1
|
Bosch-Rué E, Zhang Q, Truskey GA, Olmos Buitrago J, M Bosch B, Pérez RA. Development of small tissue engineered blood vessels and their clinical and research applications. Biofabrication 2025; 17:032005. [PMID: 40341214 DOI: 10.1088/1758-5090/add626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 05/08/2025] [Indexed: 05/10/2025]
Abstract
Since the first tissue engineered blood vessel (TEBV) was developed, different approaches, biomaterial scaffolds and cell sources have been used to obtain an engineered vessel as much similar as native vessels in terms of structure, functionality and mechanical properties. At the same time, diverse needs to obtain a functional TEBV have emerged, such as for blood vessel replacement for cardiovascular diseases (CVDs) to be used as artery bypass, to vascularize tissue engineered constructs, or even to model vascular diseases or drug testing. In this review, after briefly describing the native structure and function of arteries, we will give an overview of different biomaterials, cells and methods that have been used during the last years for the development of small TEBV (1-6 mm diameter). The importance of perfusing the TEBV to acquire functionality and maturation will be also discussed. Finally, we will center the review on TEBV applications beyond their use as vascular graft for CVDs.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Román A Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| |
Collapse
|
2
|
Shams F, Jamshidian M, Shaygani H, Maleki S, Soltani M, Shamloo A. A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation. Sci Rep 2025; 15:16433. [PMID: 40355635 PMCID: PMC12069603 DOI: 10.1038/s41598-025-01545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Utilizing biocompatible hybrid scaffolds that promote cell adhesion and proliferation is critically significant in the field of tissue engineering. In order to achieve this goal, the composition of polymers in the sample should be adjusted accordingly In this research, molecular dynamics simulations are utilized to investigate how the composition of blends influences the protein adsorption properties of hybrid scaffolds. Scaffolds considered here consist of Bombyx mori silk fibroin (B. mori SF) and thermoplastic polyurethane (TPU) intended for application in vascular grafts. Three different compositions are investigated in this study: One sample with 70% TPU by volume (SF:TPU-3/7), the second sample with 50% TPU (SF:TPU-1/1) and the last sample with 30% TPU (SF:TPU-7/3). The interaction between the polymeric scaffold surfaces and fibronectin and laminin, two major proteins found in vascular tissues, is studied using molecular dynamics simulations. The biocompatibility of each sample is examined based on calculated adhesion energy and final protein conformation. Furthermore, MTT cell viability, cell adhesion, and live/dead assays are performed to validate the simulation results. Third-passage human umbilical vein cell (HUVEC) is utilized in this study. The simulations revealed that B. mori SF (SF) content in the blend needs to be balanced with TPU to enhance the protein adsorption strength. The experimental results exhibited a correlation with the simulations and were verified with cell adhesion and staining assays. The SF:TPU-1/1 had the highest cell viability followed by SF:TPU-7/3 and SF:TPU-3/7 with [Formula: see text], [Formula: see text], and [Formula: see text], respectively, demonstrating the accuracy of the simulations and the possibility of predicting the biocompatibility of biomaterials through simulations.
Collapse
Affiliation(s)
- Faeze Shams
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Mostafa Jamshidian
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Hossein Shaygani
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Sasan Maleki
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Mohamadreza Soltani
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Amir Shamloo
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran.
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran.
| |
Collapse
|
3
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Zainab I, Naseem Z, Batool SR, Waqas M, Nazir A, Nazeer MA. Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:591-612. [PMID: 40297246 PMCID: PMC12035910 DOI: 10.3762/bjnano.16.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The importance of electrospun membranes for biomedical applications has increased, especially when it comes to skin regeneration and wound healing. This review presents the production and applications of electrospun membranes based on polyurethane (PU) and silk fibroin (SF) and highlights their benefits as a skin substitute. This review also highlights the electrospinning technique used to prepare nanofibers for these biomedical applications. Silk, well-known for its excellent biocompatibility, biodegradability, structural properties, and low immunogenic response, is extensively investigated by addressing its molecular structure, composition, and medical uses. PU is a candidate for potential biomedical applications because of its strength, flexibility, biocompatibility, cell-adhesive properties, and high resistance to biodegradation. PU combined with silk offers a number of enhanced properties. The study offers a comprehensive overview of the advanced developments and applications of PU/SF composites, highlighting their significant potential in wound healing. These composite membranes present promising advancements in wound healing and skin regeneration by combining the unique properties of silk and PU, opening up the possibilities for innovative treatments.
