systems face certain disadvantages such as difficult clinical handling, inconsistent degradation, undirected cell growth and a lack of stability that often complicate their application. Therefore, new membranes which can overcome these issues are of great interest in this field. METHODS In this pilot study, we investigated polycaprolactone (PCL) scaffolds intended to enhance oral wound healing by means of melt electrospinning writing (MEW), which allowed for three-dimensional (3D) printing of micron scale fibers and very exact fiber placement. A singular set of box-shaped scaffolds of different sizes consisting of medical-grade PCL was examined and the scaffolds' morphology was evaluated via scanning electron microscopy (SEM). Each prototype sample with box sizes of 225 μm, 300 μm, 375 μm, 450 μm and 500 μm was assessed for cytotoxicity and cell growth by seeding each scaffold with human osteoblast-like cell line MG63. RESULTS All scaffolds demonstrated good cytocompatibility according to cell viability, protein concentration, and cell number. SEM analysis revealed an exact fiber placement of the MEW scaffolds and the growth of viable MG63 cells on them. For the examined box-shaped scaffolds with pore sizes between 225 μm and 500 μm, a preferred box size for initial osteoblast attachment could not be found. CONCLUSIONS These well-defined 3D scaffolds consisting of medical-grade materials optimized for cell attachment and cell growth hold the key to a promising new approach in GBR in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- A. Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - A. Youssef
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - A. Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - G. Hochleitner
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - P. D. Dalton
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - S. Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - R. C. Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - U. D. A. Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
| | - C. Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97080 Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Josef-Schneider-Straße 2, 97070 Würzburg, Germany
| |
Collapse
|
28
|
Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 2018; 4:22-36. [PMID: 30533554 PMCID: PMC6258879 DOI: 10.1016/j.bioactmat.2018.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One area that is currently receiving significant attention from the scientific community is the treatment of a number of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. Biomaterials, the most common materials used to repair or replace damaged parts of the human body, can be categorized into three major groups: metals, ceramics, and polymers. Composites can be manufactured by combining two or more materials to achieve enhanced biocompatibility and biomechanical properties for specific applications. Biomaterials must display suitable properties for their applications, about strength, durability, and biological influence. Metals and their alloys such as titanium, stainless steel, and cobalt-based alloys have been widely investigated for implant-device applications because of their excellent mechanical properties. However, these materials may also manifest biological issues such as toxicity, poor tissue adhesion and stress shielding effect due to their high elastic modulus. To mitigate these issues, hydroxyapatite (HA) coatings have been used on metals because their chemical composition is similar to that of bone and teeth. Recently, a wide range of synthetic polymers such as poly (l-lactic acid) and poly (l-lactide-co-glycolide) have been studied for different biomedical applications, owing to their promising biocompatibility and biodegradability. This article gives an overview of synthetic polymer-ceramic composites with a particular emphasis on calcium phosphate group and their potential applications in tissue engineering. It is hoped that synthetic polymer-ceramic composites such as PLLA/HA and PCL/HA will provide advantages such as eliminating the stress shielding effect and the consequent need for revision surgery.
Collapse
Affiliation(s)
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
29
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
30
|
De Giglio E, Bonifacio MA, Ferreira AM, Cometa S, Ti ZY, Stanzione A, Dalgarno K, Gentile P. Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Sci Rep 2018; 8:15130. [PMID: 30310164 PMCID: PMC6181937 DOI: 10.1038/s41598-018-33472-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
The development of in vitro 3D models to get insights into the mechanisms of bone regeneration could accelerate the translation of experimental findings to the clinic, reducing costs and duration of experiments. This work explores the design and manufacturing of multi-compartments structures in poly(ε-caprolactone) (PCL) 3D-printed by Fused Filament Fabrication technique. The construct was designed with interconnected stalls to host stem cells and endothelial cells. Cells were encapsulated within an optimised gellan gum (GG)-based hydrogel matrix, crosslinked using strontium (Sr2+) ions to exploit its bioactivity and finally, assembled within compartments with different sizes. Calcium (Ca2+)-crosslinked gels were also used as control for comparison of Sr2+ osteogenic effect. The results obtained demonstrated that Sr2+ ions were successfully diffused within the hydrogel matrix and increased the hydrogel matrix strength properties under compressive load. The in vitro co-culture of human-TERT mesenchymal stem cells (TERT- hMSCs) and human umbilical vein endothelial cells (HUVECs), encapsulated within Sr2+ ions containing GG-hydrogels and inter-connected by compartmentalised scaffolds under osteogenic conditions, enhanced cell viability and supported osteogenesis, with a significant increase of alkaline phosphatase activity, osteopontin and osteocalcin respect with the Ca2+-crosslinked GG-PCL scaffolds. These outcomes demonstrate that the design and manufacturing of compartmentalised co-culture of TERT-hMSCs and HUVEC populations enables an effective system to study and promote osteogenesis.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy.
