1
|
Ewendt F, Janjetovic Z, Kim TK, Mobley AA, Brożyna AA, Ravichandran S, Fabisiak A, Brzeminski P, Sicinski RR, Stangl GI, Tuckey RC, Slominski AT. The vitamin D 3 hormone, 1,25(OH) 2D 3, regulates fibroblast growth factor 23 (FGF23) production in human skin cells. Am J Physiol Cell Physiol 2025; 328:C1177-C1192. [PMID: 40055144 DOI: 10.1152/ajpcell.00827.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
The bone hormone fibroblast growth factor 23 (FGF23) regulates renal phosphate reabsorption and the enzymatic production of active vitamin D3 [1,25(OH)2D3]. Therefore, FGF23 production in bone cells is closely regulated by 1,25(OH)2D3 acting via the vitamin D receptor (VDR). Skin cells can produce hydroxyvitamin D3 metabolites from its precursor D3 made through ultraviolet B light exposure. Interestingly, the expression of Fgf23 has been found in rodent skin, but its expression, regulation, and role in human skin are unclear. Therefore, we investigated whether hydroxyvitamin D3 metabolites regulate FGF23 in human skin cells. Primary adult and neonatal epidermal keratinocytes (HEKn), melanocytes (HEMn), dermal fibroblasts (HDFn), as well as human melanoma cells, HaCaT, HaCaT VDR KO, and A431 epidermoid cells, were used to assess FGF23 gene expression (quantitative reverse-transcription real-time PCR), cellular FGF23 protein (Western blot), or secreted FGF23 protein (ELISA) after treatment with hydroxyvitamin D3 metabolites. HaCaT cells treated with recombinant FGF23 were used to explore its function in skin. Human skin cells can synthesize FGF23. Treatment with 1,25(OH)2D3 significantly increased FGF23 mRNA levels in HaCaT and HDFn cells, and moderately in HEKn cells, mediated in part by the VDR. It also moderately enhanced mRNA levels of the FGF23-processing enzyme GALNT3 and stimulated secretion of hormonally active FGF23 from HaCaT cells. Treatment of HaCaT cells with FGF23 increased mRNA levels of the cholesterol- and vitamin D-metabolizing enzymes, CYP11A1 and CYP27A1. In conclusion, human skin cells express and secrete FGF23, which is regulated by 1,25(OH)2D3 acting in part by the VDR. FGF23 affects the expression of cutaneous sterol-metabolizing enzymes.NEW & NOTEWORTHY This study shows for the first time the expression and secretion of the FGF23 hormone by human skin cells. In addition, we identified the active vitamin D3 hormone, 1,25(OH)2D3, to be a potent regulator of dermal FGF23 expression and protein secretion, partly involving the vitamin D receptor. Furthermore, we provide initial evidence demonstrating that FGF23 upregulates the gene expression of CYP11A1 and CYP27A1 in keratinocytes.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alisa A Mobley
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Senthilkumar Ravichandran
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Shahzamani K, Amooyi A, Karampoor S, Khanizadeh S, Farahmand M. Klotho protein: A key modulator of aging and COVID-19 severity. Int J Biol Macromol 2025; 296:139234. [PMID: 39798764 DOI: 10.1016/j.ijbiomac.2024.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/04/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
The COVID-19 pandemic has drawn significant attention to factors affecting disease severity, especially in older adults. This study explores the relationship between Klotho, an anti-aging protein, and COVID-19 severity. Conducted at Tehran's Firouzgar Hospital, this case-control study involved 279 participants, assessing serum levels of Klotho, inflammatory markers (C-reactive protein (CRP), Interleukin 6 (IL-6)), and Vitamin D. The findings indicate significantly lower Klotho levels in COVID-19 patients, especially those in the ICU, which correlate with elevated inflammatory markers and reduced Vitamin D levels. This inverse relationship between Klotho levels and disease severity underscores the protein's potential modulatory role in the inflammatory response to COVID-19. The study not only highlights the importance of Klotho as a biomarker for aging and disease severity but also suggests its potential therapeutic value in managing COVID-19, offering a novel perspective on targeting aging-related pathways to mitigate the impact of the disease. These insights open new avenues for research and intervention strategies to leverage anti-aging mechanisms to combat COVID-19 and potentially other age-related diseases.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Lorestan University of Medical Sciences, Islamic Republic of Iran.
