1
|
Zhang Y, Cong Y, Du J, Guo D, Huang J, Pan J, Liang Y, Zhang J, Ye Z, Liu Y, Zhou Y. Lif-deficiency promote systemic Iron metabolism disorders and increases the susceptibility of osteoblasts to ferroptosis. Bone 2024; 189:117266. [PMID: 39341481 DOI: 10.1016/j.bone.2024.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Leukemia inhibitory factor (LIF) is a multifunctional cytokine that plays a crucial role in various biological processes. However, LIF involvement in iron metabolism remains almost unexplored. This study aimed to explore the impact of LIF on systemic iron transportation and its potential role in ferroptosis in osteoblasts. We observed that the Lif-deficient (Lif-/-) mice is characterized by a reduction in bone mass and a decrease in bone mineral density compared with wild-type (WT) mice. Energy-dispersive X-ray spectroscopy revealed a marked increase in iron content on the surface of femurs from Lif-/- mice. Meanwhile, iron stores test lower iron levels in the spleens and higher levels in the femurs of Lif-/- mice. Besides, Lif-/- mice display increased levels of serum iron, total iron-binding capacity, unsaturated iron-binding capacity, and transferrin saturation and serum ferritin relative to WT mice. Hepcidin mRNA expression reduction in the liver of Lif-/- mice. It also holds true in the AML-12 hepatocyte cell line after Lif-knockdown. Immunohistochemistry and RT-PCR revealed elevated ferroportin (FPN) in duodenal cells of Lif-/- mice. Lif-deficiency decreases SLC7A11 levels in osteoblasts. In addition, overexpression of LIF downregulates CD71, DCYTB, and DMT1, thereby reducing iron uptake in iron-overloaded cells. Femur immunohistochemistry (IHC) revealed increased ACSL4 and decreased GPX4 and SLC7A11, indicating an increase in ferroptosis of osteoblasts in Lif-/- mice. Whole-transcriptome sequencing showed gene expression changes after Lif-knockdown, exhibiting a negative correlation with genes involved in long-chain fatty acid transport, mitochondrial organization, and the p38 MAPK signaling pathway. These results demonstrate that Lif-deficiency alter systemic iron metabolism and increases the susceptibility of osteoblasts to ferroptosis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaqi Cong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Juan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Junchen Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Youde Liang
- The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi Liu
- Department of Stomatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435002, China.
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ou Y, Fan L, Wang X, Xia H, Cheng M, Huang J, Liang Y, Wang Y, Zhou Y. Leukemia inhibitory factor protects against experimental periodontitis through immuno-modulations of both macrophages and periodontal ligament fibroblasts. J Periodontol 2024; 95:1073-1085. [PMID: 38488753 DOI: 10.1002/jper.23-0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 12/05/2024]
Abstract
BACKGROUND To explore the role of leukemia inhibitory factor (LIF) in periodontitis via in vivo and in vitro experiments. METHODS The second upper molar of LIF knockout mice and their wild-type littermates were ligated for 8 days. Micro-computed tomography (micro-CT), histological analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The expression levels of proinflammatory cytokines were examined in mouse bone marrow derived macrophages and human periodontal ligament fibroblasts (HPDLFs) after lipopolysaccharide (LPS) treatment. RESULTS LIF deficiency promoted alveolar bone loss, inflammatory cells infiltration, osteoclasts formation and collagen fiber degradation in ligature-induced mouse, along with higher expressions of proinflammatory cytokines, including interleukin-6 (IL6), IL-1β (IL1B), tumor necrosis factor-α (TNFA), matrix metalloproteinase 13 (MMP13), and RANKL/OPG ratio. Additionally, LIF deletion led to higher expression levels of these proinflammatory cytokines in mouse bone marrow-derived macrophages from both femur and alveolar bone and HPDLFs when treated with LPS. Administration of recombined LIF attenuated TNFA, IL1B, and RANKL/OPG ratio in HPDLFs. CONCLUSIONS These findings indicate that LIF deficiency promotes the progress of periodontitis via modulating immuno-inflammatory responses of macrophages and periodontal ligament fibroblasts, and the application of LIF may be an adjunctive treatment for periodontitis to resolute inflammation.
Collapse
Affiliation(s)
- Yanjing Ou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
- Postdoctoral Workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| | - Le Fan
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiaoqi Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Mengwen Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Youde Liang
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, Guangdong, PR China
| | - Yining Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
3
|
Alesutan I, Razazian M, Luong TTD, Estepa M, Pitigala L, Henze LA, Obereigner J, Mitter G, Zickler D, Schuchardt M, Deisl C, Makridakis M, Gollmann-Tepeköylü C, Pasch A, Cejka D, Suessner S, Antlanger M, Bielesz B, Müller M, Vlahou A, Holfeld J, Eckardt KU, Voelkl J. Augmentative effects of leukemia inhibitory factor reveal a critical role for TYK2 signaling in vascular calcification. Kidney Int 2024; 106:611-624. [PMID: 39084258 DOI: 10.1016/j.kint.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Medial vascular calcification in chronic kidney disease (CKD) involves pro-inflammatory pathways induced by hyperphosphatemia. Several interleukin 6 family members have been associated with pro-calcific effects in vascular smooth muscle cells (VSMCs) and are considered as therapeutic targets. Therefore, we investigated the role of leukemia inhibitory factor (LIF) during VSMC calcification. LIF expression was found to be increased following phosphate exposure of VSMCs. LIF supplementation aggravated, while silencing of endogenous LIF or LIF receptor (LIFR) ameliorated the pro-calcific effects of phosphate in VSMCs. The soluble LIFR mediated antagonistic effects towards LIF and reduced VSMC calcification. Mechanistically, LIF induced phosphorylation of the non-receptor tyrosine-protein kinase 2 (TYK2) and signal transducer and activator of transcription-3 (STAT3) in VSMCs. TYK2 inhibition by deucravacitinib, a selective, allosteric oral immunosuppressant used in psoriasis treatment, not only blunted the effects of LIF, but also interfered with the pro-calcific effects induced by phosphate. Conversely, TYK2 overexpression aggravated VSMC calcification. Ex vivo calcification of mouse aortic rings was ameliorated by Tyk2 pharmacological inhibition and genetic deficiency. Cholecalciferol-induced vascular calcification in mice was improved by Tyk2 inhibition and in the Tyk2-deficient mice. Similarly, calcification was ameliorated in Abcc6/Tyk2-deficient mice after adenine/high phosphorus-induced CKD. Thus, our observations indicate a role for LIF in CKD-associated vascular calcification. Hence, the effects of LIF identify a central pro-calcific role of TYK2 signaling, which may be a future target to reduce the burden of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Cells, Cultured
- Disease Models, Animal
- Leukemia Inhibitory Factor/metabolism
- Leukemia Inhibitory Factor/genetics
- Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism
- Leukemia Inhibitory Factor Receptor alpha Subunit/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphates/metabolism
- Phosphorylation
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- TYK2 Kinase/metabolism
- TYK2 Kinase/genetics
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/etiology
- Vascular Calcification/genetics
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Lakmi Pitigala
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Laura A Henze
- Department of Internal Medicine and Cardiology, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Obereigner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Gregor Mitter
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Faculty of Medicine, Medical School Berlin, Berlin, Germany
| | - Christine Deisl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Calciscon AG, Biel, Switzerland
| | - Daniel Cejka
- Internal Medicine III-Nephrology, Transplantation Medicine, Rheumatology, Ordensklinikum Linz, Linz, Austria
| | | | - Marlies Antlanger
- Department of Internal Medicine 2, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | - Bernhard Bielesz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Johannes Holfeld
- Department for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
5
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Guo D, Dong W, Cong Y, Liu Y, Liang Y, Ye Z, Zhang J, Zhou Y. LIF Aggravates Pulpitis by Promoting Inflammatory Response in Macrophages. Inflammation 2024; 47:307-322. [PMID: 37782452 DOI: 10.1007/s10753-023-01910-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.
