1
|
Sabljić L, Radulović N, Đokić J, Stojanovic DB, Radojević D, Glamočlija S, Dinić M, Golić N, Vasilev S, Uskoković P, Sofronić-Milosavljević L, Gruden-Movsesijan A, Tomić S. Biodegradable Electrospun PLGA Nanofibers-Encapsulated Trichinella Spiralis Antigens Protect from Relapsing Experimental Autoimmune Encephalomyelitis and Related Gut Microbiota Dysbiosis. Int J Nanomedicine 2025; 20:1921-1948. [PMID: 39963417 PMCID: PMC11830953 DOI: 10.2147/ijn.s499161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose Trichinella spiralis has evolved complex immunomodulatory mechanisms mediated by excretory-secretory products (ESL1) that enable its survival in the host. Consequently, ESL1 antigens display excellent potential for treating autoimmune diseases such as multiple sclerosis (MS). However, whether timely controlled delivery of ESL1 antigens in vivo, as in natural infections, could enhance its therapeutic potential for MS is still unknown. Methods To test this, we encapsulated ESL1 antigens into biodegradable poly (lactide-co-glycolic) acid (PLGA) nanofibers by emulsion electrospinning as a delivery system and assessed their release dynamics in vitro, and in an animal MS model, experimental autoimmune encephalomyelitis (EAE), induced 7 days after PLGA/ESL1 subcutaneous implantation. PLGA/ESL1 effects on EAE symptoms were monitored along with multiple immune cell subsets in target organs at the peak and recovery of EAE. Gut barrier function and microbiota composition were analyzed using qPCR, 16S rRNA sequencing, and metabolomic analyses. Results ESL1 antigens, released from PLGA and drained via myeloid antigen-presenting cells through lymph nodes, protected the animals from developing EAE symptoms. These effects correlated with reduced activation of myeloid cells, increased IL-10 expression, and reduced accumulation of proinflammatory natural killer (NK) cells, T helper (Th)1 and Th17 cells in the spleen and central nervous system (CNS). Additionally, CD4+CD25hiFoxP3+ regulatory T cells and IL-10-producing B cells were expanded in PLGA/ESL1-treated animals, compared to control animals. The migration of ESL1 to the guts correlated with locally reduced inflammation and gut barrier damage. Additionally, PLGA/ESL1-treated animals displayed an unaltered microbiota characterized only by a more pronounced protective mevalonate pathway and expanded short-chain fatty acid-producing bacteria, which are known to suppress inflammation. Conclusion The delivery of T. spiralis ESL1 antigens via biodegradable electrospun PLGA nanofiber implants efficiently protected the animals from developing EAE by inducing a beneficial immune response in the spleen, gut, and CNS. This platform provides excellent grounds for further development of novel MS therapies.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Nanofibers/chemistry
- Trichinella spiralis/immunology
- Gastrointestinal Microbiome/drug effects
- Antigens, Helminth/administration & dosage
- Antigens, Helminth/chemistry
- Antigens, Helminth/pharmacology
- Mice
- Female
- Dysbiosis/prevention & control
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ljiljana Sabljić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nataša Radulović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Institute for Molecular Genetics and Genetical Engineering, University of Belgrade, Belgrade, Serbia
| | - Dusica B Stojanovic
- Faculty of Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | - Dušan Radojević
- Institute for Molecular Genetics and Genetical Engineering, University of Belgrade, Belgrade, Serbia
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Institute for Molecular Genetics and Genetical Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Institute for Molecular Genetics and Genetical Engineering, University of Belgrade, Belgrade, Serbia
| | - Saša Vasilev
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Petar Uskoković
- Faculty of Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | | | | | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Razif R, Fadilah NIM, Ahmad H, Looi Qi Hao D, Maarof M, Fauzi MB. Asiaticoside-Loaded Multifunctional Bioscaffolds for Enhanced Hyperglycemic Wound Healing. Biomedicines 2025; 13:277. [PMID: 40002691 PMCID: PMC11853099 DOI: 10.3390/biomedicines13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The review explores the potential of asiaticoside-loaded bioscaffolds to improve the management of hyperglycemic wounds, particularly diabetic foot ulcers (DFUs). Asiaticoside, sourced from Centella asiatica, possesses properties that address DFUs' healing challenges: insufficient angiogenesis, persistent inflammation, and delayed tissue regeneration. By incorporating asiaticoside into bioscaffold 3D designs including hydrogels, microneedle arrays, and nanofibrous meshes, therapeutic efficacy is optimized. This review examines the mechanisms of asiaticoside in wound healing (collagen production, angiogenesis modulation, inflammation reduction, and cell migration and proliferation) based on in vitro and in vivo studies. Asiaticoside also demonstrates synergistic abilities with other biomaterials, creating the possibility of more effective therapies. While preclinical research is promising, clinical trials are crucial to evaluate the efficacy and safety of asiaticoside-loaded bioscaffolds in patients with DFUs. Asiaticoside-loaded bioscaffolds are a significant development in wound healing and may aid in treating hyperglycemic wound complications. Their ability to offer individualized treatment plans has the potential to enhance the quality of life of those who suffer from diabetes. This review is based on a thorough literature search (2019-2024) across multiple databases, excluding secondary literature and non-English articles.