| | - Atefeh Amooyi
- Lorestan University of Medical Sciences, Islamic Republic of Iran
| | - Sajad Karampoor
- Iran University of Medical Sciences, Islamic Republic of Iran
| | | | | |
Collapse
|
3
|
Jurutka PW, Khan Z, Kaneko I, Sausedo MA, Shahani PH, MacNeill M, Grozic A, Bhogal J, Swierski J, Wentzel MR, Chhun C, Applegate MT, Raban S, Ibrahim S, Alwaeli K, Feldman TL, Pomeroy KJ, Sarnowski JT, Nguyen N, Ziller JW, Ma N, van der Vaart A, Hackney JF, Marshall PA, Wagner CE. Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics. Bioorg Med Chem 2025; 119:118059. [PMID: 39808894 DOI: 10.1016/j.bmc.2024.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay. The EC50 values for these analogs, and their corresponding effectiveness in activating both LXR/LXRE and the Sterol Regulatory Element Binding Protein (SREBP) promoter in comparison to 1, suggests that these compounds likely display a range of therapeutic potential and differential side effect profiles. Several analogs also exhibited reduced retinoic-acid-receptor (RAR) cross-signaling implying that they possess enhanced selectivity towards activation of cellular RXR versus RAR pathways. These results show that modifying potent rexinoids such as CD3254 or partial agonists such as CBt-PMN can result in improved target receptor selectivity and enhanced potency, such as compounds 26, 27 and 28 in this study, compared with approved therapeutics such as compound 1, where these three compounds exhibited similar potency as 1, but 26 and 27 lower RAR and SREBP activation than 1.
Collapse
Affiliation(s)
- Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA; Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Michael A Sausedo
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pritika H Shahani
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Mairi MacNeill
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Jaskaran Bhogal
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Johnathon Swierski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael R Wentzel
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Christine Chhun
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael T Applegate
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - San Raban
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Samir Ibrahim
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Karar Alwaeli
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Tracie L Feldman
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Kayla J Pomeroy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph T Sarnowski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Natalia Nguyen
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, CA 92697, USA
| | - Ning Ma
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Jennifer F Hackney
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pamela A Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA.
| |
Collapse
|
4
|
Mourelatou NG, Kounatidis D, Jude EB, Rebelos E. Vitamin D Supplementation as a Therapeutic Strategy in Autoimmune Diabetes: Insights and Implications for LADA Management. Nutrients 2024; 16:4072. [PMID: 39683465 DOI: 10.3390/nu16234072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Latent autoimmune diabetes of adults (LADA) is the most prevalent form of autoimmune diabetes (AI-D) in adulthood; however, its accurate diagnosis and optimal treatment remain challenging. Vitamin D deficiency (VDD) is commonly observed in LADA patients, while increased vitamin D exposure through supplementation and dietary intake is associated with a reduced incidence of LADA. Although limited, case reports, case-control studies, and randomized clinical trials have examined the effects of vitamin D supplementation-alone or combined with dipeptidyl peptidase-4 inhibitors (DPP4-is)-on glucose regulation, residual β-cell function, and glutamic acid decarboxylase antibody (GADA65) levels. Findings, while preliminary, indicate that vitamin D supplementation may enhance glycemic control, preserve β-cell function, and reduce autoimmune activity. Given its accessibility, affordability, and relative safety, vitamin D supplementation presents an attractive adjunct treatment option for LADA patients. This narrative review discusses current evidence on the potential therapeutic benefits of vitamin D supplementation in patients with AI-D, including LADA, who are also vitamin D deficient. Beginning with an exploration of the epidemiological patterns, clinical presentation, and diagnostic framework essential for understanding and identifying LADA, this review then examines the proposed mechanisms through which vitamin D may influence autoimmune modulation of pancreatic β-cells, integrating recent data pertinent to LADA pathology. By distilling and consolidating existing research, we aim to provide a platform for advancing targeted investigations within this distinct patient population.
Collapse
Affiliation(s)
- Niki G Mourelatou
- Second Department of Internal Medicine, NIMTS Hospital, 11521 Athens, Greece
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic and Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Edward B Jude
- Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M15 6BX, UK
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Fendler A, Stephan C, Ralla B, Jung K. Discordant Health Implications and Molecular Mechanisms of Vitamin D in Clinical and Preclinical Studies of Prostate Cancer: A Critical Appraisal of the Literature Data. Int J Mol Sci 2024; 25:5286. [PMID: 38791324 PMCID: PMC11120741 DOI: 10.3390/ijms25105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Clinical and preclinical studies have provided conflicting data on the postulated beneficial effects of vitamin D in patients with prostate cancer. In this opinion piece, we discuss reasons for discrepancies between preclinical and clinical vitamin D studies. Different criteria have been used as evidence for the key roles of vitamin D. Clinical studies report integrative cancer outcome criteria such as incidence and mortality in relation to vitamin D status over time. In contrast, preclinical vitamin D studies report molecular and cellular changes resulting from treatment with the biologically active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (calcitriol) in tissues. However, these reported changes in preclinical in vitro studies are often the result of treatment with biologically irrelevant high calcitriol concentrations. In typical experiments, the used calcitriol concentrations exceed the calcitriol concentrations in normal and malignant prostate tissue by 100 to 1000 times. This raises reasonable concerns regarding the postulated biological effects and mechanisms of these preclinical vitamin D approaches in relation to clinical relevance. This is not restricted to prostate cancer, as detailed data regarding the tissue-specific concentrations of vitamin D metabolites are currently lacking. The application of unnaturally high concentrations of calcitriol in preclinical studies appears to be a major reason why the results of preclinical in vitro studies hardly match up with outcomes of vitamin D-related clinical studies. Regarding future studies addressing these concerns, we suggest establishing reference ranges of tissue-specific vitamin D metabolites within various cancer entities, carrying out model studies on human cancer cells and patient-derived organoids with biologically relevant calcitriol concentrations, and lastly improving the design of vitamin D clinical trials where results from preclinical studies guide the protocols and endpoints within these trials.