| | - Maria A Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Zhi Yuan Ti
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Antonella Stanzione
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70126, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
31
|
Abstract
Barrier membranes that are used for guided tissue regeneration (GTR) therapy usually lack bioactivity and the capability to promote new bone tissue formation. However, the incorporation of an osteogenic agent into polymeric membranes seems to be the most assertive strategy to enhance their regenerative potential. Here, the manufacturing of composite electrospun membranes made of poly (ε-caprolactone) (PCL) and particles of a novel bioactive glass composition (F18) is described. The membranes were mechanically and biologically tested with tensile strength tests and tissue culture with MG-63 osteoblast-like cell line, respectively. The PCL-F18 composite membranes demonstrated no increased cytotoxicity and an enhanced osteogenic potential when compared to pure PCL membranes. Moreover, the addition of the bioactive phase increased the membrane tensile strength. These preliminary results suggested that these new membranes can be a strong candidate for small bone injuries treatment by GTR technique.
Collapse
|
32
|
Rodríguez-Méndez I, Fernández-Gutiérrez M, Rodríguez-Navarrete A, Rosales-Ibáñez R, Benito-Garzón L, Vázquez-Lasa B, San Román J. Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior. Polymers (Basel) 2018; 10:E279. [PMID: 30966314 PMCID: PMC6415099 DOI: 10.3390/polym10030279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 01/16/2023] Open
Abstract
In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr) containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone) (PCL). These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63) and human bone marrow mesenchymal stem cells (hBMSCs) for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245%) of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Itzia Rodríguez-Méndez
- Faculty of Chemistry, Autonomous University of San Luis Potosi, San Luis Potosi 6, Salvador Nava Martínez, 78210 San Luis, S.L.P., Mexico.
| | - Mar Fernández-Gutiérrez
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER, Carlos III Health Institute, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Amairany Rodríguez-Navarrete
- Faculty of Higher Studies, National Autonomous University of Mexico, Av. Chalma s/n Col. La Pastora, Cuautepec Barrio Bajo. Delegación Gustavo A. Madero, Ciudad de México 07160, Mexico.
| | - Raúl Rosales-Ibáñez
- Faculty of Higher Studies, National Autonomous University of Mexico, Av. Chalma s/n Col. La Pastora, Cuautepec Barrio Bajo. Delegación Gustavo A. Madero, Ciudad de México 07160, Mexico.
| | - Lorena Benito-Garzón
- Faculty of Medicine, University of Salamanca, C/Alfonso X el Sabio, s/n, 37007 Salamanca, Spain.
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER, Carlos III Health Institute, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER, Carlos III Health Institute, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Fattahi P, Dover JT, Brown JL. 3D Near-Field Electrospinning of Biomaterial Microfibers with Potential for Blended Microfiber-Cell-Loaded Gel Composite Structures. Adv Healthc Mater 2017; 6. [PMID: 28661043 DOI: 10.1002/adhm.201700456] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/14/2017] [Indexed: 01/12/2023]
Abstract
This paper describes the development of a novel low-cost and efficient method, 3D near-field electrospinning, to fabricate high-resolution, and repeatable 3D polymeric fiber patterns on nonconductive materials with potential use in tissue engineering. This technology is based on readily available hobbyist grade 3D printers. The result is exquisite control of the deposition of single fibers in an automated manner. Additionally, the fabrication of various fiber patterns, which are subsequently translated to unique cellular patterns, is demonstrated. Finally, poly(methyl methacrylate) fibers are printed within 3D collagen gels loaded with cells to introduce anisotropic properties of polymeric fibers within the cell-loaded gels.