Collapse
Affiliation(s)
- Iqra Zainab
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Zohra Naseem
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Waqas
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
5
|
Hebda E, Pielichowski K. Biomimetic Polyurethanes in Tissue Engineering. Biomimetics (Basel) 2025; 10:184. [PMID: 40136838 PMCID: PMC11940237 DOI: 10.3390/biomimetics10030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Inspiration from nature is a promising tool for the design of new polymeric biomaterials, especially for frontier technological areas such as tissue engineering. In tissue engineering, polyurethane-based implants have gained considerable attention, as they are materials that can be designed to meet the requirements imposed by their final applications. The choice of their building blocks (which are used in the synthesis as macrodiols, diisocyanates, and chain extenders) can be implemented to obtain biomimetic structures that can mimic native tissue in terms of mechanical, morphological, and surface properties. In recent years, due to their excellent chemical stability, biocompatibility, and low cytotoxicity, polyurethanes have been widely used in biomedical applications. Biomimetic materials, with their inherent nature of mimicking natural materials, are possible thanks to recent advances in manufacturing technology. The aim of this review is to provide a critical overview of relevant promising studies on polyurethane scaffolds, including those based on non-isocyanate polyurethanes, for the regeneration of selected soft (cardiac muscle, blood vessels, skeletal muscle) and hard (bone tissue) tissues.
Collapse
Affiliation(s)
- Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Ul. Warszawska 24, 31-155 Kraków, Poland;
| | | |
Collapse
|
6
|
Gaviria Castrillon AM, Wray S, Rodríguez A, Fajardo SD, Machain VA, Parisi J, Bosio GN, Kaplan DL, Restrepo-Osorio A, Bosio VE. Biomimetic bilayer scaffold from Bombyx mori silk materials for small diameter vascular applications in tissue engineering. J Biomed Mater Res A 2025; 113:e37789. [PMID: 39367651 DOI: 10.1002/jbm.a.37789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024]
Abstract
Enhancing the biocompatibility and mechanical stability of small diameter vascular scaffolds remain significant challenges. To address this challenge, small-diameter tubular structures were electrospun from silk fibroin (SF) from silk textile industry discarded materials to generate bilayer scaffolds that mimic native blood vessels, but derived from a sustainable natural material resource. The inner layer was obtained by directly dissolving SF in formic acid, while the middle layer (SF-M) was achieved through aqueous concentration of the protein. Structural and biological properties of each layer as well as the bilayer were evaluated. The inner layer exhibited nano-scale fiber diameters and 57.9% crystallinity, and degradation rates comparable with the SF-M layer. The middle layer displayed micrometer-scale fibers diameters with an ultimate extension of about 274%. Both layers presented contact angles suitable for cell growth and cytocompatibility, while the bilayer material displayed an intermediate mechanical response and a reduced enzymatic degradation rate when compared to each individual layer. The bilayer material emulates many of the characteristics of native small-diameter vessels, thereby suggesting further studies towards in vivo opportunities.
Collapse
Affiliation(s)
- Ana M Gaviria Castrillon
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Sandra Wray
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Aníbal Rodríguez
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Sahara Díaz Fajardo
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Victoria A Machain
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
| | - Julieta Parisi
- Sector de Cultivos Celulares, Instituto Multidisciplinario de Biología Celular (CICPBA-CONICET-UNLP), La Plata, Argentina
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de la Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Adriana Restrepo-Osorio
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Valeria E Bosio
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
7
|
Yilmaz G. Foundational Engineering of Artificial Blood Vessels' Biomechanics: The Impact of Wavy Geometric Designs. Biomimetics (Basel) 2024; 9:546. [PMID: 39329568 PMCID: PMC11430736 DOI: 10.3390/biomimetics9090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The design of wavy structures and their mechanical implications on artificial blood vessels (ABVs) have been insufficiently studied in the existing literature. This research aims to explore the influence of various wavy geometric designs on the mechanical properties of ABVs and to establish a foundational framework for advancing and applying these designs. Computer-aided design (CAD) and finite element method (FEM) simulations, in conjunction with physical sample testing, were utilized. A geometric model incorporating concave and convex curves was developed and analyzed with a symbolic mathematical tool. Subsequently, a total of ten CAD models were subjected to increasing internal pressures using a FEM simulation to evaluate the expansion of internal areas. Additionally, physical experiments were conducted further to investigate the expansion of ABV samples under pressure. The results demonstrated that increased wave numbers significantly enhance the flexibility of ABVs. Samples with 22 waves exhibited a 45% larger area under 24 kPa pressure than those with simple circles. However, the increased number of waves also led to undesirable high-pressure gradients at elevated pressures. Furthermore, a strong correlation was observed between the experimental outcomes and the simulation results, with a notably low error margin, ranging from 19.88% to 3.84%. Incorporating wavy designs into ABVs can effectively increase both vessel flexibility and the internal area under pressure. Finally, it was found that expansion depending on the wave number can be efficiently modeled with a simple linear equation, which could be utilized in future designs.