Collapse
Affiliation(s)
- Annika Fendler
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Carsten Stephan
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
| | - Klaus Jung
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
| |
Collapse
|
6
|
Kanbay M, Copur S, Ozbek L, Mutlu A, Cejka D, Ciceri P, Cozzolino M, Haarhaus ML. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J 2024; 17:sfad276. [PMID: 38213484 PMCID: PMC10783249 DOI: 10.1093/ckj/sfad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 01/13/2024] Open
Abstract
Klotho, a multifunctional protein, acts as a co-receptor in fibroblast growth factor 23 and exerts its impact through various molecular pathways, including Wnt, hypoxia-inducible factor and insulin-like growth factor 1 pathways. The physiological significance of Klotho is the regulation of vitamin D and phosphate metabolism as well as serving as a vital component in aging and neurodegeneration. The role of Klotho in aging and neurodegeneration in particular has gained considerable attention. In this narrative review we highlight several key insights into the molecular basis and physiological function of Klotho and synthesize current research on the role of Klotho in neurodegeneration and aging. Klotho deficiency was associated with cognitive impairment, reduced growth, diminished longevity and the development of age-related diseases in vivo. Serum Klotho levels showed a decline in individuals with advanced age and those affected by chronic kidney disease, establishing its potential diagnostic significance. Additionally, multiple medications have been demonstrated to influence Klotho levels. Therefore, this comprehensive review suggests that Klotho could open the door to novel interventions aimed at addressing the challenges of aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Daniel Cejka
- Department of Medicine III – Nephrology, Hypertension, Transplantation, Rheumatology, Geriatrics, Ordensklinikum Linz – Elisabethinen Hospital, Linz, Austria
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mathias Loberg Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Li Y, Zhao P, Jiang B, Liu K, Zhang L, Wang H, Tian Y, Li K, Liu G. Modulation of the vitamin D/vitamin D receptor system in osteoporosis pathogenesis: insights and therapeutic approaches. J Orthop Surg Res 2023; 18:860. [PMID: 37957749 PMCID: PMC10644527 DOI: 10.1186/s13018-023-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by low bone mineral density (BMD) and deteriorated bone microarchitecture, leading to an increased risk of fractures. Vitamin D (VD), an essential nutrient for skeletal health, plays a vital role in maintaining bone homeostasis. The biological effects of VD are primarily mediated through the vitamin D receptor (VDR), a nuclear receptor that regulates the transcription of target genes involved in calcium and phosphate metabolism, bone mineralization, and bone remodeling. In this review article, we conduct a thorough literature search of the PubMed and EMBASE databases, spanning from January 2000 to September 2023. Utilizing the keywords "vitamin D," "vitamin D receptor," "osteoporosis," and "therapy," we aim to provide an exhaustive overview of the role of the VD/VDR system in osteoporosis pathogenesis, highlighting the most recent findings in this field. We explore the molecular mechanisms underlying VDR's effects on bone cells, including osteoblasts and osteoclasts, and discuss the impact of VDR polymorphisms on BMD and fracture risk. Additionally, we examine the interplay between VDR and other factors, such as hormonal regulation, genetic variants, and epigenetic modifications, that contribute to osteoporosis susceptibility. The therapeutic implications of targeting the VDR pathway for osteoporosis management are also discussed. By bringing together these diverse aspects, this review enhances our understanding of the VD/VDR system's critical role in the pathogenesis of osteoporosis and highlights its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Yanqi Li
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Pengfei Zhao
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Biyun Jiang
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China
| | - Kangyong Liu
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Lei Zhang
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Haotian Wang
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yansheng Tian
- Central Laboratory, Huabei Petroleum Administration Bureau General Hospital, Huidaozhan Avenue, Renqiu City, 062552, Hebei Province, China.