Collapse
Affiliation(s)
- Raniya Razif
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Daniel Looi Qi Hao
- My Cytohealth Sdn Bhd, Hive 5, Taman Teknologi, MRANTI, Bukit Jalil 57000, Kuala Lumpur, Malaysia;
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
4
|
Ma Q, Wang X, Feng B, Liang C, Wan X, El-Newehy M, Abdulhameed MM, Mo X, Wu J. Fiber configuration determines foreign body response of electrospun scaffolds: in vitroand in vivoassessments. Biomed Mater 2024; 19:025007. [PMID: 38194703 DOI: 10.1088/1748-605x/ad1c99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Biomaterial scaffolds boost tissue repair and regeneration by providing physical support, delivering biological signals and/or cells, and recruiting endogenous cells to facilitate tissue-material integration and remodeling. Foreign body response (FBR), an innate immune response that occurs immediately after biomaterial implantation, is a critical factor in determining the biological outcomes of biomaterial scaffolds. Electrospinning is of great simplicity and cost-effectiveness to produce nanofiber scaffolds with well-defined physicochemical properties and has been used in a variety of regenerative medicine applications in preclinical trials and clinical practice. A deep understanding of causal factors between material properties and FBR of host tissues is beneficial to the optimal design of electrospun scaffolds with favorable immunomodulatory properties. We herein prepared and characterized three electrospun scaffolds with distinct fiber configurations and investigated their effects on FBR in terms of immune cell-material interactions and host responses. Our results show that electrospun yarn scaffold results in greater cellular immune reactions and elevated FBR inin vivoassessments. Although the yarn scaffold showed aligned fiber bundles, it failed to induce cell elongation of macrophages due to its rough surface and porous grooves between yarns. In contrast, the aligned scaffold showed reduced FBR compared to the yarn scaffold, indicating a smooth surface is also a contributor to the immunomodulatory effects of the aligned scaffold. Our study suggests that balanced porousness and smooth surface of aligned fibers or yarns should be the key design parameters of electrospun scaffolds to modulate host responsein vivo.
Collapse
Affiliation(s)
- Qiaolin Ma
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Bei Feng
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
5
|
Bandopadhyay S, Mandal S, Ghorai M, Jha NK, Kumar M, Radha, Ghosh A, Proćków J, Pérez de la Lastra JM, Dey A. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J Cell Mol Med 2023; 27:593-608. [PMID: 36756687 PMCID: PMC9983323 DOI: 10.1111/jcmm.17635] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.
Collapse
Affiliation(s)
| | - Sujata Mandal
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataIndia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaIndia,Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliIndia,Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR – Central Institute for Research on Cotton TechnologyMumbaiIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | | | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA)Consejo Superior de Investigaciones científicas (CSIS)Santa Cruz de TenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataIndia
| |
Collapse
|
6
|
Li DK, Wang GH. Asiaticoside reverses M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by TRAF6/NF-κB inhibition. PHARMACEUTICAL BIOLOGY 2022; 60:1635-1645. [PMID: 35989576 PMCID: PMC9415541 DOI: 10.1080/13880209.2022.2109688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT M2 phenotype macrophage polarization is an attractive target for therapeutic intervention. Asiaticoside (ATS) has multiple pharmacological functions. OBJECTIVE This study investigates the effect of ATS on M2 phenotype macrophage polarization in osteosarcoma. MATERIALS AND METHODS The differentiation of human THP-1 monocytes into M0 phenotype macrophages was induced by 100 nM phorbol myristate acetate for 24 h, and treated with 20 ng/mL IL-4 and 20 ng/mL IL-13 for 48 h to obtain M2 phenotype macrophages. The function of ATS on the growth and invasion was investigated by cell counting kit-8, transwell, and western blot under the co-culture of M2 phenotype macrophages and osteosarcoma cells for 24 h. The mechanism of ATS on osteosarcoma was assessed using molecular experiments. RESULTS ATS reduced the THP-1 cell viability with an IC50 of 128.67 μM. Also, ATS repressed the M2 phenotype macrophage polarization induced by