Collapse
Affiliation(s)
- Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaqi Cong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi Liu
- Department of Stomatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Youde Liang
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
8
|
Isojima T, Walker EC, Poulton IJ, McGregor NE, Wicks IP, Gooi JH, Martin TJ, Sims NA. G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes. J Bone Miner Res 2022; 37:1876-1890. [PMID: 35856245 DOI: 10.1002/jbmr.4654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Ian P Wicks
- Walter and Eliza Hall Institute, Parkville, Australia
| | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
9
|
Borggaard XG, Nielsen MH, Delaisse JM, Andreasen CM, Andersen TL. Spatial Organization of Osteoclastic Coupling Factors and Their Receptors at Human Bone Remodeling Sites. Front Mol Biosci 2022; 9:896841. [PMID: 35775083 PMCID: PMC9239410 DOI: 10.3389/fmolb.2022.896841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The strictly regulated bone remodeling process ensures that osteoblastic bone formation is coupled to osteoclastic bone resorption. This coupling is regulated by a panel of coupling factors, including clastokines promoting the recruitment, expansion, and differentiation of osteoprogenitor cells within the eroded cavity. The osteoprogenitor cells on eroded surfaces are called reversal cells. They are intermixed with osteoclasts and become bone-forming osteoblast when reaching a critical density and maturity. Several coupling factors have been proposed in the literature, but their effects and expression pattern vary between studies depending on species and experimental setup. In this study, we investigated the mRNA levels of proposed secreted and membrane-bound coupling factors and their receptors in cortical bone remodeling events within the femur of healthy adolescent human controls using high-sensitivity RNA in situ hybridization. Of the proposed coupling factors, human osteoclasts showed mRNA-presence of LIF, PDGFB, SEMA4D, but no presence of EFNB2, and OSM. On the other hand, the osteoblastic reversal cells proximate to osteoclasts presented with LIFR, PDGFRA and PLXNB1, but not PDGFRB, which are all known receptors of the proposed coupling factors. Although EFNB2 was not present in mature osteoclasts, the mRNA of the ligand-receptor pair EFNB2:EPHB4 were abundant near the central blood vessels within intracortical pores with active remodeling. EPHB4 and SEMA4D were also abundant in mature bone-forming osteoblasts. This study highlights that especially LIF:LIFR, PDGFB:PDGFRA, SEMA4D:PLXNB1 may play a critical role in the osteoclast-osteoblast coupling in human remodeling events, as they are expressed within the critical cells.
Collapse
Affiliation(s)
- Xenia G. Borggaard
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
- *Correspondence: Xenia G. Borggaard, orcid.org/0000-0002-4922-2478 Thomas L. Andersen,
| | - Malene H. Nielsen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jean-Marie Delaisse
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Christina M. Andreasen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Research Unit of Pathology, Department of Clinical Research and Department of Molecular Medicine, Molecular Bone Histology Team, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Xenia G. Borggaard, orcid.org/0000-0002-4922-2478 Thomas L. Andersen,
| |
Collapse
|
10
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
McGregor NE, Walker EC, Chan AS, Poulton IJ, Cho EHJ, Windahl SH, Sims NA. STAT3 Hyperactivation Due to SOCS3 Deletion in Murine Osteocytes Accentuates Responses to Exercise- and Load-Induced Bone Formation. J Bone Miner Res 2022; 37:547-558. [PMID: 34870348 DOI: 10.1002/jbmr.4484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/07/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Cortical bone develops and changes in response to mechanical load, which is sensed by bone-embedded osteocytes. The bone formation response to load depends on STAT3 intracellular signals, which are upregulated after loading and are subject to negative feedback from Suppressor of Cytokine Signaling 3 (Socs3). Mice with Dmp1Cre-targeted knockout of Socs3 have elevated STAT3 signaling in osteocytes and display delayed cortical bone maturation characterized by impaired accrual of high-density lamellar bone. This study aimed to determine whether these mice exhibit an altered response to mechanical load. The approach used was to test both treadmill running and tibial compression in female Dmp1Cre.Socs3f/f mice. Treadmill running for 5 days per week from 6 to 11 weeks of age did not change cortical bone mass in control mice, but further delayed cortical bone maturation in Dmp1Cre.Socs3f/f mice; accrual of high-density bone was suppressed, and cortical thickness was less than in genetically-matched sedentary controls. When strain-matched anabolic tibial loading was tested, both control and Dmp1Cre.Socs3f/f mice exhibited a significantly greater cortical thickness and periosteal perimeter in loaded tibia compared with the contralateral non-loaded bone. At the site of greatest compressive strain, the loaded Dmp1Cre.Socs3f/f tibias showed a significantly greater response than controls, indicated by a greater increase in cortical thickness. This was due to a greater bone formation response on both periosteal and endocortical surfaces, including formation of abundant woven bone on the periosteum. This suggests a greater sensitivity to mechanical load in Dmp1Cre.Socs3f/f bone. In summary, mice with targeted SOCS3 deletion and immature cortical bone have an exaggerated response to both physiological and experimental mechanical loads. We conclude that there is an optimal level of osteocytic response to mechanical load required for cortical bone maturation and that load-induced bone formation may be increased by augmenting STAT3 signaling within osteocytes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Audrey Sm Chan
- Centre for Muscle Research, The University of Melbourne, Melbourne, Australia
| | | | - Ellie H-J Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Australia
| | - Sara H Windahl
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| |
Collapse
|
12
|
Zhao X, Ma L, Guo H, Wang J, Zhang S, Yang X, Yang L, Jin Q. Osteoclasts secrete leukemia inhibitory factor to promote abnormal bone remodeling of subchondral bone in osteoarthritis. BMC Musculoskelet Disord 2022; 23:87. [PMID: 35078447 PMCID: PMC8790929 DOI: 10.1186/s12891-021-04886-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic degenerative joint disease. At present, there is no effective treatment to check the progression of osteoarthritis. Osteochondral units are considered to be one of the most important structures affecting the occurrence and development of osteoarthritis. Osteoclasts mediate an increase in abnormal bone remodeling in subchondral bone in the early stage of osteoarthritis. Here, alendronate (ALN) that inhibit osteoclasts was used to study the regulatory effect of osteoclast-derived leukemia inhibitory factor (LIF) on early abnormal bone remodeling. METHODS This study involved 10-week-old wild-type female C57BL/6 mice and female SOST knockout (KO) mice that were divided into the sham, vehicle, ALN, and SOST KO groups. RESULTS The expression of LIF was found to decrease by inhibiting osteoclasts, and the histological OA score suggested that the degeneration of articular cartilage was attenuated. Additionally, micro-CT showed that osteoclasts inhibited in the early stage of OA could maintain the microstructure of the subchondral bone. The parameters of bone volume fraction (BV/TV), subchondral bone plate thickness (SBP.Th), and trabecular separation (Tb.Sp) of the treated group were better than those of the vehicle group. CONCLUSIONS These results suggested that downregulating the expression of sclerostin in osteocytes by secreting LIF from osteoclasts, activate the Wnt/β-catenin signaling pathway, and promote abnormal bone remodeling in OA. Therefore, clastokine LIF might be a potential molecular target to promote abnormal bone remodeling in early OA.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Long Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Haohui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Jian Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Xiaochun Yang
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China
| | - Lvlin Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, China.