Collapse
Affiliation(s)
- Galip Yilmaz
- Electronics and Automation Department, Bayburt University, Bayburt 69000, Turkey
| |
Collapse
|
8
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
9
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Chen E, Turng LS. A Double-Expanded Polytetrafluoroethylene Fabrication Method for Increased Mechanical Compliance in Tubular Vascular Graft Applications. POLYM ENG SCI 2024; 64:1756-1769. [PMID: 39184016 PMCID: PMC11343504 DOI: 10.1002/pen.26652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 08/27/2024]
Abstract
A novel manufacturing technique has been developed to enhance the compliance of expanded polytetrafluoroethylene (ePTFE) for vascular graft applications. This new method involves modifying the existing processing procedures by introducing an additional expansion step while using a lower temperature during the first expansion stage. The new process results in the production of highly compliant ePTFE grafts without the need for supplementary additives or inherent material alterations. Tensile testing in both the longitudinal and circumferential directions as well as cyclical tensile testing were conducted to characterize the mechanical properties of double-expanded ePTFE grafts prepared using varying expansion ratios. The double-expanded ePTFE grafts consistently outperformed the prevailing, single-expanded counterparts in both tensile stress tests and cyclical assessments of its elastic compliance. Notably, the double-expanded ePTFE samples exhibited the desirable, biomimetic "toe-region" and an elastic strain capacity of up to 50%, comparable to native vascular materials. Scanning electron microscopy (SEM) imaging was used to examine the morphological characteristics of the wavy fibers within the double-expanded PTFE samples, which contributed to the enhanced compliance that is needed for vascular graft applications.
Collapse
Affiliation(s)
- Edward Chen
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| |
Collapse
|
11
|
Ozdemir S, Oztemur J, Sezgin H, Yalcin-Enis I. Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers. ACS Biomater Sci Eng 2024; 10:960-974. [PMID: 38196384 DOI: 10.1021/acsbiomaterials.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Small-diameter vascular grafts must be obtained with the most appropriate materials and design selection to harmoniously display a variety of features, including adequate tensile strength, compliance, burst strength, biocompatibility, and biodegradability against challenging physiological and hemodynamic conditions. In this study, monolayer vascular grafts with randomly distributed or radially oriented fibers are produced using neat, blended, and copolymer forms of polycaprolactone (PCL) and poly(lactic acid) (PLA) via the electrospinning technique. The blending ratio is varied by increasing 10 in the range of 50-100%. Bilayer graft designs are realized by determining the layers with a random fiber distribution for the inner layer and radial fiber orientation for the outer layer. SEM analysis, wall thickness and fiber diameter measurements, tensile strength, elongation, burst strength, and compliance tests are done for both mono- and bilayer scaffolds. The findings revealed that the scaffolds made of neat PCL show more flexibility than the neat PLA samples, which possess higher tensile strength values than neat PCL scaffolds. Also, in blended samples, the tensile strength values do not show a significant improvement, whereas the elongation values are enhanced in tubular samples, depending on the blending ratio. Also, neat poly(l-lactide-co-caprolactone) (PLCL) samples have both higher elongation and strength values than neat and blended scaffolds, with some exceptions. The blended specimens comprising a combination of PCL and PLA, with blending ratios of 80/20 and 70/30, exhibited the most elevated burst pressures. Conversely, the PLCL scaffolds demonstrated superior compliance levels. These findings suggest that the blending approach and fiber orientation offer enhanced burst strength, while copolymer utilization in PLCL scaffolds without fiber alignment enhances their compliance properties. Thus, it is evident that using a copolymer instead of blending PCL and PLA and combining the PLCL layer with PCL and PLA monolayers in bilayer vascular graft design is promising in terms of mechanical and biological properties.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Hande Sezgin
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| |
Collapse
|
12
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Liu C, Dai J, Wang X, Hu X. The Influence of Textile Structure Characteristics on the Performance of Artificial Blood Vessels. Polymers (Basel) 2023; 15:3003. [PMID: 37514393 PMCID: PMC10385882 DOI: 10.3390/polym15143003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular disease is a major threat to human health worldwide, and vascular transplantation surgery is a treatment method for this disease. Often, autologous blood vessels cannot meet the needs of surgery. However, allogeneic blood vessels have limited availability or may cause rejection reactions. Therefore, the development of biocompatible artificial blood vessels is needed to solve the problem of donor shortage. Tubular fabrics prepared by textile structures have flexible compliance, which cannot be matched by other structural blood vessels. Therefore, biomedical artificial blood vessels have been widely studied in recent decades up to the present. This article focuses on reviewing four textile methods used, at present, in the manufacture of artificial blood vessels: knitting, weaving, braiding, and electrospinning. The article mainly introduces the particular effects of different structural characteristics possessed by various textile methods on the production of artificial blood vessels, such as compliance, mechanical properties, and pore size. It was concluded that woven blood vessels possess superior mechanical properties and dimensional stability, while the knitted fabrication method facilitates excellent compliance, elasticity, and porosity of blood vessels. Additionally, the study prominently showcases the ease of rebound and compression of braided tubes, as well as the significant biological benefits of electrospinning. Moreover, moderate porosity and good mechanical strength can be achieved by changing the original structural parameters; increasing the floating warp, enlarging the braiding angle, and reducing the fiber fineness and diameter can achieve greater compliance. Furthermore, physical, chemical, or biological methods can be used to further improve the biocompatibility, antibacterial, anti-inflammatory, and endothelialization of blood vessels, thereby improving their functionality. The aim is to provide some guidance for the further development of artificial blood vessels.