IL-4/IL-13, and the effect was most notably at a 40 μM dose. ATS (40 μM) restrained the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. In addition, ATS reduced the tumour necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB activity in osteosarcoma cells and the TRAF6 knockdown reduced the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. TRAF6 (2 μg/mL) attenuated the inhibitory effect of ATS on the growth and invasion of osteosarcoma cells caused by M2 phenotype macrophages. In vivo studies further confirmed ATS (2.5, 5, or 10 mg/kg) repressed osteosarcoma tumour growth. DISCUSSION AND CONCLUSIONS ATS reversed M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by reducing TRAF6/NF-κB activity, suggesting ATS might be a promising drug for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dang-ke Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| | - Guang-hui Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
7
|
In Vitro and In Vivo Cell-Interactions with Electrospun Poly (Lactic-Co-Glycolic Acid) (PLGA): Morphological and Immune Response Analysis. Polymers (Basel) 2022; 14:polym14204460. [PMID: 36298036 PMCID: PMC9611119 DOI: 10.3390/polym14204460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Random electrospun three-dimensional fiber membranes mimic the extracellular matrix and the interfibrillar spaces promotes the flow of nutrients for cells. Electrospun PLGA membranes were analyzed in vitro and in vivo after being sterilized with gamma radiation and bioactivated with fibronectin or collagen. Madin-Darby Canine Kidney (MDCK) epithelial cells and primary fibroblast-like cells from hamster’s cheek paunch proliferated over time on these membranes, evidencing their good biocompatibility. Cell-free irradiated PLGA membranes implanted on the back of hamsters resulted in a chronic granulomatous inflammatory response, observed after 7, 15, 30 and 90 days. Morphological analysis of implanted PLGA using light microscopy revealed epithelioid cells, Langhans type of multinucleate giant cells (LCs) and multinucleated giant cells (MNGCs) with internalized biomaterial. Lymphocytes increased along time due to undegraded polymer fragments, inducing the accumulation of cells of the phagocytic lineage, and decreased after 90 days post implantation. Myeloperoxidase+ cells increased after 15 days and decreased after 90 days. LCs, MNGCs and capillaries decreased after 90 days. Analysis of implanted PLGA after 7, 15, 30 and 90 days using transmission electron microscope (TEM) showed cells exhibiting internalized PLGA fragments and filopodia surrounding PLGA fragments. Over time, TEM analysis showed less PLGA fragments surrounded by cells without fibrous tissue formation. Accordingly, MNGC constituted a granulomatous reaction around the polymer, which resolves with time, probably preventing a fibrous capsule formation. Finally, this study confirms the biocompatibility of electrospun PLGA membranes and their potential to accelerate the healing process of oral ulcerations in hamsters’ model in association with autologous cells.
Collapse
|
8
|
CD96 as a Potential Diagnostic Biomarker and New Target for Skin Cutaneous Melanoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6409376. [PMID: 36043142 PMCID: PMC9377941 DOI: 10.1155/2022/6409376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Skin cutaneous melanoma has high morbidity and mortality. Identification of reliable and quantitative melanoma biomarkers could facilitate an early diagnosis and improve survival and morbidity rates. CD96 has a significant role in adjusting immune function. Although the abnormal expression of CD96 has been reported to participate in carcinogenesis in many human types of cancer, the bioinformatics role of the CD96 in melanoma is unknown. Expression degrees and their underlying functions were first studied by this study. According to TCGA, GTEx, and gene expression profile interaction analysis dataset in this paper, compared with normal skin tissues, CD96 was expressed at higher levels in human cutaneous melanoma skin tissues. Meanwhile, we detected the relative CD96 expression levels by immunohistochemistry. Gene functional enrichment analyses were applied through cBioPortal database analysis. CD96 was clearly upregulated in skin cutaneous melanoma patients and carried out its effects through regulating several signaling pathways, containing the JAK-STAT, PI3K-Akt, and MAPK. Taken together, the analysis results indicated that CD96 could be used as a new clinical bioindicator as well as an underlying medicinal target for cutaneous melanoma.