| |
Collapse
|
13
|
Frondelli MJ, Mather ML, Levison SW. Oligodendrocyte progenitor proliferation is disinhibited following traumatic brain injury in leukemia inhibitory factor heterozygous mice. J Neurosci Res 2021; 100:578-597. [PMID: 34811802 DOI: 10.1002/jnr.24984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant problem that affects over 800,000 children each year. As cell proliferation is disturbed by injury and required for normal brain development, we investigated how a pediatric closed head injury (CHI) would affect the progenitors of the subventricular zone (SVZ). Additionally, we evaluated the contribution of leukemia inhibitory factor (LIF) using germline LIF heterozygous mice (LIF Het), as LIF is an injury-induced cytokine, known to influence neurogenesis and gliogenesis. CHIs were performed on P20 LIF Het and wild-type (WT) mice. Ki-67 immunostaining and stereology revealed that cell proliferation increased ~250% in injured LIF Het mice compared to the 30% increase observed in injured WT mice at 48-hr post-CHI. OLIG2+ cell proliferation increased in the SVZ and white matter of LIF Het injured mice at 48-hr recovery. Using an 8-color flow cytometry panel, the proliferation of three distinct multipotential progenitors and early oligodendrocyte progenitor cell proliferation was significantly increased in LIF Het injured mice compared to WT injured mice. Supporting its cytostatic function, LIF decreased neurosphere progenitor and oligodendrocyte progenitor cell proliferation compared to controls. In highly enriched mouse oligodendrocyte progenitor cell cultures, LIF increased phospho-protein kinase B after 20 min and increased phospho-S6 ribosomal protein at 20 and 40 min of exposure, which are downstream targets of the mammalian target of rapamycin pathway. Altogether, our data provide new insights into the regulatory role of LIF in suppressing neural progenitor cell proliferation and, in particular, oligodendrocyte progenitor cell proliferation after a mild TBI.
Collapse
Affiliation(s)
- Michelle J Frondelli
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
15
|
Yadav PS, Feng S, Cong Q, Kim H, Liu Y, Yang Y. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2021; 118:e2020100118. [PMID: 34172578 PMCID: PMC8256036 DOI: 10.1073/pnas.2020100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/β-catenin signaling. Restoration of Wnt/β-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/β-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/β-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/β-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Hanjun Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115;
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
16
|
Fan L, Ou YJ, Zhu YX, Liang YD, Zhou Y, Wang YN. Lif Deficiency Leads to Iron Transportation Dysfunction in Ameloblasts. J Dent Res 2021; 101:63-72. [PMID: 34034544 DOI: 10.1177/00220345211011986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a member of the interleukin 6 family of cytokines, is involved in skeletal metabolism, blastocyst implantation, and stem cell pluripotency maintenance. However, the role of LIF in tooth development needs to be elucidated. The aim of the present study was to investigate the effect of Lif deficiency on tooth development and to elucidate the functions of Lif during tooth development and the underlying mechanisms. First, it was found that the incisors of Lif-knockout mice had a much whiter color than those of wild-type mice. Although there were no structural abnormalities or defective mineralization according to scanning electronic microscopy and computed tomography analysis, 3-dimensional images showed that the length of incisors was shorter in Lif-/- mice. Microhardness and acid resistance assays showed that the hardness and acid resistance of the enamel surface of Lif-/- mice were decreased compared to those of wild-type mice. In Lif-/- mice, whose general iron status was comparable to that of the control mice, the iron content of the incisors was significantly reduced, as confirmed by energy-dispersive X-ray spectroscopy (EDS) and Prussian blue staining. Histological staining showed that the cell length of maturation-stage ameloblasts was shorter in Lif-/- mice. Likewise, decreased expression of Tfrc and Slc40a1, both of which are crucial proteins for iron transportation, was observed in Lif-/- mice and Lif-knockdown ameloblast lineage cell lines, according to quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Moreover, the upregulation of Tfrc and Slc40a1 induced by Lif stimulation was blocked by Stattic, a signal transducer and activator of transcription 3 (Stat3) signaling inhibitor. These results suggest that Lif deficiency inhibits iron transportation in the maturation-stage ameloblasts, and Lif modulates expression of Tfrc and Slc40a1 through the Stat3 signaling pathway during enamel development.
Collapse
Affiliation(s)
- L Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y J Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Y X Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y D Liang
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Y Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y N Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Kespohl B, Schumertl T, Bertrand J, Lokau J, Garbers C. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 2021; 60:18-27. [PMID: 33940443 DOI: 10.1016/j.cytogfr.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
18
|
Lee S, Liu P, Ahmad M, Tuckermann JP. Leukemia inhibitory factor treatment attenuates the detrimental effects of glucocorticoids on bone in mice. Bone 2021; 145:115843. [PMID: 33429108 DOI: 10.1016/j.bone.2021.115843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GCs) are widely used drugs for the treatment of inflammatory and autoimmune diseases. However, a severe side effect induced by long-term GC therapy is osteoporosis. Leukemia inhibitory factor (LIF) - a glycoprotein 130 (gp130) dependent cytokine and member of the interleukin-6 cytokine family - is an activator protein 1 (AP-1) target gene that may be involved in one of the mechanisms underlying GC-induced bone loss. Indeed, we previously reported that the mRNA expression level of LIF was enhanced upon osteogenic differentiation, but was significantly decreased in GC-treated osteoblasts. In this study, we show that in vitro LIF treatment rescues the decreased early osteogenic differentiation and mineralization of GC-treated osteoblasts. Furthermore, we also demonstrate that in vivo LIF treatment protects against GC-mediated trabecular bone loss by decreasing the loss of both trabecular bone formation and osteoblast numbers. This protection appears to be conferred by LIF rescuing GC decreased activity of Stat3, MAPK, and Akt signaling pathways. Thus, the specific targeting of LIF signaling may represent a new therapeutic strategy to prevent GC-induced trabecular bone loss.