| | - Kun Li
- No.1 Department of Orthopedics, Langfang People's Hospital, No 37, Xinhua Rd, Langfang, 065000, Heibei, China.
| | - Guoqi Liu
- Biotecnovo (Beijing) Co. Ltd., Building 12, Yard 20, Guangde Street, Beijing Economic and Technological Development Zone, Beijing, 100176, China.
| |
Collapse
|
8
|
Santoso D, Thaha M, Empitu MA, Kadariswantiningsih IN, Suryantoro SD, Haryati MR, Hertanto DM, Pramudya D, Bintoro SUY, Nasronudin N, Alsagaff MY, Susilo H, Wungu CDK, Budhiparama NC, Hogendoorn PCW. Brown Tumour in Chronic Kidney Disease: Revisiting an Old Disease with a New Perspective. Cancers (Basel) 2023; 15:4107. [PMID: 37627135 PMCID: PMC10452999 DOI: 10.3390/cancers15164107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Osteitis fibrosa cystica (OFC) and Brown Tumours are two related but distinct types of bone lesions that result from the overactivity of osteoclasts and are most often associated with chronic kidney disease (CKD). Despite their potential consequences, these conditions are poorly understood because of their rare prevalence and variability in their clinical manifestation. Canonically, OFC and Brown Tumours are caused by secondary hyperparathyroidism in CKD. Recent literature showed that multiple factors, such as hyperactivation of the renin-angiotensin-aldosterone system and chronic inflammation, may also contribute to the occurrence of these diseases through osteoclast activation. Moreover, hotspot KRAS mutations were identified in these lesions, placing them in the spectrum of RAS-MAPK-driven neoplasms, which were until recently thought to be reactive lesions. Some risk factors contributed to the occurrence of OFC and Brown Tumours, such as age, gender, comorbidities, and certain medications. The diagnosis of OFC and Brown Tumours includes clinical symptoms involving chronic bone pain and laboratory findings of hyperparathyroidism. In radiological imaging, the X-ray and Computed tomography (CT) scan could show lytic or multi-lobular cystic alterations. Histologically, both lesions are characterized by clustered osteoclasts in a fibrotic hemorrhagic background. Based on the latest understanding of the mechanism of OFC, this review elaborates on the manifestation, diagnosis, and available therapies that can be leveraged to prevent the occurrence of OFC and Brown Tumours.
Collapse
Affiliation(s)
- Djoko Santoso
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya 60286, Indonesia; (D.S.); (D.M.H.); (D.P.); (S.U.Y.B.); (N.N.)
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (S.D.S.); (M.R.H.)
| | - Mochammad Thaha
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (S.D.S.); (M.R.H.)
| | - Maulana A. Empitu
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | | | - Satriyo Dwi Suryantoro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (S.D.S.); (M.R.H.)
| | - Mutiara Rizki Haryati
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (S.D.S.); (M.R.H.)
| | - Decsa Medika Hertanto
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya 60286, Indonesia; (D.S.); (D.M.H.); (D.P.); (S.U.Y.B.); (N.N.)
| | - Dana Pramudya
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya 60286, Indonesia; (D.S.); (D.M.H.); (D.P.); (S.U.Y.B.); (N.N.)
| | | | - Nasronudin Nasronudin
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya 60286, Indonesia; (D.S.); (D.M.H.); (D.P.); (S.U.Y.B.); (N.N.)
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (S.D.S.); (M.R.H.)
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (M.Y.A.); (H.S.)
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya 60115, Indonesia; (M.Y.A.); (H.S.)