Collapse
Affiliation(s)
- Chenxi Liu
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Jieyu Dai
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Xueqin Wang
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| | - Xingyou Hu
- College of Textiles & Clothing, Qingdao University, Qingdao 266000, China
| |
Collapse
|
14
|
Singh S, Kumar Paswan K, Kumar A, Gupta V, Sonker M, Ashhar Khan M, Kumar A, Shreyash N. Recent Advancements in Polyurethane-based Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:327-348. [PMID: 36719800 DOI: 10.1021/acsabm.2c00788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In tissue engineering, polyurethane-based implants have gained significant traction because of their high compatibility and inertness. The implants therefore show fewer side effects and lasts longer. Also, the mechanical properties can be tuned and morphed into a particular shape, owing to which polyurethanes show immense versatility. In the last 3 years, scientists have devised methods to enhance the strength of and induce dynamic properties in polyurethanes, and these developments offer an immense opportunity to use them in tissue engineering. The focus of this review is on applications of polyurethane implants for biomedical application with detailed analysis of hard tissue implants like bone tissues and soft tissues like cartilage, muscles, skeletal tissues, and blood vessels. The synthetic routes for the preparation of scaffolds have been discussed to gain a better understanding of the issues that arise regarding toxicity. The focus here is also on concerns regarding the biocompatibility of the implants, given that the precursors and byproducts are poisonous.
Collapse
Affiliation(s)
- Sukriti Singh
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Karan Kumar Paswan
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Alok Kumar
- Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Vishwas Gupta
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhatiya, Uttar Pradesh 229304, India
| | - Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mohd Ashhar Khan
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Amrit Kumar
- Indian Oil Corporation Limited, Panipat Refinery, Panipat, Odisha 132140, India
| | - Nehil Shreyash
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
16
|
Ozdemir S, Yalcin-Enis I, Yalcinkaya B, Yalcinkaya F. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. MEMBRANES 2022; 12:929. [PMID: 36295688 PMCID: PMC9607146 DOI: 10.3390/membranes12100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
17
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Characterization of polyurethane and a silk fibroin-polyurethane composite fiber studied with NMR spectroscopies. Polym J 2022. [DOI: 10.1038/s41428-022-00629-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Asakura T, Ibe Y, Jono T, Matsuda H, Kuwabara N, Naito A. Structural investigations of polyurethane and
silk‐polyurethane
composite fiber studied by
13
C
solid‐state
NMR
spectroscopy. J Appl Polym Sci 2021. [DOI: 10.1002/app.51178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Yusuke Ibe
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Takaki Jono
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Hironori Matsuda
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center Maebashi Gunma Japan
| | - Akira Naito
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| |
Collapse
|
21
|
Abstract
The idea of creating replacement for damaged or diseased tissue, which will mimic the physiological conditions and simultaneously promote regeneration by patients’ own cells, has been a major challenge in the biomedicine for more than a decade. Therefore, nanofibers are a promising solution to address these challenges. Nanofiber technology is an exciting area attracting the attention of many researchers as a potential solution to these current challenges in the biomedical field such as burn and wound care, organ repair, and treatment for osteoporosis and various diseases. Nanofibers mimic the porous topography of natural extracellular matrix (ECM), hence they are advantageous for tissue regeneration . In biomedical engineering, electrospinning exhibits advantages as a tissue engineering scaffolds producer, which can make appropriate resemblance in physical structure with ECM. This is because of the nanometer scale of ECM fibrils in diameter, which can be mimicked by electrospinning procedure as well as its porous structure. In this review, the applications of nanofibers in various biomedical areas such as tissue engineering, wound dressing and facemask, are summarized. It provides opportunities to develop new materials and techniques that improve the ability for developing quick, sensitive and reliable analytical techniques.
Collapse
Affiliation(s)
- A. Ghajarieh
- Young Researchers and Elite Club, Department of Textile Engineering, Yadegar-e-Imam Khomeini (RAH) Shahr-e Rey Branch, Islamic Azad University, 1815163111 Tehran, Iran
| | - S. Habibi
- Department of Textile Engineering, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahr-e Rey Branch, 1815163111 Tehran, Iran
| | - A. Talebian
- Department of Textile Engineering, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahr-e Rey Branch, 1815163111 Tehran, Iran
| |
Collapse
|
22
|
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112373. [PMID: 34579892 DOI: 10.1016/j.msec.2021.112373] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Due to the prevalence of cardiovascular diseases, there is a large need for small diameter vascular grafts that cannot be fulfilled using autologous vessels. Although medium to large diameter synthetic vessels are in use, no suitable small diameter vascular graft has been developed due to the unique dynamic environment that exists in small vessels. To achieve long term patency, a successful tissue engineered vascular graft would need to closely match the mechanical properties of native tissue, be non-thrombotic and non-immunogenic, and elicit the proper healing response and undergo remodeling to incorporate into the native vasculature. Electrospinning presents a promising approach to the development of a suitable tissue engineered vascular graft. This review provides a comprehensive overview of the different polymers, techniques, and functionalization approaches that have been used to develop an electrospun tissue engineered vascular graft.