Collapse
Affiliation(s)
- Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Peng Liu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; Clinics of the Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
19
|
Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med 2021; 47:22. [PMID: 33448319 PMCID: PMC7846423 DOI: 10.3892/ijmm.2021.4855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate whether dihydroartemisinin (DHA) alleviates osteoarthritis (OA) in a mouse model of OA. Ten-week-old female C57BL/6j mice were used to establish OA models by anterior cruciate ligament transection (ACLT) and ovariectomized (OVX). DHA was then used to treat the OA in the ACLT and OVX mice. Safranin O-fast green staining and Osteoarthritis Research Society International (OARSI)-modified Mankin scores were used to grade articular cartilage degeneration. Expression of metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF) in the articular cartilage and leukemia inhibitory factor (LIF), sclerostin, and β-catenin in the subchondral bone were analyzed by immunohistochemistry. Expression of RANKL and CD31 were detected by immunofluorescence. Micro-computed tomography was used to ascertain alterations in the microarchitecture of the subchondral bone. The results demonstrated that DHA decreased MMP-13 and VEGF expression in the articular cartilage. DHA decreased OARSI scores and reduced articular cartilage degeneration. In addition, DHA reduced abnormal subchondral bone remodeling, as demonstrated by a reduction in trabecular separation (Tb.Sp), increased bone volume fractions (BV/TV), as well as bone mineral densities (BMD) compared with the ACLT+vehicle group and the OVX+vehicle group. Furthermore, DHA decreased the inhibition of sclerostin through reduction of LIF secretion by osteoclasts and, hence, attenuated aberrant bone remodeling and inhibited angiogenesis in subchondral bone, further reducing the progression of OA. The present study demonstrated that DHA attenuated OA by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone, which may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Long Ma
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Zhao
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yibin Liu
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaochun Yang
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
20
|
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021; 39:19-26. [PMID: 33079279 DOI: 10.1007/s00774-020-01162-6] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL-RANKL receptor interaction. MATERIALS AND METHODS In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG. RESULTS Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell proliferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF. CONCLUSIONS Bone mass loss depends on the RANK-RANKL-OPG system, which is a major regulatory system of osteoclast differentiation induction, activation, and survival.
Collapse
Affiliation(s)
- Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan.
| | - Masanori Koide
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuko Nakamichi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuriko Furuya
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Chie Fukuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Eisuke Tsuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
21
|
Du J, Yang J, He Z, Cui J, Yang Y, Xu M, Qu X, Zhao N, Yan M, Li H, Yu Z. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front Mol Biosci 2020; 7:585056. [PMID: 33324677 PMCID: PMC7726425 DOI: 10.3389/fmolb.2020.585056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Bone remodeling is affected by mechanical stimulation. Osteocytes are the primary mechanical load-sensing cells in the bone, and can regulate osteoblast and osteoclast activity, thus playing a key role in bone remodeling. Further, bone mass during exercise is also regulated by Leukemia inhibitory factor (LIF). This study aimed to investigate the role of LIF in the mechanical response of the bone, in vivo and in vitro, and to elucidate the mechanism by which osteocytes secrete LIF to regulate osteoblasts and osteoclasts. Methods A tail-suspension (TS) mouse model was used in this study to mimic muscular disuse. ELISA and immunohistochemistry were performed to detect bone and serum LIF levels. Micro-computed tomography (CT) of the mouse femurs was performed to measure three-dimensional bone structure parameters. Fluid shear stress (FSS) and microgravity simulation experiments were performed to study mechanical stress-induced LIF secretion and its resultant effects. Bone marrow macrophages (BMMs) and bone mesenchymal stem cells (BMSCs) were cultured to induce in vitro osteoclastogenesis and osteogenesis, respectively. Results Micro-CT results showed that TS mice exhibited deteriorated bone microstructure and lower serum LIF expression. LIF secretion by osteocytes was promoted by FSS and was repressed in a microgravity environment. Further experiments showed that LIF could elevate the tartrate-resistant acid phosphatase activity in BMM-derived osteoclasts through the STAT3 signaling pathway. LIF also enhanced alkaline phosphatase staining and osteogenesis-related gene expression during the osteogenic differentiation of BMSCs. Conclusion Mechanical loading affected LIF expression levels in osteocytes, thereby altering the balance between osteoclastogenesis and osteogenesis.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancheng Yang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Damerau A, Gaber T, Ohrndorf S, Hoff P. JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration. Int J Mol Sci 2020; 21:E9004. [PMID: 33256266 PMCID: PMC7729940 DOI: 10.3390/ijms21239004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah Ohrndorf
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
| | - Paula Hoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Endokrinologikum Berlin am Gendarmenmarkt, 10117 Berlin, Germany
| |
Collapse
|
23
|
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med 2020; 52:1185-1197. [PMID: 32788655 PMCID: PMC8080635 DOI: 10.1038/s12276-020-0445-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Bone growth and the maintenance of bone structure are controlled by multiple endocrine and paracrine factors, including cytokines expressed locally within the bone microenvironment and those that are elevated, both locally and systemically, under inflammatory conditions. This review focuses on those bone-active cytokines that initiate JAK–STAT signaling, and outlines the discoveries made from studying skeletal defects caused by induced or spontaneous modifications in this pathway. Specifically, this review describes defects in JAK1, STAT3, and SOCS3 signaling in mouse models and in humans, including mutations designed to modify these pathways downstream of the gp130 coreceptor. It is shown that osteoclast formation is generally stimulated indirectly by these pathways through JAK1 and STAT3 actions in inflammatory and other accessory cells, including osteoblasts. In addition, in bone remodeling, osteoblast differentiation is increased secondary to stimulated osteoclast formation through an IL-6-dependent pathway. In growth plate chondrocytes, STAT3 signaling promotes the normal differentiation process that leads to bone lengthening. Within the osteoblast lineage, STAT3 signaling promotes bone formation in normal physiology and in response to mechanical loading through direct signaling in osteocytes. This activity, particularly that of the IL-6/gp130 family of cytokines, must be suppressed by SOCS3 for the normal formation of cortical bone. Maintaining normal bone structure and strength depends on a group of signaling proteins called cytokines that bind to receptor molecules on cell surfaces. Natalie Sims at St. Vincent’s Institute of Medical Research and The University of Melbourne in Australia reviews the role of cytokines in a specific signaling pathway in bone development and disease. Two of the proteins in this pathway respond to cytokine activity, whereas the third inhibits the cytokines’ effects. Studies in mice and humans have identified links between specific bone defects and spontaneous or experimentally induced mutations in the genes that code for the three proteins. The review covers the significance of recent findings to several types of cells that form new bone, degrade bone as part of normal bone turnover, and sustain the structure of bone and cartilage.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 2020; 10:13751. [PMID: 32792620 PMCID: PMC7426814 DOI: 10.1038/s41598-020-70817-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/β-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of β-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/−) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/− mice exhibited a decreased number of β-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.