Collapse
Affiliation(s)
- Pouria Fattahi
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jordan T Dover
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1332640] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Faezeh Hajiali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeid Tajbakhsh
- College of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
35
|
Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication 2017; 9:012002. [DOI: 10.1088/1758-5090/aa5766] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Hanßke F, Bas O, Vaquette C, Hochleitner G, Groll J, Kemnitz E, Hutmacher DW, Börner HG. Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties. J Mater Chem B 2017; 5:5037-5047. [DOI: 10.1039/c7tb00165g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Precise interface engineering in inorganic–organic hybrid materials enhances both the elastic moduli and toughness of a biodegradable composite, which is of relevance for load-bearing applications in bone tissue engineering.
Collapse
Affiliation(s)
- Felix Hanßke
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| | - Onur Bas
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
| | - Cédryck Vaquette
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
| | - Gernot Hochleitner
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| | - Erhard Kemnitz
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| | - Dietmar W. Hutmacher
- Centre for Regenerative Medicine
- Queensland University of Technology (QUT)
- Kelvin Grove
- Australia
- ARC Centre In Additive Biomanufacturing
| | - Hans G. Börner
- Humboldt-Universität zu Berlin
- Department of Chemistry
- Laboratory for Organic Synthesis of Functional Systems
- 12489 Berlin
- Germany
| |
Collapse
|
37
|
Guarino V, D’Albore M, Altobelli R, Ambrosio L. Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. INT POLYM PROC 2016. [DOI: 10.3139/217.3239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Traditional methods for polymer processing involve the use of hazardous organic solvents which may compromise the biological function of scaffolds in tissue engineering. Indeed, the toxic effect of them on biological microenvironment has a tremendous impact on cell fate so altering the main activities involved in in vitro tissue formation. To date, extensive researches focus on seeking newer methods for bio-safely processing polymeric biomaterials to be implanted in the human body. Here, we aim at over viewing two approaches based on solvent free or green solvent based processes in order to identify alternative solutions to fabricate bio-inspired scaffolds to be successfully used in regenerative and degenerative medicine.
Collapse
Affiliation(s)
- V. Guarino
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - M. D’Albore
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - R. Altobelli
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - L. Ambrosio
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| |
Collapse
|
38
|
Fernandes JS, Gentile P, Martins M, Neves NM, Miller C, Crawford A, Pires RA, Hatton P, Reis RL. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomater 2016; 44:168-77. [PMID: 27554018 DOI: 10.1016/j.actbio.2016.08.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Herein, for the first time, we combined poly-l-lactic acid (PLLA) with a strontium borosilicate bioactive glass (BBG-Sr) using electrospinning to fabricate a composite bioactive PLLA membrane loaded with 10% (w/w) of BBG-Sr glass particles (PLLA-BBG-Sr). The composites were characterised by scanning electron microscopy (SEM) and microcomputer tomography (μ-CT), and the results showed that we successfully fabricated smooth and uniform fibres (1-3μm in width) with a homogeneous distribution of BBG-Sr microparticles (<45μm). Degradation studies (in phosphate buffered saline) demonstrated that the incorporation of BBG-Sr glass particles into the PLLA membranes increased their degradability and water uptake with a continuous release of cations. The addition of BBG-Sr glass particles enhanced the membrane's mechanical properties (69% higher Young modulus and 36% higher tensile strength). Furthermore, cellular in vitro evaluation using bone marrow-derived mesenchymal stem cells (BM-MSCs) demonstrated that PLLA-BBG-Sr membranes promoted the osteogenic differentiation of the cells as demonstrated by increased alkaline phosphatase activity and up-regulated osteogenic gene expression (Alpl, Sp7 and Bglap) in relation to PLLA alone. These results strongly suggest that the composite PLLA membranes reinforced with the BBG-Sr glass particles have potential as an effective biomaterial capable of promoting bone regeneration. STATEMENT OF SIGNIFICANCE PLLA membranes were reinforced with 10% (w/w) of strontium-bioactive borosilicate glass microparticles, and their capacity to induce the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) was evaluated. These membranes presented an increased: degradability, water uptake, Young modulus and tensile strength. We also demonstrated that these membranes are non-cytotoxic and promote the attachment of BM-MSCs. The addition of the glass microparticles into the PLLA membranes promoted the increase of ALP activity (under osteogenic conditions), as well as the BM-MSCs osteogenic differentiation as shown by the upregulation of Alpl, Sp7 and Bglap gene expression. Overall, we demonstrated that the reinforcement of PLLA with glass microparticles results in a biomaterial with the appropriate properties for the regeneration of bone tissue.