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Nicolaas C. Budhiparama
- Department of Orthopaedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Pancras C. W. Hogendoorn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
9
|
Lawler TP, Khankari NK, Shu XO, Steinwandel M, Cai Q, Jurutka PW, Zheng W, Andersen SW. Prediagnostic 25-Hydroxyvitamin D in Association with Cancer-specific and All-cause Mortality among Low-income, Non-Hispanic Black Americans with Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2023; 32:1061-1068. [PMID: 37257199 PMCID: PMC10527198 DOI: 10.1158/1055-9965.epi-23-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Observational studies show high prediagnosis 25-hydroxyvitamin D is associated with lower mortality after colorectal cancer diagnosis. Results from clinical trials suggest vitamin D supplementation may improve outcomes among patients with colorectal cancer. Most studies included few Black Americans, who typically have lower 25-hydroxyvitamin D. We evaluated associations between serum 25-hydroxyvitamin D and mortality after colorectal cancer diagnosis among Black American cases. METHODS Data arose from 218 Black Americans from the Southern Community Cohort Study diagnosed with colorectal cancer during follow-up (age 40-79 at enrollment). Prediagnostic 25-hydroxyvitamin D was measured at enrollment and categorized as deficient (<12 ng/mL), insufficient (12-19.9 ng/mL), or sufficient (≥20 ng/mL). Mortality was determined from the National Death Index. Cox proportional hazards were used to estimate HRs and 95% confidence intervals (CI) for associations between 25-hydroxyvitamin D and mortality. RESULTS As a continuous exposure, higher 25-hydroxyvitamin D was associated with overall mortality [HR = 0.79 (0.65-0.96) per-SD increase, Ptrend = 0.02] and colorectal cancer-specific mortality [HR = 0.83 (0.64-1.08), Ptrend = 0.16]. For overall mortality, associations were strongest among females [HR = 0.65 (0.42-0.92)], current smokers [HR = 0.61 (0.38-0.98)], and obese participants [HR = 0.47 (0.29-0.77)]. Compared with those with deficiency, participants with sufficient 25-hydroxyvitamin D had lower overall mortality after multivariable adjustment [HR: 0.61 (0.37-1.01)]. CONCLUSIONS Prediagnosis 25-hydroxyvitamin D is inversely associated with overall and colorectal cancer-specific mortality among Black Americans with colorectal cancer. Correcting vitamin D deficiency may improve survival of these patients, particularly for obese individuals and smokers. IMPACT Our results support including more Black Americans in trials of vitamin D supplementations to improve colorectal cancer outcomes.
Collapse
Affiliation(s)
- Thomas P. Lawler
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikhil K. Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark Steinwandel
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine, Phoenix, Arizona
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaneda Warren Andersen
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- School of Medicine and Public Health, Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Mkhize BC, Mosili P, Ngubane PS, Sibiya NH, Khathi A. The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. Int J Mol Sci 2023; 24:11963. [PMID: 37569338 PMCID: PMC10419188 DOI: 10.3390/ijms241511963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteoporosis, which occurs due to an imbalance between bone resorption and formation. Numerous mechanisms have been explored to understand this association, including the renin-angiotensin-aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. Therefore, research has focused on these associations in order to find ways to improve glucose handling, osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may alter the bone microenvironment by altering the bone marrow inflammatory status by shifting the osteoprotegerin (OPG)/nuclear factor kappa-Β ligand (RANKL) ratio. The angiotensin-converting-enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporosis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and estrogen deficiency in T2D.
Collapse
Affiliation(s)
- Bongeka Cassandra Mkhize
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Palesa Mosili
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Phikelelani Sethu Ngubane
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | | | - Andile Khathi
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| |
Collapse
|
11
|
Pike JW, Lee SM, Meyer MB. Molecular insights into mineralotropic hormone inter-regulation. Front Endocrinol (Lausanne) 2023; 14:1213361. [PMID: 37441497 PMCID: PMC10334211 DOI: 10.3389/fendo.2023.1213361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The regulation of mineral homeostasis involves the three mineralotropic hormones PTH, FGF23 and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Early research efforts focused on PTH and 1,25(OH)2D3 and more recently on FGF23 have revealed that each of these hormones regulates the expression of the other two. Despite early suggestions of transcriptional processes, it has been only recently that research effort have begun to delineate the genomic mechanisms underpinning this regulation for 1,25(OH)2D3 and FGF23; the regulation of PTH by 1,25(OH)2D3, however, remains obscure. We review here our molecular understanding of how PTH induces Cyp27b1 expression, the gene encoding the enzyme responsible for the synthesis of 1,25(OH)2D3. FGF23 and 1,25(OH)2D3, on the other hand, function by suppressing production of 1,25(OH)2D3. PTH stimulates the PKA-induced recruitment of CREB and its coactivator CBP at CREB occupied sites within the kidney-specific regulatory regions of Cyp27b1. PKA activation also promotes the nuclear translocation of SIK bound coactivators such as CRTC2, where it similarly interacts with CREB occupied Cyp27b1 sites. The negative actions of both FGF23 and 1,25(OH)2D3 appear to suppress Cyp27b1 expression by opposing the recruitment of CREB coactivators at this gene. Reciprocal gene actions are seen at Cyp24a1, the gene encoding the enzyme that degrades 1,25(OH)2D3, thereby contributing to the overall regulation of blood levels of 1,25(OH)2D3. Relative to PTH regulation, we summarize what is known of how 1,25(OH)2D3 regulates PTH suppression. These studies suggest that it is not 1,25(OH)2D3 that controls PTH levels in healthy subjects, but rather calcium itself. Finally, we describe current progress using an in vivo approach that furthers our understanding of the regulation of Fgf23 expression by PTH and 1,25(OH)2D3 and provide the first evidence that P may act to induce Fgf23 expression via a complex transcriptional mechanism in bone. It is clear, however, that additional advances will need to be made to further our understanding of the inter-regulation of each of these hormonal genes.
