1
|
Zoppo CT, Mocco J, Manning NW, Bogdanov AA, Gounis MJ. Surface modification of neurovascular stents: from bench to patient. J Neurointerv Surg 2024; 16:908-913. [PMID: 37793794 DOI: 10.1136/jnis-2023-020620] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Flow-diverting stents (FDs) for the treatment of cerebrovascular aneurysms are revolutionary. However, these devices require systemic dual antiplatelet therapy (DAPT) to reduce thromboembolic complications. Given the risk of ischemic complications as well as morbidity and contraindications associated with DAPT, demonstrating safety and efficacy for FDs either without DAPT or reducing the duration of DAPT is a priority. The former may be achieved by surface modifications that decrease device thrombogenicity, and the latter by using coatings that expedite endothelial growth. Biomimetics, commonly achieved by grafting hydrophilic and non-interacting polymers to surfaces, can mask the device surface with nature-derived coatings from circulating factors that normally activate coagulation and inflammation. One strategy is to mimic the surfaces of innocuous circulatory system components. Phosphorylcholine and glycan coatings are naturally inspired and present on the surface of all eukaryotic cell membranes. Another strategy involves linking synthetic biocompatible polymer brushes to the surface of a device that disrupts normal interaction with circulating proteins and cells. Finally, drug immobilization can also impart antithrombotic effects that counteract normal foreign body reactions in the circulatory system without systemic effects. Heparin coatings have been explored since the 1960s and used on a variety of blood contacting surfaces. This concept is now being explored for neurovascular devices. Coatings that improve endothelialization are not as clinically mature as anti-thrombogenic coatings. Coronary stents have used an anti-CD34 antibody coating to capture circulating endothelial progenitor cells on the surface, potentially accelerating endothelial integration. Similarly, coatings with CD31 analogs are being explored for neurovascular implants.
Collapse
Affiliation(s)
- Christopher T Zoppo
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - J Mocco
- Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathan W Manning
- The MIRI Centre, Ingham Institute for Applied Medical Science, Sydney, New South Wales, Australia
- Department of Interventional Radiology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Alexei A Bogdanov
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
3
|
Ramirez-Velandia F, Mensah E, Salih M, Wadhwa A, Young M, Muram S, Taussky P, Ogilvy CS. Endothelial Progenitor Cells: A Review of Molecular Mechanisms in the Pathogenesis and Endovascular Treatment of Intracranial Aneurysms. Neuromolecular Med 2024; 26:25. [PMID: 38886284 DOI: 10.1007/s12017-024-08791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
This comprehensive review explores the multifaceted role of endothelial progenitor cells (EPCs) in vascular diseases, focusing on their involvement in the pathogenesis and their contributions to enhancing the efficacy of endovascular treatments for intracranial aneurysms (IAs). Initially discovered as CD34+ bone marrow-derived cells implicated in angiogenesis, EPCs have been linked to vascular repair, vasculogenesis, and angiogenic microenvironments. The origin and differentiation of EPCs have been subject to debate, challenging the conventional notion of bone marrow origin. Quantification methods, including CD34+ , CD133+ , and various assays, reveal the influence of factors, like age, gender, and comorbidities on EPC levels. Cellular mechanisms highlight the interplay between bone marrow and angiogenic microenvironments, involving growth factors, matrix metalloproteinases, and signaling pathways, such as phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). In the context of the pathogenesis of IAs, EPCs play a role in maintaining vascular integrity by replacing injured and dysfunctional endothelial cells. Recent research has also suggested the therapeutic potential of EPCs after coil embolization and flow diversion, and this has led the development of device surface modifications aimed to enhance endothelialization. The comprehensive insights underscore the importance of further research on EPCs as both therapeutic targets and biomarkers in IAs.