Collapse
Affiliation(s)
- Alex P Rickel
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Xiajun Deng
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Daniel Engebretson
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Zhongkui Hong
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America.
| |
Collapse
|
23
|
Asakura T, Ibe Y, Jono T, Naito A. Structure and dynamics of biodegradable polyurethane-silk fibroin composite materials in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Tanaka T, Ibe Y, Jono T, Tanaka R, Naito A, Asakura T. Characterization of a Water-Dispersed Biodegradable Polyurethane-Silk Composite Sponge Using 13C Solid-State Nuclear Magnetic Resonance as Coating Material for Silk Vascular Grafts with Small Diameters. Molecules 2021; 26:4649. [PMID: 34361802 PMCID: PMC8347230 DOI: 10.3390/molecules26154649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, Bombyx mori silk fibroin (SF) has been shown to be a suitable material for vascular prostheses for small arteries. In this study, we developed a softer SF graft by coating water-dispersed biodegradable polyurethane (PU) based on polycaprolactone and an SF composite sponge on the knitted SF vascular graft. Three kinds of 13C solid-state nuclear magnetic resonance (NMR), namely carbon-13 (13C) cross-polarization/magic angle spinning (MAS), 13C dipolar decoupled MAS, and 13C refocused insensitive nuclei enhanced by polarization transfer (r-INEPT) NMR, were used to characterize the PU-SF coating sponge. Especially the 13C r-INEPT NMR spectrum of water-dispersed biodegradable PU showed that both main components of the non-crystalline domain of PU and amorphous domain of SF were highly mobile in the hydrated state. Then, the small-diameter SF artificial vascular grafts coated with this sponge were evaluated through implantation experiments with rats. The implanted PU-SF-coated SF grafts showed a high patency rate. It was confirmed that the inside of the SF grafts was covered with vascular endothelial cells 4 weeks after implantation. These results showed that the water-dispersed biodegradable PU-SF-coated SF graft created in this study could be a strong candidate for small-diameter artificial vascular graft.
Collapse
Affiliation(s)
- Takashi Tanaka
- Department of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (T.T.); (R.T.)
| | - Yusuke Ibe
- Polyurethane Research Laboratory, Tosoh Corporation, Mie 510-8540, Japan; (Y.I.); (T.J.)
| | - Takaki Jono
- Polyurethane Research Laboratory, Tosoh Corporation, Mie 510-8540, Japan; (Y.I.); (T.J.)
| | - Ryo Tanaka
- Department of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (T.T.); (R.T.)
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
25
|
Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Zhang B, Xu Y, Ma S, Wang L, Liu C, Xu W, Shi J, Qiao W, Yang H. Small-diameter polyurethane vascular graft with high strength and excellent compliance. J Mech Behav Biomed Mater 2021; 121:104614. [PMID: 34091151 DOI: 10.1016/j.jmbbm.2021.104614] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
In this study, a polyurethane vascular graft with excellent strength and compliance for clinical application was designed and fabricated by preparing three small-diameter vascular graft layers via the textile techniques of wet spinning and knitting. The polyurethane filament that was fabricated by wet spinning formed the inner layer. The polyurethane tubular fabric was used as the middle layer. The outer layer was prepared by spraying polyurethane solution. The three layers of the polyurethane vascular graft have uniform wall thickness, high strength, excellent compliance, and good puncture resistance compared with clinical poly(ethylene terephthalate) (PET) and expanded polytetrafluoroethylene (ePTFE) vascular graft. Therefore, these layers can have potential clinical applications in the replacement of the conventional artificial vascular graft prepared from PET and ePTFE.
Collapse
Affiliation(s)
- Baocheng Zhang
- Department of Orthopaedics, General Hospital of Central Theater Command of PLA, Wuhan, 430070, PR China
| | - Yuan Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China
| | - Sitian Ma
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China; College of Material Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Linfeng Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China; College of Material Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Changjun Liu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China; College of Material Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, 430200, PR China; College of Material Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China.
| |
Collapse
|
27
|
High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. Int J Biol Macromol 2021; 183:1210-1221. [PMID: 33984383 DOI: 10.1016/j.ijbiomac.2021.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
Silk fibroin (SF) is a natural macromolecule material with good biocompatibility, which can be used to prepare a variety of biological materials. In this study, hydroxypropyl methylcellulose (HPMC) was applied to improve the properties of SF nanofibrous scaffolds (NFS) for skin tissue engineering applications. SF/HPMC NFS with varying weight ratios of SF: HPMC were prepared in batches by a modified free surface electrospinning. The effects of the varying weight ratio of SF: HPMC on the morphology, property and yield of SF/HPMC NFS were investigated. The results revealed that with the increase of HPMC contents, the hydrophilicity of SF/HPMC NFS would be improved, but the yield of that would decrease. Considering its effects on the morphology, property and yield of SF/HPMC NFS, the optimal weight ratio of SF: HPMC was 7:1. And SF/HPMC NFS with the weight ratio of 7:1 (SF/HPMC-7:1 NFS) had good mechanical property, hydrophilicity, porosity, swelling property and water vapor transmission rate (WVTR). In addition, the viability test results of human umbilical vein endothelial cells demonstrated that SF/HPMC-7:1 NFS maintained excellent biocompatibility for cell adhesion and proliferation.