Collapse
Affiliation(s)
- J. Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
13
|
Zhu Z, Qin S, Zhang T, He M, Zheng W, Zhao T, Gao M, Chen Z, Zhou B, Xia G, Wang C. Pre-granulosa cell-derived FGF23 protects oocytes from premature apoptosis during primordial follicle formation by inhibiting p38 MAPK in mice. J Biol Chem 2023:104776. [PMID: 37142227 DOI: 10.1016/j.jbc.2023.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
A large number of oocytes in the perinatal ovary in rodents get lost for unknown reasons. The granulosa cell-oocyte mutual communication is pivotal for directing formation of the primordial follicle, however little is known if paracrine factors participate in modulating programmed oocyte death perinatally. We report here that pre-granulosa cell-derived fibroblast growth factor 23 (FGF23) functioned in preventing oocyte apoptosis in the perinatal mouse ovary. Our results showed that FGF23 was exclusively expressed in pre-granulosa cells while fibroblast growth factor receptors (FGFRs) were specifically expressed in the oocytes in perinatal ovaries. FGFR1 was one of the representative receptors in mediating FGF23 signaling during the formation of the primordial follicle. In cultured ovaries, the number of alive oocytes declines significantly, accompanied by the activation of the p38 MAPK signaling pathway, under the condition of FGFR1 disruption by specific inhibitors of FGFR1 or silencing of Fgf23. As a result, oocyte apoptosis increased and eventually led to a decrease in the number of germ cells in perinatal ovaries following the treatments. In the perinatal mouse ovary, pre-granulosa cell-derived FGF23 binds to FGFR1 and activates at least, the p38 MAPK signaling pathway, thereby regulating the level of apoptosis during primordial follicle formation. This study re-emphasizes the importance of granulosa cell - oocyte mutual communication in modulating primordial follicle formation and supporting oocyte survival under physiological conditions.
Collapse
Affiliation(s)
- Zijian Zhu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Chen X, Zhang Q, Song T, Zhang W, Yang Y, Duan N, Cong F. Vitamin D deficiency triggers intrinsic apoptosis by impairing SPP1-dependent antiapoptotic signaling in chronic hematogenous osteomyelitis. Gene 2023; 870:147388. [PMID: 37024063 DOI: 10.1016/j.gene.2023.147388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
Chronic hematogenous osteomyelitis (CHOM) is a common bone disease characterized by the development of sequestra after bacterial infection. Emerging evidence has shown that vitamin D (VD) deficiency raises the risk of osteomyelitis, but the underlying mechanisms remain obscure. Here, we establish a CHOM model in VD diet-deficient mice by intravenous inoculation of Staphylococcus aureus. Whole-genome microarray analyses using osteoblast cells isolated from sequestra reveal significant downregulation of SPP1 (secreted phosphoprotein 1). Molecular basis investigations show that VD sufficiency activates the VDR/RXR (VD receptor/retinoid X receptor) heterodimer to recruit NCOA1 (nuclear receptor coactivator 1) and transactivate SPP1 in healthy osteoblast cells. Secreted SPP1 binds to the cell surface molecule CD40 to activate serine/threonine-protein kinase Akt1, which then phosphorylates forkhead box O3a (FOXO3a), blocking FOXO3a-mediated transcription. By contrast, VD deficiency impairs the NCOA1-VDR/RXR-mediated overexpression of SPP1, leading to the inactivation of Akt1 and the accumulation of FOXO3a. FOXO3a then upregulates the expression of the apoptotic genes BAX (Bcl2-associated X-protein), BID (BH3 interacting death domain), and BIM (Bcl2-interacting mediator of cell death), to induce apoptosis. Administration of the NCOA1 inhibitor gossypol to the CHOM mice also promotes the occurrence of sequestra. VD supplementation can reactivate the SPP1-dependent antiapoptotic signaling and improve the outcomes of CHOM. Collectively, our data reveal that VD deficiency promotes bone destruction in CHOM by the removal of SPP1-dependent antiapoptotic signaling.