Collapse
|
25
|
Walker EC, Truong K, McGregor NE, Poulton IJ, Isojima T, Gooi JH, Martin TJ, Sims NA. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. eLife 2020; 9:e56666. [PMID: 32458800 PMCID: PMC7253175 DOI: 10.7554/elife.56666] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Bone strength is determined by its dense cortical shell, generated by unknown mechanisms. Here we use the Dmp1Cre:Socs3f/f mouse, with delayed cortical bone consolidation, to characterise cortical maturation and identify control signals. We show that cortical maturation requires a reduction in cortical porosity, and a transition from low to high density bone, which continues even after cortical shape is established. Both processes were delayed in Dmp1Cre:Socs3f/f mice. SOCS3 (suppressor of cytokine signalling 3) inhibits signalling by leptin, G-CSF, and IL-6 family cytokines (gp130). In Dmp1Cre:Socs3f/f bone, STAT3 phosphorylation was prolonged in response to gp130-signalling cytokines, but not G-CSF or leptin. Deletion of gp130 in Dmp1Cre:Socs3f/f mice suppressed STAT3 phosphorylation in osteocytes and osteoclastic resorption within cortical bone, leading to rescue of the corticalisation defect, and restoration of compromised bone strength. We conclude that cortical bone development includes both pore closure and accumulation of high density bone, and that these processes require suppression of gp130-STAT3 signalling in osteocytes.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Kim Truong
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | | | | | - Tsuyoshi Isojima
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Pediatrics, Teikyo University School of MedicineTokyoJapan
| | - Jonathan H Gooi
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneParkvilleAustralia
| | - T John Martin
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| | - Natalie A Sims
- St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- University of Melbourne, Department of Medicine at St. Vincent’s HospitalFitzroyAustralia
| |
Collapse
|
26
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
27
|
Zhang J, Liu W, Zou C, Zhao Z, Lai Y, Shi Z, Xie X, Huang G, Wang Y, Zhang X, Fan Z, Su Q, Yin J, Shen J. Targeting Super-Enhancer-Associated Oncogenes in Osteosarcoma with THZ2, a Covalent CDK7 Inhibitor. Clin Cancer Res 2020; 26:2681-2692. [PMID: 31937612 DOI: 10.1158/1078-0432.ccr-19-1418] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/24/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignancy of cancer cells depends on the active transcription of tumor-associated genes. Recently, unique clusters of transcriptional enhancers, termed super-enhancers, have been reported to drive the expression of genes that define cell identity. In this study, we characterized specific super-enhancer-associated genes of osteosarcoma, and explored their potential therapeutic value. EXPERIMENTAL DESIGN Super-enhancer regions were characterized through chromatin immunoprecipitation sequencing (ChIP-seq). RT-qPCR was used to detect the mRNA level of CDK7 in patient specimens and confirm the regulation of sensitive oncogenes by THZ2. The phosphorylation of the initiation-associated sites of RNA polymerase II (RNAPII) C-terminal repeat domain (CTD) was measured using Western blotting. Microarray expression analysis was conducted to explore transcriptional changes after THZ2 treatment. A variety of in vitro and in vivo assays were performed to assess the effects of CDK7 knockdown and THZ2 treatment in osteosarcoma. RESULTS Super-enhancers were associated with oncogenic transcripts and key genes encoding cell-type-specific transcription factors in osteosarcoma. Knockdown of transcription factor CDK7 reduced phosphorylation of the RNAPII CTD, and suppressed the growth and metastasis of osteosarcoma. A new specific CDK7 inhibitor, THZ2, suppressed cancer biology by inhibition of transcriptional activity. Compared with typical enhancers, osteosarcoma super-enhancer-associated oncogenes were particular vulnerable to this transcriptional disruption. THZ2 exhibited a powerful anti-osteosarcoma effect in vitro and in vivo. CONCLUSIONS Super-enhancer-associated genes contribute to the malignant potential of osteosarcoma, and selectively targeting super-enhancer-associated oncogenes with the specific CDK7 inhibitor THZ2 might be a promising therapeutic strategy for patients with osteosarcoma.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanying Lai
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zepei Fan
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Liu X, D'Cruz AA, Hansen J, Croker BA, Lawlor KE, Sims NA, Wicks IP. Deleting Suppressor of Cytokine Signaling-3 in chondrocytes reduces bone growth by disrupting mitogen-activated protein kinase signaling. Osteoarthritis Cartilage 2019; 27:1557-1563. [PMID: 31176017 DOI: 10.1016/j.joca.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the impact of deleting Suppressor of Cytokine Signaling (SOCS)-3 (SOCS3) in chondrocytes during murine skeletal development. METHOD Mice with a conditional Socs3 allele (Socs3fl/fl) were crossed with a transgenic mouse expressing Cre recombinase under the control of the type II collagen promoter (Col2a1) to generate Socs3Δ/Δcol2 mice. Skeletal growth was analyzed over the lifespan of Socs3Δ/Δcol2 mice and controls by detailed histomorphology. Bone size and cortical bone development was evaluated by micro-computed tomography (micro-CT). Growth plate (GP) zone width, chondrocyte proliferation and apoptosis were assessed by immunofluorescence staining for Ki67 and TUNEL. Fibroblast growth factor receptor-3 (FGFR3) signaling in the GP was assessed by immunohistochemistry, while the effect of SOCS3 overexpression on FGFR3-driven pMAPK signaling in HEK293T cells was evaluated by Western blot. RESULTS Socs3Δ/Δcol2 mice of both sexes were consistently smaller compared to littermate controls throughout life. This phenotype was due to reduced long bone size, poor cortical bone development, reduced Ki67+ proliferative chondrocytes and decreased proliferative zone (PZ) width in the GP. Expression of pMAPK, but not pSTAT3, was increased in the GPs of Socs3Δ/Δcol2 mice relative to littermate controls. Overexpression of FGFR3 in HEK293T cells increased Fibroblast Growth Factor 18 (FGF18)-dependent Mitogen-activated protein kinase (MAPK) phosphorylation, while concomitant expression of SOCS3 reduced FGFR3 expression and abrogated MAPK signaling. CONCLUSION Our results suggest a potential role for SOCS3 in GP chondrocyte proliferation by regulating FGFR3-dependent MAPK signaling in response to FGF18.
Collapse
Affiliation(s)
- X Liu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; University of Queensland, Diamantina Institute, Brisbane, Queensland, 4102, Australia
| | - A A D'Cruz
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - J Hansen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - B A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - K E Lawlor
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - N A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia; Department of Medicine at St Vincent's Hospital, The University of Melbourne, 3065, Australia
| | - I P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
29
|
Blank M, Sims NA. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr Osteoporos Rep 2019; 17:270-280. [PMID: 31401710 DOI: 10.1007/s11914-019-00524-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. RECENT FINDINGS Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitution, and collagen compaction, progress more rapidly. Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities.
Collapse
Affiliation(s)
- Martha Blank
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
30
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
31
|
McGregor NE, Murat M, Elango J, Poulton IJ, Walker EC, Crimeen-Irwin B, Ho PWM, Gooi JH, Martin TJ, Sims NA. IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem 2019; 294:7850-7863. [PMID: 30923130 DOI: 10.1074/jbc.ra119.008074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Interleukin 6 (IL-6) supports development of bone-resorbing osteoclasts by acting early in the osteoblast lineage via membrane-bound (cis) or soluble (trans) receptors. Here, we investigated how IL-6 signals and modifies gene expression in differentiated osteoblasts and osteocytes and determined whether these activities can promote bone formation or support osteoclastogenesis. Moreover, we used a genetically altered mouse with circulating levels of the pharmacological IL-6 trans-signaling inhibitor sgp130-Fc to determine whether IL-6 trans-signaling is required for normal bone growth and remodeling. We found that IL-6 increases suppressor of cytokine signaling 3 (Socs3) and CCAAT enhancer-binding protein δ (Cebpd) mRNA levels and promotes signal transducer and activator of transcription 3 (STAT3) phosphorylation by both cis- and trans-signaling in cultured osteocytes. In contrast, RANKL (Tnfsf11) mRNA levels were elevated only by trans-signaling. Furthermore, we observed soluble IL-6 receptor release and ADAM metallopeptidase domain 17 (ADAM17) sheddase expression by osteocytes. Despite the observation that IL-6 cis-signaling occurs, IL-6 stimulated bone formation in vivo only via trans-signaling. Although IL-6 stimulated RANKL (Tnfsf11) mRNA in osteocytes, these cells did not support osteoclast formation in response to IL-6 alone; binucleated TRAP+ cells formed, and only in response to trans-signaling. Finally, pharmacological, sgp130-Fc-mediated inhibition of IL-6 trans-signaling did not impair bone growth or remodeling unless mice had circulating sgp130-Fc levels > 10 μg/ml. At those levels, osteopenia and impaired bone growth occurred, reducing bone strength. We conclude that high sgp130-Fc levels may have detrimental off-target effects on the skeleton.