Collapse
Affiliation(s)
- Felipe Ramirez-Velandia
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mensah
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Mira Salih
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Aryan Wadhwa
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Michael Young
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Sandeep Muram
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Philipp Taussky
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher S Ogilvy
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Du T, Liu J, Dong J, Xie H, Wang X, Yang X, Yang Y. Multifunctional coatings of nickel-titanium implant toward promote osseointegration after operation of bone tumor and clinical application: a review. Front Bioeng Biotechnol 2024; 12:1325707. [PMID: 38444648 PMCID: PMC10912669 DOI: 10.3389/fbioe.2024.1325707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Metal implants, especially Ni-Ti shape memory alloy (Ni-Ti SMA) implants, have increasingly become the first choice for fracture and massive bone defects after orthopedic bone tumor surgery. In this paper, the internal composition and shape memory properties of Ni-Ti shape memory alloy were studied. In addition, the effects of porous Ni-Ti SMA on osseointegration, and the effects of surface hydrophobicity and hydrophilicity on the osseointegration of Ni-Ti implants were also investigated. In addition, the effect of surface coating modification technology of Ni-Ti shape memory alloy on bone bonding was also studied. Several kinds of Ni-Ti alloy implants commonly used in orthopedic clinic and their advantages and disadvantages were introduced. The surface changes of Ni-Ti alloy implants promote bone fusion, enhance the adhesion of red blood cells and platelets, promote local tissue regeneration and fracture healing. In the field of orthopaedics, the use of Ni-Ti shape memory alloy implants significantly promoted clinical development. Due to the introduction of the coating, the osseointegration and biocompatibility of the implant surface have been enhanced, and the success rate of the implant has been greatly improved.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Jia Liu
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Jinhan Dong
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Haoxu Xie
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Xiao Wang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, China
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Xu Yang
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| | - Yingxin Yang
- Liaoning University of traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K, Ogawa T. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res 2023; 67:568-582. [PMID: 36543189 DOI: 10.2186/jpr.jpr_d_22_00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE We examined blood and protein dynamics potentially influenced by implant threads and hydrophilic/hydrophobic states of implant surfaces. METHODS A computational fluid dynamics model was created for a screw-shaped implant with a water contact angle of 70° (hydrophobic surface) and 0° (superhydrophilic surface). Movements and density of blood and fibrinogen as a representative wound healing protein were visualized and quantified during constant blood inflow. RESULTS Blood plasma did not occupy 40-50% of the implant interface or the inside of threads around hydrophobic implants, whereas such blood voids were nearly completely eliminated around superhydrophilic implants. Whole blood field vectors were disorganized and random within hydrophobic threads but formed vortex nodes surrounded by stable blood streams along the superhydrophilic implant surface. The averaged vector within threads was away from the implant surface for the hydrophobic implant and towards the implant surface for the superhydrophilic implant. Rapid and massive whole blood influx into the thread zone was only seen for the superhydrophilic implant, whereas a line of conflicting vectors formed at the entrance of the thread area of the hydrophobic implant to prevent blood influx. The fibrinogen density was up to 20-times greater at the superhydrophilic implant interface than the hydrophobic one. Fibrinogen density was higher at the interface than outside the threads only for the superhydrophilic implant. CONCLUSIONS Implant threads and surface hydrophilicity have profound effects on vector and distribution of blood and proteins. Critically, implant threads formed significant biological voids at the interface that were negated by superhydrophilicity-induced contact hemodynamics.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, Yokohama, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
6
|
Kitajima H, Hirota M, Osawa K, Iwai T, Mitsudo K, Saruta J, Ogawa T. The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model. Biomimetics (Basel) 2023; 8:376. [PMID: 37622981 PMCID: PMC10452410 DOI: 10.3390/biomimetics8040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 232-0024, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
7
|
A Novel High-Energy Vacuum Ultraviolet Light Photofunctionalization Approach for Decomposing Organic Molecules around Titanium. Int J Mol Sci 2023; 24:ijms24031978. [PMID: 36768297 PMCID: PMC9916712 DOI: 10.3390/ijms24031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.
Collapse
|
8
|
Matsuura T, Komatsu K, Ogawa T. N-Acetyl Cysteine-Mediated Improvements in Dental Restorative Material Biocompatibility. Int J Mol Sci 2022; 23:ijms232415869. [PMID: 36555541 PMCID: PMC9781091 DOI: 10.3390/ijms232415869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Correspondence: ; Tel.: +1-310-794-7653; Fax: +1-310-825-6345
| |
Collapse
|
9
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
10
|
Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement. Int J Mol Sci 2020; 21:ijms21072405. [PMID: 32244335 PMCID: PMC7177939 DOI: 10.3390/ijms21072405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.
Collapse
|