Collapse
Affiliation(s)
- Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Qian Zhang
- The department of surgery room, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yan Yang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Fei Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
15
|
Vitamin D and Bone: A Story of Endocrine and Auto/Paracrine Action in Osteoblasts. Nutrients 2023; 15:nu15030480. [PMID: 36771187 PMCID: PMC9919888 DOI: 10.3390/nu15030480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its rigid structure, the bone is a dynamic organ, and is highly regulated by endocrine factors. One of the major bone regulatory hormones is vitamin D. Its renal metabolite 1α,25-OH2D3 has both direct and indirect effects on the maintenance of bone structure in health and disease. In this review, we describe the underlying processes that are directed by bone-forming cells, the osteoblasts. During the bone formation process, osteoblasts undergo different stages which play a central role in the signaling pathways that are activated via the vitamin D receptor. Vitamin D is involved in directing the osteoblasts towards proliferation or apoptosis, regulates their differentiation to bone matrix producing cells, and controls the subsequent mineralization of the bone matrix. The stage of differentiation/mineralization in osteoblasts is important for the vitamin D effect on gene transcription and the cellular response, and many genes are uniquely regulated either before or during mineralization. Moreover, osteoblasts contain the complete machinery to metabolize active 1α,25-OH2D3 to ensure a direct local effect. The enzyme 1α-hydroxylase (CYP27B1) that synthesizes the active 1α,25-OH2D3 metabolite is functional in osteoblasts, as well as the enzyme 24-hydroxylase (CYP24A1) that degrades 1α,25-OH2D3. This shows that in the past 100 years of vitamin D research, 1α,25-OH2D3 has evolved from an endocrine regulator into an autocrine/paracrine regulator of osteoblasts and bone formation.
Collapse
|
16
|
Silva ICJ, Lazaretti-Castro M. Vitamin D metabolism and extraskeletal outcomes: an update. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:748-755. [PMID: 36382764 PMCID: PMC10118817 DOI: 10.20945/2359-3997000000565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin D deficiency is a general health problem affecting individuals at all stages of life and on different continents. The musculoskeletal effects of vitamin D are well known. Its deficiency causes rickets, osteomalacia, and secondary hyperparathyroidism and increases the risk of fractures. Clinical and experimental evidence suggests that vitamin D performs multiple extraskeletal functions. Several tissues unrelated to calcium and phosphate metabolism express vitamin D receptor (VDR) and are directly or indirectly influenced by 1,25(OH)2D (calcitriol). Some also express the enzyme 1 alpha-hydroxylase (CYP27B1) and produce 1,25(OH)2D, inducing autocrine or paracrine effects. Among the pleiotropic effects of vitamin D are the regulation of cell proliferation and differentiation, hormone secretion, and immune function. In this review, we outline vitamin D physiology and the outcomes of recent large RCTs on its potential extraskeletal effects. Those studies exhibit a need for continued clinical analysis to elucidate whether vitamin D status can influence extraskeletal health. Longer longitudinal follow-up and standardized assays are crucial to better assess potential outcomes.
Collapse
|
17
|
Dong W, Postlethwaite BC, Wheller PA, Brand D, Jiao Y, Li W, Myers LK, Gu W. Beta-caryophyllene prevents the defects in trabecular bone caused by Vitamin D deficiency through pathways instated by increased expression of klotho. Bone Joint Res 2022; 11:528-540. [PMID: 35920089 PMCID: PMC9396919 DOI: 10.1302/2046-3758.118.bjr-2021-0392.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aims This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to BMD. The expression of klotho is also associated with bone markers. Conclusion These data indicate that BCP enhances the serum level of klotho, leading to improved bone properties and mineralization in an experimental mouse model. Cite this article: Bone Joint Res 2022;11(8):528–540.
Collapse
Affiliation(s)
- Wei Dong
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bradley C Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patricia A Wheller
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Linda K Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
18
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
19
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
20
|
Abstract
Osteocytes are dendritic cells in the mineralized bone matrix that descend from osteoblasts. They play critical roles in controlling bone mass through the production of sclerostin, an inhibitor of bone formation, and receptor activator of nuclear factor κ B ligand, an inducer of osteoblastic bone resorption. Osteocytes also govern phosphate homeostasis through the production of fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by increasing renal phosphate excretion and reducing the synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The production of FGF23 in osteocytes is regulated by various local and systemic factors. Phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C function as local negative regulators of FGF23 production in osteocytes, and their inactivation causes the overproduction of FGF23 and hypophosphatemia. Sclerostin has been suggested to regulate the production of FGF23, which may link the two functions of osteocytes, namely, the control of bone mass and regulation of phosphate homeostasis. Systemic regulators of FGF23 production include 1,25(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation. Therefore, the regulation of FGF23 in osteocytes is complex and multifactorial. Recent mouse studies have suggested that decreases in serum phosphate levels from youth to adulthood are caused by growth-related increases in FGF23 production by osteocytes, which are associated with the down-regulation of Phex and Dmp1.