Collapse
|
28
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
29
|
Hajzamani D, Shokrollahi P, Najmoddin N, Shokrolahi F. Effect of engineered PLGA‐gelatin‐chitosan/
PLGA‐gelatin
/
PLGA‐gelatin‐graphene
three‐layer scaffold on adhesion/proliferation of
HUVECs. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dorfam Hajzamani
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Parvin Shokrollahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Fatemeh Shokrolahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
30
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
31
|
Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020; 35:553-566. [DOI: 10.1177/0885328220935090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Caiping Su
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoxiang Zeng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Rui Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jiaxuan Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Shuai Li
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
32
|
Chen G, Wei R, Huang X, Wang F, Chen Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int J Biol Macromol 2020; 155:1450-1459. [DOI: 10.1016/j.ijbiomac.2019.11.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
|
33
|
Zhang C, Xia L, Deng B, Li C, Wang Y, Li R, Dai F, Liu X, Xu W. Fabrication of a High-Toughness Polyurethane/Fibroin Composite without Interfacial Treatment and Its Toughening Mechanism. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25409-25418. [PMID: 32378401 DOI: 10.1021/acsami.0c03936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the assembly modes of polymer chains and the interfacial interactions between the filler and polymer matrix is vital for improving the mechanical properties of the composites. Herein, we report an approach for significantly enhancing the toughness of unmodified silk fibroin (SF) powder from silk waste-incorporated polyurethane (PU) composite films via nonsolvent-induced phase separation (NIPS) using binary solvents. The incorporation of 50 wt % SF into the PU3 film (NIPS, binary solvents) resulted in a toughness value of 54.9 ± 0.4 MJ·m-3, exhibiting 1670.9 and 6000.0% increments compared to those of PU1-50% SF (NIPS, one solvent) and PU2-50% SF (solvent evaporation, one solvent), respectively. The toughness enhancement in the PU3-50% SF composite film benefits from the good interfacial interaction between SF and PU and the unique structure of the compacted "fishing net" with reinforced connections, which can transfer stress under loading effectively. Furthermore, the PU-SF composites with good mechanical properties may have potential applications in silklike fibers and biomimetic materials.
Collapse
Affiliation(s)
- Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Silkworm Genome Biology, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Bo Deng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yun Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Renhao Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
34
|
Akbari S, Mohebbi-Kalhori D, Samimi A. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds. J Biomater Appl 2020; 34:1355-1367. [DOI: 10.1177/0885328220910021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Saeed Akbari
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Davod Mohebbi-Kalhori
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Abdolreza Samimi
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| |
Collapse
|
35
|
Cordelle J, Mantero S. Insight on the endothelialization of small silk-based tissue-engineered vascular grafts. Int J Artif Organs 2020; 43:631-644. [DOI: 10.1177/0391398820906547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with an increased incidence of cardiovascular diseases, there is a strong need for small-diameter vascular grafts. Silk has been investigated as a biomaterial to develop such grafts thanks to different processing options. Endothelialization was shown to be extremely important to ensure graft patency and there is ongoing research on the development and behavior of endothelial cells on vascular tissue-engineered scaffolds. This article reviews the endothelialization of silk-based scaffolds processed throughout the years as silk non-woven nets, films, gel spun, electrospun, or woven scaffolds. Encouraging results were reported with these scaffolds both in vitro and in vivo when implanted in small- to middle-sized animals. The use of coatings and heparin or sulfur to enhance, respectively, cell adhesion and scaffold hemocompatibility is further presented. Bioreactors also showed their interest to improve cell adhesion and thus promoting in vitro pre-endothelialization of grafts even though they are still not systematically used. Finally, the importance of the animal models used to study the right mechanism of endothelialization is discussed.