Collapse
Affiliation(s)
- Narelle E McGregor
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Melissa Murat
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jeevithan Elango
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ingrid J Poulton
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Emma C Walker
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Blessing Crimeen-Irwin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Patricia W M Ho
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Jonathan H Gooi
- the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and.,the Structural Biology Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - T John Martin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| | - Natalie A Sims
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia, .,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| |
Collapse
|
32
|
Abstract
Bone tissue is comprised of a collagen-rich matrix containing non-collagenous organic compounds, strengthened by mineral crystals. Bone strength reflects the amount and structure of bone, as well as its quality. These qualities are determined and maintained by osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells) on the surface of the bone and osteocytes embedded within the bone matrix. Bone development and growth also involves cartilage cells (chondrocytes). These cells do not act in isolation, but function in a coordinated manner, including co-ordination within each lineage, between the cells of bone, and between these cells and other cell types within the bone microenvironment. This chapter will briefly outline the cells of bone, their major functions, and some communication pathways responsible for controlling bone development and remodeling.
Collapse
Affiliation(s)
- Niloufar Ansari
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Green AC, Rudolph-Stringer V, Straszkowski L, Tjin G, Crimeen-Irwin B, Walia M, Martin TJ, Sims NA, Purton LE. Retinoic Acid Receptor γ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. J Bone Miner Res 2018; 33:2202-2213. [PMID: 30040873 DOI: 10.1002/jbmr.3558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Retinoic acid receptor (RAR) signaling regulates bone structure and hematopoiesis through intrinsic and extrinsic mechanisms. This study aimed to establish how early in the osteoblast lineage loss of RARγ (Rarg) disrupts the bone marrow microenvironment. Bone structure was analyzed by micro-computed tomography (μCT) in Rarg-/- mice and mice with Rarg conditional deletion in Osterix-Cre-targeted osteoblast progenitors or Prrx1-Cre-targeted mesenchymal stem cells. Rarg-/- tibias exhibited less trabecular and cortical bone and impaired longitudinal and radial growth. The trabecular bone and longitudinal, but not radial, growth defects were recapitulated in Prrx1:RargΔ/Δ mice but not Osx1:RargΔ/Δ mice. Although both male and female Prrx1:RargΔ/Δ mice had low trabecular bone mass, males exhibited increased numbers of trabecular osteoclasts and Prrx1:RargΔ/Δ females had impaired mineral deposition. Both male and female Prrx1:RargΔ/Δ growth plates were narrower than controls and their epiphyses contained hypertrophic chondrocyte islands. Flow cytometry revealed that male Prrx1:RargΔ/Δ bone marrow exhibited elevated pro-B and pre-B lymphocyte numbers, accompanied by increased Cxcl12 expression in bone marrow cells. Prrx1:RargΔ/Δ bone marrow also had elevated megakaryocyte-derived Vegfa expression accompanied by smaller sinusoidal vessels. Thus, RARγ expression by Prrx1-Cre-targeted cells directly regulates endochondral bone formation and indirectly regulates tibial vascularization. Furthermore, RARγ expression by Prrx1-Cre-targeted cells extrinsically regulates osteoclastogenesis and B lymphopoiesis in male mice. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Victoria Rudolph-Stringer
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | | | - Gavin Tjin
- St Vincent's Institute, Fitzroy, VIC, Australia
| | | | - Mannu Walia
- St Vincent's Institute, Fitzroy, VIC, Australia
| | - T John Martin
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Natalie A Sims
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
34
|
Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proc Natl Acad Sci U S A 2018; 115:4625-4630. [PMID: 29666250 DOI: 10.1073/pnas.1720658115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that adult human bone marrow-derived mesenchymal stromal cells (hMSCs) are default committed toward osteogenesis. Even when induced to chondrogenesis, hMSCs typically form hypertrophic cartilage that undergoes endochondral ossification. Because embryonic mesenchyme is obviously competent to generate phenotypically stable cartilage, it is questioned whether there is a correspondence between mesenchymal progenitor compartments during development and in adulthood. Here we tested whether forcing specific early events of articular cartilage development can program hMSC fate toward stable chondrogenesis. Inspired by recent findings that spatial restriction of bone morphogenetic protein (BMP) signaling guides embryonic progenitors toward articular cartilage formation, we hypothesized that selective inhibition of BMP drives the phenotypic stability of hMSC-derived chondrocytes. Two BMP type I receptor-biased kinase inhibitors were screened in a microfluidic platform for their time- and dose-dependent effect on hMSC chondrogenesis. The different receptor selectivity profile of tested compounds allowed demonstration that transient blockade of both ALK2 and ALK3 receptors, while permissive to hMSC cartilage formation, is necessary and sufficient to maintain a stable chondrocyte phenotype. Remarkably, even upon compound removal, hMSCs were no longer competent to undergo hypertrophy in vitro and endochondral ossification in vivo, indicating the onset of a constitutive change. Our findings demonstrate that adult hMSCs effectively share properties of embryonic mesenchyme in the formation of transient but also of stable cartilage. This opens potential pharmacological strategies to articular cartilage regeneration and more broadly indicates the relevance of developmentally inspired protocols to control the fate of adult progenitor cell systems.
Collapse
|
35
|
Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-E1 by RNA-seq analysis. Sci Rep 2018; 8:3257. [PMID: 29459627 PMCID: PMC5818530 DOI: 10.1038/s41598-018-21601-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/07/2018] [Indexed: 01/23/2023] Open
Abstract
Genistein, a phyto-estrogen, can potentially replace endogenous estrogens in postmenopausal women, but the underlying molecular mechanisms remain incompletely understood. To obtain insight into the effect of genistein on bone differentiation, RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in genistein-treated vs. untreated MC3T3-E1 mouse osteoblastic cells. Osteoblastic cell differentiation was monitored by measuring osteoblast differentiation factors (ALP production, bone mineralization, and expression of osteoblast differentiation markers). From RNA-seq analysis, a total of 132 DEGs (including 52 up-regulated and 80 down-regulated genes) were identified in genistein-treated cells (FDR q-value < 0.05 and fold change > 1.5). KEGG pathway and Gene Ontology (GO) enrichment analyses were performed to estimate the biological functions of DEGs and demonstrated that these DEGs were highly enriched in functions related to chemotactic cytokines. The functional relevance of DEGs to genistein-induced osteoblastic cell differentiation was further evaluated by siRNA-mediated knockdown in MC3T3-E1 cells. These siRNA knockdown experiments (of the DEGs validated by real-time qPCR) demonstrated that two up-regulated genes (Ereg and Efcab2) enhance osteoblastic cell differentiation, while three down-regulated genes (Hrc, Gli, and Ifitm5) suppress the differentiation. These results imply their major functional roles in bone differentiation regulated by genistein.