Collapse
|
21
|
Castillo-Otí JM, Galván-Manso AI, Callejas-Herrero MR, Vara-González LA, Salas-Herrera F, Muñoz-Cacho P. Vitamin D Deficiency Is Significantly Associated with Retinopathy in Type 2 Diabetes Mellitus: A Case-Control Study. Nutrients 2021; 14:84. [PMID: 35010958 PMCID: PMC8746564 DOI: 10.3390/nu14010084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
AIM Results from meta-analyses point to an association between vitamin D deficiency and the onset of diabetic retinopathy (DR). The objectives of the present study were to evaluate the association of vitamin D for the development of DR and to determine the levels of vitamin D associated with a greater risk of DR. METHODS Between November 2013 and February 2015, we performed a case-control study based on a sample of patients with diabetes in Spain. The study population comprised all patients who had at least one evaluable electroretinogram and recorded levels of 25(OH)D. We collected a series of analytical data: 25(OH)D, 1,25(OH)2D, iPTH, calcium, albumin, and HbA1c. Glycemic control was evaluated on the basis of the mean HbA1c values for the period 2009-2014. A logistic regression analysis was performed to identify the variables associated with DR. RESULTS The final study sample comprised 385 patients, of which 30 (7.8%) had DR. Significant differences were found between patients with and without DR for age (69.54 vs. 73.43), HbA1c (6.68% vs. 7.29%), years since diagnosis of diabetes (10.9 vs. 14.17), level of 25(OH)D (20.80 vs. 15.50 ng/mL), level of 1,25(OH)2D (35.0 vs. 24.5 pg/mL), treatment with insulin (14.9% vs. 56.7%), hypertension (77.7% vs. 100%), cardiovascular events (33.2% vs. 53.3%), and kidney failure (22.0% vs. 43.3%). In the multivariate analysis, the factors identified as independent risk factors for DR were treatment of diabetes (p = 0.001) and 25(OH)D (p = 0.025). The high risk of DR in patients receiving insulin (OR 17.01) was also noteworthy. CONCLUSIONS Levels of 25(OH)D and treatment of diabetes were significantly associated with DR after adjusting for other risk factors. Combined levels of 25(OH)D < 16 ng/mL and levels of 1,25(OH)2D < 29 pg/mL are the variables that best predict the risk of having DR with respect to vitamin D deficiency. The risk factor with the strongest association was the treatment of type 2 diabetes mellitus. This was particularly true for patients receiving insulin, who had a greater risk of DR than those receiving insulin analogues. However, further studies are necessary before a causal relationship can be established.
Collapse
Affiliation(s)
- José M Castillo-Otí
- Unidad Vigilancia Epidemiológica e Intervención, 39120 Liencres, Spain
- Grupo de Investigación Salud Comunitaria IDIVAL, Primary Care Department, 39007 Santander, Spain
- Facultad de Enfermería, Universidad de Cantabria, 39008 Santander, Spain
| | | | | | | | | | - Pedro Muñoz-Cacho
- Grupo de Investigación Salud Comunitaria IDIVAL, Primary Care Department, 39007 Santander, Spain
- Unidad Docente de Medicina Familiar y Comunitaria, 39011 Santander, Spain
| |
Collapse
|
22
|
Verlinden L, Carmeliet G. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. JBMR Plus 2021; 5:e10577. [PMID: 34950832 PMCID: PMC8674772 DOI: 10.1002/jbm4.10577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
1,25(OH)2D3, the biologically active form of vitamin D3, is a major regulator of mineral and bone homeostasis and exerts its actions through binding to the vitamin D receptor (VDR), a ligand‐activated transcription factor that can directly modulate gene expression in vitamin D‐target tissues such as the intestine, kidney, and bone. Inactivating VDR mutations or vitamin D deficiency during development results in rickets, hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia, pointing to the critical role of 1,25(OH)2D3‐induced signaling in the maintenance of mineral homeostasis and skeletal health. 1,25(OH)2D3 is a potent stimulator of VDR‐mediated intestinal calcium absorption, thus increasing the availability of calcium required for proper bone mineralization. However, when intestinal calcium absorption is impaired, renal calcium reabsorption is increased and calcium is mobilized from the bone to preserve normocalcemia. Multiple cell types within bone express the VDR, thereby allowing 1,25(OH)2D3 to directly affect bone homeostasis. In this review, we will discuss different transgenic mouse models with either Vdr deletion or overexpression in chondrocytes, osteoblasts, osteocytes, or osteoclasts to delineate the direct effects of 1,25(OH)2D3 on bone homeostasis. We will address the bone cell type–specific effects of 1,25(OH)2D3 in conditions of a positive calcium balance, where the amount of (re)absorbed calcium equals or exceeds fecal and renal calcium losses, as well as during a negative calcium balance, due to selective Vdr knockdown in the intestine or triggered by a low calcium diet. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| |
Collapse
|