Collapse
|
9
|
Luo P, Huang Q, Chen S, Wang Y, Dou H. Asiaticoside ameliorates osteoarthritis progression through activation of Nrf2/HO-1 and inhibition of the NF-κB pathway. Int Immunopharmacol 2022; 108:108864. [PMID: 35623293 DOI: 10.1016/j.intimp.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Osteoarthritis has become the fourth cause of disability in the world and its occurrence and development are caused by apoptosis and extracellular matrix (ECM) degradation of chondrocytes. Asiaticoside (ASI) is a triterpene saponin compound obtained from Centella Asiatica and has anti-inflammatory and anti-apoptotic effects in various diseases. However, its effects on OA are not clear. In this study, we reported that ASI has a protective effect on the occurrence and progression of OA in vivo and in vitro, and demonstrated its potential molecular mechanism. In vitro, ASI treatment inhibited the release of pro-apoptotic factors induced by TBHP and promoted the release of the anti-apoptotic proteins. In addition, ASI promotes the expression of Aggrecan and Collagen II, while inhibiting the expression of thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinase-13 (MMP-13), which causes extracellular matrix (ECM) degradation. Mechanistically, ASI exerts its anti-apoptotic effect by activating the Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, in vivo, ASI has been shown to have a protective effect in a mouse OA model. The conclusion is that our research shows that ASI can be used as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Suo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
11
|
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci 2021; 9:5227-5236. [PMID: 34190240 PMCID: PMC8319114 DOI: 10.1039/d1bm00904d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.
Collapse
Affiliation(s)
- Lutong Liu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Yan Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
12
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
13
|
Spinnen J, Fröhlich K, Sinner N, Stolk M, Ringe J, Shopperly L, Sittinger M, Dehne T, Seifert M. Therapies with CCL25 require controlled release via microparticles to avoid strong inflammatory reactions. J Nanobiotechnology 2021; 19:83. [PMID: 33766057 PMCID: PMC7992824 DOI: 10.1186/s12951-021-00830-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023] Open
Abstract
Background Chemokine therapy with C–C motif chemokine ligand 25 (CCL25) is currently under investigation as a promising approach to treat articular cartilage degeneration. We developed a delayed release mechanism based on Poly (lactic-co-glycolic acid) (PLGA) microparticle encapsulation for intraarticular injections to ensure prolonged release of therapeutic dosages. However, CCL25 plays an important role in immune cell regulation and inflammatory processes like T-cell homing and chronic tissue inflammation. Therefore, the potential of CCL25 to activate immune cells must be assessed more thoroughly before further translation into clinical practice. The aim of this study was to evaluate the reaction of different immune cell subsets upon stimulation with different dosages of CCL25 in comparison to CCL25 released from PLGA particles. Results Immune cell subsets were treated for up to 5 days with CCL25 and subsequently analyzed regarding their cytokine secretion, surface marker expression, polarization, and migratory behavior. The CCL25 receptor C–C chemokine receptor type 9 (CCR9) was expressed to a different extent on all immune cell subsets. Direct stimulation of peripheral blood mononuclear cells (PBMCs) with high dosages of CCL25 resulted in strong increases in the secretion of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), interleukin-1β (IL-1β), tumor-necrosis-factor-α (TNF-α) and interferon-γ (IFN-γ), upregulation of human leukocyte antigen-DR (HLA-DR) on monocytes and CD4+ T-cells, as well as immune cell migration along a CCL25 gradient. Immune cell stimulation with the supernatants from CCL25 loaded PLGA microparticles caused moderate increases in MCP-1, IL-8, and IL-1β levels, but no changes in surface marker expression or migration. Both CCL25-loaded and unloaded PLGA microparticles induced an increase in IL-8 and MCP-1 release in PBMCs and macrophages, and a slight shift of the surface marker profile towards the direction of M2-macrophage polarization. Conclusions While supernatants of CCL25 loaded PLGA microparticles did not provoke strong inflammatory reactions, direct stimulation with CCL25 shows the critical potential to induce global inflammatory activation of human leukocytes at certain concentrations. These findings underline the importance of a safe and reliable release system in a therapeutic setup. Failure of the delivery system could result in strong local and systemic inflammatory reactions that could potentially negate the benefits of chemokine therapy. ![]()
Collapse
Affiliation(s)
- J Spinnen
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany.