Collapse
|
36
|
Cho DC, Brennan HJ, Johnson RW, Poulton IJ, Gooi JH, Tonkin BA, McGregor NE, Walker EC, Handelsman DJ, Martin TJ, Sims NA. Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6. Nat Commun 2017; 8:806. [PMID: 28993616 PMCID: PMC5634449 DOI: 10.1038/s41467-017-00920-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
Long bone strength is determined by its outer shell (cortical bone), which forms by coalescence of thin trabeculae at the metaphysis (corticalization), but the factors that control this process are unknown. Here we show that SOCS3-dependent cytokine expression regulates bone corticalization. Young male and female Dmp1Cre.Socs3 f/f mice, in which SOCS3 has been ablated in osteocytes, have high trabecular bone volume and poorly defined metaphyseal cortices. After puberty, male mice recover, but female corticalization is still impaired, leading to a lasting defect in bone strength. The phenotype depends on sex-steroid hormones: dihydrotestosterone treatment of gonadectomized female Dmp1Cre.Socs3 f/f mice restores normal cortical morphology, whereas in males, estradiol treatment, or IL-6 deletion, recapitulates the female phenotype. This suggests that androgen action promotes metaphyseal corticalization, at least in part, via IL-6 signaling.The strength of long bones is determined by coalescence of trabeculae during corticalization. Here the authors show that this process is regulated by SOCS3 via a mechanism dependent on IL-6 and expression of sex hormones.
Collapse
Affiliation(s)
- Dae-Chul Cho
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Neurosurgery, Kyungpook National University Hospital, 130 Dongdukro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Holly J Brennan
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Rachelle W Johnson
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Division of Clinical Pharmacology, Vanderbilt University, 2215 Garland Avenue, 1255B MRB IV, Nashville, TN, 37212, USA
| | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Jonathan H Gooi
- Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Brett A Tonkin
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - David J Handelsman
- Department of Andrology, ANZAC Research Institute, University of Sydney, 3 Hospital Road, Concord, NSW, 2139, Australia
| | - T J Martin
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia. .,Department of Medicine at St. Vincent's Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
37
|
Koide M, Kobayashi Y, Yamashita T, Uehara S, Nakamura M, Hiraoka BY, Ozaki Y, Iimura T, Yasuda H, Takahashi N, Udagawa N. Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. J Bone Miner Res 2017; 32:2074-2086. [PMID: 28543818 DOI: 10.1002/jbmr.3175] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/07/2022]
Abstract
Bone formation is coupled to bone resorption throughout life. However, the coupling mechanisms are not fully elucidated. Using Tnfrsf11b-deficient (OPG-/- ) mice, in which bone formation is clearly coupled to bone resorption, we found here that osteoclasts suppress the expression of sclerostin, a Wnt antagonist, thereby promoting bone formation. Wnt/β-catenin signals were higher in OPG-/- and RANKL-transgenic mice with a low level of sclerostin. Conditioned medium from osteoclast cultures (Ocl-CM) suppressed sclerostin expression in UMR106 cells and osteocyte cultures. In vitro experiments revealed that osteoclasts secreted leukemia inhibitory factor (LIF) and inhibited sclerostin expression. Anti-RANKL antibodies, antiresorptive agents, suppressed LIF expression and increased sclerostin expression, thereby reducing bone formation in OPG-/- mice. Taken together, osteoclast-derived LIF regulates bone turnover through sclerostin expression. Thus, LIF represents a target for improving the prolonged suppression of bone turnover by antiresorptive agents. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | | | - Yuki Ozaki
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Tadahiro Iimura
- Proteo-Science Center (PROS) and Advanced Research Support Center (ADRES), Ehime University, and Translational Research Center and Artificial Joint Integrated Center, Ehime University Hospital Shitsukawa, Toon, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Nobuyuki Udagawa
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
38
|
Murakami K, Kobayashi Y, Uehara S, Suzuki T, Koide M, Yamashita T, Nakamura M, Takahashi N, Kato H, Udagawa N, Nakamura Y. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS One 2017; 12:e0181126. [PMID: 28708884 PMCID: PMC5510865 DOI: 10.1371/journal.pone.0181126] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
The Janus kinases (Jaks) are hubs in the signaling process of more than 50 cytokine or hormone receptors. However, the function of Jak in bone metabolism remains to be elucidated. Here, we showed that the inhibition of Jak1 and/or Jak2 in osteoblast-lineage cells led to impaired osteoclastogenesis due to the reduced expression of receptor activator of nuclear factor-κB ligand (RANKL). Murine calvaria-derived osteoblasts induced differentiation of bone marrow cells into osteoclasts in the presence of 1,25-dihydroxyvitamin D3 (1,25D3) and prostaglandin E2 (PGE2) in vitro. However, treatment with the Jak1/2 inhibitor, baricitinib, markedly inhibited osteoclastogenesis in the co-culture. On the other hand, baricitinib did not inhibit RANKL-induced osteoclast differentiation of bone marrow macrophages. These results indicated that baricitinib acted on osteoblasts, but not on bone marrow macrophages. Baricitinib suppressed 1,25D3 and PGE2-induced up-regulation of RANKL in osteoblasts, but not macrophage colony-stimulating factor expression. Moreover, the addition of recombinant RANKL to co-cultures completely rescued baricitinib-induced impairment of osteoclastogenesis. shRNA-mediated knockdown of Jak1 or Jak2 also suppressed RANKL expression in osteoblasts and inhibited osteoclastogenesis. Finally, cytokine array revealed that 1,25D3 and PGE2 stimulated secretion of interleukin-6 (IL-6), IL-11, and leukemia inhibitory factor in the co-culture. Hence, Jak1 and Jak2 represent novel therapeutic targets for osteoporosis as well as inflammatory bone diseases including rheumatoid arthritis.
Collapse
Affiliation(s)
- Kohei Murakami
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Takako Suzuki
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Hiroyuki Kato
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yukio Nakamura
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- * E-mail:
| |
Collapse
|
39
|
Hall MD, Murray CA, Valdez MJ, Perantoni AO. Mesoderm-specific Stat3 deletion affects expression of Sox9 yielding Sox9-dependent phenotypes. PLoS Genet 2017; 13:e1006610. [PMID: 28166224 PMCID: PMC5319801 DOI: 10.1371/journal.pgen.1006610] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/21/2017] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
To date, mutations within the coding region and translocations around the SOX9 gene both constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD). While pathological coding-region mutations typically result in a non-functional SOX9 protein, little is known about what mechanism(s) controls normal SOX9 expression, and subsequently, which signaling pathways may be interrupted by alterations occurring around the SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expression in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss results in the expansion of growth plate hypertrophic chondrocytes and deregulation of normal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a Sox9Cre driver produces palate and tracheal irregularities similar to those described in Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter following activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal development through modulation of a critical factor, Sox9. Importantly, they further provide the first evidence for the modulation of a gene product other than Sox9 itself which is capable of modeling pathological aspects of CD and underscore a potentially valuable therapeutic target for patients with the disorder.
Collapse
Affiliation(s)
- Michael D. Hall
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Caroline A. Murray
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Michael J. Valdez
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Alan O. Perantoni
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
40
|
Liu C, Jiang D. High glucose-induced LIF suppresses osteoblast differentiation via regulating STAT3/SOCS3 signaling. Cytokine 2017; 91:132-139. [PMID: 28064096 DOI: 10.1016/j.cyto.2016.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/18/2023]
Abstract
High glucose (HG) is conceived to regulate bone metabolism in patients with diabetic mellitus (DM). In the present study, we examined the level of leukemia inhibitory factor (LIF), a pleiotropic cytokine in interleukin (IL)-6 family, in T2DM patients and investigated the regulation by HG on the induction of LIF/signal transducer and activator of transcription 3 (STAT3) signaling. Then we determined the regulation of HG and LIF on the osteoblast differentiation via measuring the ALP activity, matrix mineralization, and the expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), Osteocalcin (OCN) and osteopontin (OPN) in human osteoblast MG-63 cells. In addition, we evaluated the dependence of suppressor of cytokine signaling 3 (SOCS3)/STAT3 signaling in the progress. Results indicated significantly higher serum levels of high-sensitivity C-reactive protein (hsCRP), IL-1β, IL-6 and LIF in T2DM patients. HG induced markedly higher levels of these cytokines in vitro. Furthermore, either HG or LIF reduced the expression of ALP, OCN and RUNX2 in both mRNA and protein levels. In addition, LIF markedly promoted the expression of SOCS3, significantly upregulated the phosphorylation of STAT3 in MG-63 cells; and the downregulation of the four osteogenic differentiation-associated markers were restored by 50 or 100nM STAT3 inhibitor, JSI-124. In summary, this study has shown that LIF is implicated in the HG-mediated inhibition of osteoblast differentiation, via promoting STAT3/SOCS3 signaling. This study may provide insights into the signal pathway of HG-induced bone loss or delayed injured joint healing.