Collapse
Affiliation(s)
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
37
|
Kopp A, Smeets R, Gosau M, Kröger N, Fuest S, Köpf M, Kruse M, Krieger J, Rutkowski R, Henningsen A, Burg S. Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioact Mater 2020; 5:241-252. [PMID: 32123778 PMCID: PMC7036448 DOI: 10.1016/j.bioactmat.2020.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/28/2022] Open
Abstract
Silk fibroin is a biomaterial with multiple beneficial properties for use in regenerative medicine and tissue engineering. When dissolving and processing the reconstituted silk fibroin solution by electrospinning, the arrangement and size of fibers can be manifold varied and according fiber diameters reduced to the nanometer range. Such nonwovens show high porosity as well as potential biocompatibility. Usually, electrospinning of most biomaterials demands for the application of additives, which enable stable electrospinning by adjusting viscosity, and are intended to evaporate during processing or to be washed out afterwards. However, the use of such additives increases costs and has to be taken into account in terms of biological risks when used for biomedical applications. In this study, we explored the possibilities of additive-free electrospinning of pure fibroin nonwovens and tried to optimize process parameters to enable stable processing. We used natural silk derived from the mulberry silkworm Bombyx mori. After degumming, the silk fibroin was dissolved and the viscosity of the spinning solution was controlled by partial evaporation of the initial solving agent. This way, we were able to completely avoid the use of additives and manufacture nonwovens, which potentially offer higher biocompatibility and reduced immunogenicity. Temperature and relative humidity during electrospinning were systematically varied (25–35 °C, 25–30% RH). In a second step, the nonwovens optionally underwent methanol treatment to initiate beta-sheet formation in order to increase structural integrity and strength. Comprehensive surface analysis on the different nonwovens was performed using scanning electron microscopy and supplemented by additional mechanical testing. Cytotoxicity was evaluated using BrdU-assay, XTT-assay, LDH-assay and live-dead staining. Our findings were, that an increase of temperature and relative humidity led to unequal fiber diameters and defective nonwovens. Resistance to penetration decreased accordingly. The most uniform fiber diameters of 998 ± 63 nm were obtained at 30 °C and 25% relative humidity, also showing the highest value for resistance to penetration (0.20 N). The according pure fibroin nonwoven also showed no signs of cytotoxicity. However, while the biological response showed statistical evidence, the material characteristics showed no statistically significant correlation to changes of the ambient conditions within the investigated ranges. We suggest that further experiments should explore additional ranges for temperature and humidity and further focus on the repeatability of material properties in dependency of suitable process windows. Usually, electrospinning of most biomaterials demands for the application of additives. However, the use of such additives increases costs and has to be taken into account in terms of biological risks. After degumming, fibroin was dissolved and the viscosity of the spinning solution was controlled by partial evaporation of the initial solving agent. In this way, we were able to completely avoid the use of additives. Using a pure fibroin solution contributes to higher biocompatibility and reduces immunogenicity of the products. Increase of temperature and humidity led to unequal fiber diameters and defective nonwovens. The most uniform fiber diameters of 998 ± 63 nm were obtained at 30 °C and 25% RH.
Collapse
Affiliation(s)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Cologne, Germany
| | | | | | - Magnus Kruse
- Institut Fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Judith Krieger
- Institut Fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, German Armed Forces Hospital, Hamburg, Germany
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Yan S, Napiwocki B, Xu Y, Zhang J, Zhang X, Wang X, Crone WC, Li Q, Turng LS. Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110311. [PMID: 31761197 PMCID: PMC6905500 DOI: 10.1016/j.msec.2019.110311] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022]
Abstract
In this study, a small-diameter, double-layered eggshell membrane/thermoplastic polyurethane (ESM/TPU) vascular graft with a wavy structure was developed. The avian eggshell membrane, a fibrous structure similar to the extracellular matrix (ECM), has the potential to yield rapid endothelialization in vitro. The dopamine and heparin modification of the ESM surface not only promoted human umbilical vein endothelial cell (HUVEC) proliferation via cytocompatibility assessment, but also improved its anticoagulation properties as verified in platelet adhesion tests. The biomimetic mechanical properties of the vascular graft were provided by the elastic TPU fibers via electrospinning using a wavy cross-section rotating collector. The advantage of combining these two materials is to make use of the bioactivity of ESM as the internal membrane and the tunable mechanical properties of TPU as the external layer. The circumferentially wavy structure of the vascular graft produced a toe region in the non-linear section of the stress-strain curve similar to that of natural blood vessels. The ESM/TPU graft's circumferential ultimate strength was 2.57 MPa, its strain was 339% mm/mm, and its toe region was found to be around 20% mm/mm. Cyclical tension tests showed that the vascular graft could maintain good mechanical properties and showed no structural damage under repeated extension tests.
Collapse
Affiliation(s)
- Shujie Yan
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China; Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Brett Napiwocki
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Yiyang Xu
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China; Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI, USA
| | - Xiang Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China
| | - Wendy C Crone
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China.