| | - K Fröhlich
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - N Sinner
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - M Stolk
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - J Ringe
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - L Shopperly
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - M Sittinger
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - T Dehne
- Tissue Engineering Laboratory, BIH Center for Regenerative Therapies, Department for Rheumatology and Clinical Immunology & Berlin Institute of Health at Charité-Universitätsmedizin Berli, BCRT, Charitéplatz 1, 10117, Berlin, Germany
| | - M Seifert
- Institute of Medical Immunology and Berlin Institute of Health Center for Regenerative Therapies, Institute of Medical Immunology, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
14
|
Zhou X, Ke C, Lv Y, Ren C, Lin T, Dong F, Mi Y. Asiaticoside suppresses cell proliferation by inhibiting the NF‑κB signaling pathway in colorectal cancer. Int J Mol Med 2020; 46:1525-1537. [PMID: 32945376 PMCID: PMC7447327 DOI: 10.3892/ijmm.2020.4688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality. Asiaticoside (AC) exhibits antitumor effects; however, to the best of our knowledge, the biological function of AC in CRC cells remains unclear. Therefore, the aim of the present study was to investigate the effect of AC on CRC cells. In the present study, CCK-8 and colony formation assays were performed to assess the effects of AV on human CRC cell lines (HCT116, SW480 and LoVo). Mitochondrial membrane potential was examined by JC-1 staining. Cell apoptosis and cell cycle were monitored by flow cytometry, and the expression of genes was evaluated using RT-qPCR and western blot analysis. Furthermore, the biological effect of AC in vivo was detected using a xenograft mouse model. The findings revealed that 2 µM AC suppressed the proliferation of CRC cells in a time- and dose-dependent manner, but had no adverse effects on normal human intestinal FHC cells at a range of concentrations. AC decreased the mitochondrial membrane potential and increased the apoptosis of CRC cells in a dose-dependent manner. Furthermore, AC induced cell cycle arrest at the G0/G1 phase. AC attenuated IκBα phosphorylation in a dose-dependent manner, thereby preventing P65 from entering the nucleus, and resulting in inhibition of the NF-κB signaling pathway. In addition, AC significantly reduced the expression of CDK4 and Cyclin D1 in a dose-dependent manner, significantly upregulated the activation of caspase-9 and caspase-3, and decreased the Bcl-2/Bax mRNA ratio. Furthermore, treatment with the NF-κB signaling pathway inhibitor JSH-23 significantly increased the cytotoxicity of AC in CRC cells. Findings of the xenograft mice model experiments revealed that AC significantly inhibited colorectal tumor growth in a dose-dependent manner. Overall, AC suppressed activation of the NF-κB signaling pathway by downregulating IκBα phosphorylation. This resulted in inhibition of CRC cell viability and an increase of cell apoptosis, which may form the basis of AC use in the treatment of patients with CRC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Colorectal Cancer, Cancer Center, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Chunlin Ke
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - You Lv
- Department of Colorectal Cancer, Cancer Center, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Caihong Ren
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Tiansheng Lin
- Department of Colorectal Cancer, Cancer Center, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Feng Dong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
15
|
Deng M, Tan J, Hu C, Hou T, Peng W, Liu J, Yu B, Dai Q, Zhou J, Yang Y, Dong R, Ruan C, Dong S, Xu J. Modification of PLGA Scaffold by MSC-Derived Extracellular Matrix Combats Macrophage Inflammation to Initiate Bone Regeneration via TGF-β-Induced Protein. Adv Healthc Mater 2020; 9:e2000353. [PMID: 32424991 DOI: 10.1002/adhm.202000353] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Indexed: 12/20/2022]
Abstract
The immunologic response toward chronic inflammation or bone regeneration via the accumulation of M1 or M2 macrophages after injury could determine the fate of biomaterial. Human umbilical cord mesenchymal stem cells (hUCMSCs) have a pivotal immunomodulatory property on directing macrophage behaviors. Herein, for the first time, 3D-printed poly(lactide-co-glycolide) (PLGA) scaffolds modified with hUCMSC-derived extracellular matrix (PLGA-ECM) are prepared by a facile tissue engineering technique with physical decellularization and 2.44 ± 0.29 mg cm-3 proteins immobilized on the PLGA-ECM contain multiple soluble cytokines with a sustainable release profile. The PLGA-ECM not only attenuates the foreign body response, but also improves bone regeneration by increasing the accumulation of M2 macrophages in an improved heterotopic transplantation model of SCID mice. Furthermore, the PLGA-ECM scaffolds with the knockdown of transforming growth factor-β-induced protein (TGFβI/βig-H3) demonstrate that M2 macrophage accumulation improved by the PLGA-ECM could be attributed to increasing the migration of M2 macrophages and the repolarization of M1 macrophages to M2 phenotype, which are mediated by multiple integrin signaling pathways involving in integrin β7, integrin α9, and integrin β1 in a TGFβI-dependent manner. This study presents an effective surface modification strategy of polymeric scaffolds to initiate tissue regeneration and combat inflammatory response by increasing M2 macrophage accumulation.
Collapse
Affiliation(s)
- Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Chengshen Hu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyong Hou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Wei Peng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bo Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Jiangling Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Yusheng Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| | - Rui Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|