Collapse
|
39
|
Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1175-1191. [PMID: 27987674 DOI: 10.1016/j.msec.2016.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted.
Collapse
Affiliation(s)
- Michal Dziadek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| |
Collapse
|
40
|
A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state‐of‐the‐art, emerging directions and future trends. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2181-2200. [PMID: 27247186 DOI: 10.1016/j.nano.2016.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
|
41
|
Meka SRK, Jain S, Chatterjee K. Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration. Colloids Surf B Biointerfaces 2016; 146:649-56. [DOI: 10.1016/j.colsurfb.2016.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/13/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023]
|
42
|
|
43
|
Weng L, Teusink MJ, Shuler FD, Parecki V, Xie J. Highly controlled coating of strontium-doped hydroxyapatite on electrospun poly(ɛ-caprolactone) fibers. J Biomed Mater Res B Appl Biomater 2016; 105:753-763. [PMID: 26743543 DOI: 10.1002/jbm.b.33598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 11/11/2022]
Abstract
Electrospun fibers show great potential as scaffolds for bone tissue engineering due to their architectural biomimicry to the extracellular matrix (ECM). Cation substitution of strontium for calcium in hydroxyapatite (HAp) positively influences the mechanism of bone remodeling including enhancing bone regeneration and reducing bone resorption. The objective of this study was to attach strontium-doped HAp (SrHAp) to electrospun poly(ɛ-caprolactone) (PCL) fibers for creation of novel composite scaffolds that can not only mimic the architecture and composition of ECM but also affect bone remodeling favorably. We demonstrated for the first time the highly controlled SrHAp coatings on electrospun PCL fibers. We showed the reproducible manufacturing of composite fiber scaffolds with controllable thickness, composition, and morphology of SrHAp coatings. We further showed that the released strontium and calcium cations from coatings could reach effective concentrations within 1 day and endure more than 28 days. Additionally, the Young's modulus of the SrHAp-coated PCL fibers was up to around six times higher than that of raw fibers dependent on the coating thickness and composition. Together, this novel class of composite fiber scaffolds may hold great promise for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 753-763, 2017.
Collapse
Affiliation(s)
- Lin Weng
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Matthew J Teusink
- Department of Orthopedic Surgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Franklin D Shuler
- Department of Orthopedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701
| | - Vivi Parecki
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| |
Collapse
|
44
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
45
|
Röder A, García-Gareta E, Theodoropoulos C, Ristovski N, Blackwood KA, Woodruff MA. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds. J Funct Biomater 2015; 6:1054-63. [PMID: 26703748 PMCID: PMC4695910 DOI: 10.3390/jfb6041054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies.
Collapse
Affiliation(s)
- Alexander Röder
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Elena García-Gareta
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Christina Theodoropoulos
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Nikola Ristovski
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Keith A Blackwood
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Maria A Woodruff
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
46
|
Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases 2015; 10:011006. [DOI: 10.1116/1.4914380] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 2014; 32:795-803. [PMID: 25093887 PMCID: PMC4422171 DOI: 10.1038/nbt.2978] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell-extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell-niche interactions.
Collapse
Affiliation(s)
- Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - David A Williams
- 1] Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
48
|
Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814057. [PMID: 24800251 PMCID: PMC3988913 DOI: 10.1155/2014/814057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/30/2022]
Abstract
Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies.
Collapse
|