| | - Lih-Sheng Turng
- Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Mi HY, Jiang Y, Jing X, Enriquez E, Li H, Li Q, Turng LS. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:241-249. [DOI: 10.1016/j.msec.2018.12.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/09/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
|
40
|
Niu Z, Wang X, Meng X, Guo X, Jiang Y, Xu Y, Li Q, Shen C. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering. Biomed Mater 2019; 14:035006. [DOI: 10.1088/1748-605x/ab07f1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Asakura T, Tanaka T, Tanaka R. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts. ACS Biomater Sci Eng 2019; 5:5561-5577. [PMID: 33405687 DOI: 10.1021/acsbiomaterials.8b01482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
42
|
Tamimi EA, Ardila DC, Ensley BD, Kellar RS, Vande Geest J. Computationally optimizing the compliance of multilayered biomimetic tissue engineered vascular grafts. J Biomech Eng 2019; 141:2725826. [PMID: 30778568 DOI: 10.1115/1.4042902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Coronary artery bypass grafts used to treat coronary artery disease often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50 and 20:80) were mechanically characterized. The stress-strain data was used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a tissue engineered vascular graft that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568 and 0.000880 mmHg-1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value=0.37 and 0.89, respectively). The experimental compliance value of the hypocompliant graft was statistically significant than their target compliance value (p-value=0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.
Collapse
Affiliation(s)
- Ehab Akram Tamimi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diana Catalina Ardila
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Kellar
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, 86011; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011
| | - Jonathan Vande Geest
- ASME Member, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States, McGowan Institute for Regenerative Medicine, 300 Technology Drive, Pittsburgh, PA, United State 15219
| |
Collapse
|
43
|
Mi H, Jing X, Li Z, Lin Y, Thomson JA, Turng L. Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. J Biomed Mater Res B Appl Biomater 2019; 107:2397-2408. [DOI: 10.1002/jbm.b.34333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/31/2018] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Hao‐Yang Mi
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| | - Xin Jing
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
- School of Packaging and Materials EngineeringHunan University of Technology Zhuzhou, 412007 China
| | - Zhu‐Tong Li
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| | - Yu‐Jyun Lin
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
| | - James A. Thomson
- Morgridge Institute for ResearchUniversity of Wisconsin–Madison Madison Wisconsin, 53715 USA
| | - Lih‐Sheng Turng
- Wisconsin Institute for DiscoveryUniversity of Wisconsin–Madison Madison Wisconsin 53715 USA
- Department of Mechanical EngineeringUniversity of Wisconsin–Madison Madison Wisconsin, 53706 USA
| |
Collapse
|
44
|
Angioplasty Using 4-Hexylresorcinol-Incorporated Silk Vascular Patch in Rat Carotid Defect Model. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate and compare the efficacy of 4-hexylresorcinol (4-HR)-incorporated silk as a vascular patch scaffold to that of the commercial polytetrafluoroethylene (PTFE) vascular patch (GORE® ACUSEAL). The expression of the vascular endothelial cell growth factor-A (VEGF-A) after application of 4-HR was studied in RAW264.7 and HUVEC cells. In the animal study, a carotid artery defect was modeled in Sprague Dawley rats (n = 30). The defect was directly closed in the control group (n = 10), or repaired with the PTFE or 4-HR silk patch in the experimental groups (n = 10 per group). Following patch angioplasty, angiography was performed and the peak systolic velocity (PSV) was measured to evaluate the artery patency. The application of 4-HR was shown to increase the expression of VEGF-A in RAW264.7 and HUVEC cells. The successful artery patency rate was 80% for the 4-HR silk group, 30% for the PTFE group, and 60% for the control group. The PSV of the 4-HR silk group was significantly different from that of the control group at one week and three weeks post-angioplasty (p = 0.005 and 0.024). Histological examination revealed new regeneration of the arterial wall, and that the arterial diameter was well maintained in the 4-HR silk group in the absence of an immune reaction. In contrast, an overgrowth of endothelium was observed in the PTFE group. In this study, the 4-HR silk patch was successfully used as a vascular patch, and achieved a higher vessel patency rate and lower PSV than the PTFE patch.
Collapse
|
45
|
Fang Y, Xu L, Wang M. High-Throughput Preparation of Silk Fibroin Nanofibers by Modified Bubble-Electrospinning. NANOMATERIALS 2018; 8:nano8070471. [PMID: 29954106 PMCID: PMC6070844 DOI: 10.3390/nano8070471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
As a kind of natural macromolecular protein molecule extracted from silk, silk fibroin (SF) has been widely used as biological materials in recent years due to its good physical and chemical properties. In this paper, a modified bubble-electrospinning (MBE) using a cone-shaped gas nozzle combined with a copper solution reservoir was applied to obtain high-throughput fabrication of SF nanofibers. In the MBE process, sodium dodecyl benzene sulfonates (SDBS) were used as the surfactant to improve the spinnability of SF solution. The rheological properties and conductivity of the electrospun SF solutions were investigated. And the effects of gas flow volume, SF solution concentration and additive amounts of SDBS on the morphology, property and production of SF nanofibers were studied. The results showed the decrease of gas flow volume could decrease the nanofiber diameter, enhance the diameter distribution, and increase the production of nanofibers. And the maximum yield could reach 3.10 g/h at the SF concentration of 10 wt % and the SDBS concentration of 0.1 wt %.
Collapse
Affiliation(s)
- Yue Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, 178 Ganjiang Road, Suzhou 215021, China.
| |
Collapse
|