Collapse
Affiliation(s)
- Changlu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Dianming Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
41
|
Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 2016; 79:14-23. [PMID: 27497989 DOI: 10.1016/j.biocel.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/27/2022]
Abstract
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
42
|
VPS35: Two Ways to Recycle the Parathyroid Hormone Receptor (PTH1R) in Osteoblasts. EBioMedicine 2016; 9:3-4. [PMID: 27374314 PMCID: PMC4972557 DOI: 10.1016/j.ebiom.2016.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
|
43
|
Tonna S, Poulton IJ, Taykar F, Ho PWM, Tonkin B, Crimeen-Irwin B, Tatarczuch L, McGregor NE, Mackie EJ, Martin TJ, Sims NA. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016; 143:648-57. [PMID: 26755702 DOI: 10.1242/dev.125625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
The majority of the skeleton arises by endochondral ossification, whereby cartilaginous templates expand and are resorbed by osteoclasts then replaced by osteoblastic bone formation. Ephrin B2 is a receptor tyrosine kinase expressed by osteoblasts and growth plate chondrocytes that promotes osteoblast differentiation and inhibits osteoclast formation. We investigated the role of ephrin B2 in endochondral ossification using Osx1Cre-targeted gene deletion. Neonatal Osx1Cre.Efnb2(Δ/Δ) mice exhibited a transient osteopetrosis demonstrated by increased trabecular bone volume with a high content of growth plate cartilage remnants and increased cortical thickness, but normal osteoclast numbers within the primary spongiosa. Osteoclasts at the growth plate had an abnormal morphology and expressed low levels of tartrate-resistant acid phosphatase; this was not observed in more mature bone. Electron microscopy revealed a lack of sealing zones and poor attachment of Osx1Cre.Efnb2(Δ/Δ) osteoclasts to growth plate cartilage. Osteoblasts at the growth plate were also poorly attached and impaired in their ability to deposit osteoid. By 6 months of age, trabecular bone mass, osteoclast morphology and osteoid deposition by Osx1Cre.Efnb2(Δ/Δ) osteoblasts were normal. Cultured chondrocytes from Osx1Cre.Efnb2(Δ/Δ) neonates showed impaired support of osteoclastogenesis but no significant change in Rankl (Tnfsf11) levels, whereas Adamts4 levels were significantly reduced. A population of ADAMTS4(+) early hypertrophic chondrocytes seen in controls was absent from Osx1Cre.Efnb2(Δ/Δ) neonates. This suggests that Osx1Cre-expressing cells, including hypertrophic chondrocytes, are dependent on ephrin B2 for their production of cartilage-degrading enzymes, including ADAMTS4, and this might be required for attachment of osteoclasts and osteoblasts to the cartilage surface during endochondral ossification.
Collapse
Affiliation(s)
- Stephen Tonna
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Ingrid J Poulton
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Farzin Taykar
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Patricia W M Ho
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Brett Tonkin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Liliana Tatarczuch
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Australia
| | - Narelle E McGregor
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Eleanor J Mackie
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Australia
| | - T John Martin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Natalie A Sims
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
44
|
Johnson RW, McGregor NE, Brennan HJ, Crimeen-Irwin B, Poulton IJ, Martin TJ, Sims NA. Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone 2015; 81:343-351. [PMID: 26255596 DOI: 10.1016/j.bone.2015.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Interleukin-6 (IL-6) and interleukin-11 (IL-11) receptors (IL-6R and IL-11R, respectively) are both expressed in osteoclasts and transduce signal via the glycoprotein130 (gp130) co-receptor, but the physiological role of this pathway is unclear. To determine the critical roles of gp130 signalling in the osteoclast, we generated mice using cathepsin K Cre (CtskCre) to disrupt gp130 signalling in osteoclasts. Bone marrow macrophages from CtskCre.gp130(f/f) mice generated more osteoclasts in vitro than cells from CtskCre.gp130(w/w) mice; these osteoclasts were also larger and had more nuclei than controls. While no increase in osteoclast numbers was observed in vivo, osteoclasts on trabecular bone surfaces of CtskCre.gp130(f/f) mice were more spread out than in control mice, but had no functional defect detectable by serum CTX1 levels or trabecular bone cartilage remnants. However, trabecular osteoblast number and mineralising surfaces were significantly lower in male CtskCre.gp130(f/f) mice compared to controls, and this was associated with a significantly lower trabecular bone volume at 12 weeks of age. Furthermore, CtskCre.gp130(f/f) mice exhibited greatly suppressed periosteal bone formation at this age, indicated by significant reductions in both double-labelled surface and mineral apposition rate. By 26 weeks of age, CtskCre.gp130(f/f) mice exhibited narrower femora, with lower periosteal and endocortical perimeters than CtskCre.gp130(w/w) controls. Since IL-6 and IL-11R global knockout mice exhibited a similar reduction in femoral width, we also assessed periosteal bone formation in those strains, and found bone forming surfaces were also reduced in male IL-6 null mice. These data suggest that IL-6/gp130 signalling in the osteoclast is not essential for normal bone resorption in vivo, but maintains both trabecular and periosteal bone formation in male mice by promoting osteoblast activity through the stimulation of osteoclast-derived "coupling factors" and "osteotransmitters", respectively.
Collapse
Affiliation(s)
| | | | - Holly J Brennan
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, VIC, Australia.
| |
Collapse
|
45
|
Sims NA. Cardiotrophin-like cytokine factor 1 (CLCF1) and neuropoietin (NP) signalling and their roles in development, adulthood, cancer and degenerative disorders. Cytokine Growth Factor Rev 2015. [DOI: 10.1016/j.cytogfr.2015.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Chen X, Hausman BS, Luo G, Zhou G, Murakami S, Rubin J, Greenfield EM. Protein kinase inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 2015; 31:2789-99. [PMID: 23963683 DOI: 10.1002/stem.1524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/26/2022]
Abstract
The protein kinase inhibitor (Pki) gene family inactivates nuclear protein kinase A (PKA) and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in murine embryonic fibroblasts (MEFs), murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown also simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of leukemia inhibitory factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. Stem Cells 2013;31:2789-2799.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Rédini F, Heymann D, Layrolle P, Blanchard F. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:765-75. [PMID: 25559270 DOI: 10.1016/j.ajpath.2014.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
Different macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase. In contrast, osteoclasts were normal throughout the healing period. One day after bone injury, Stat3, the main transcription factor activated by mOSM, was found phosphorylated/activated in endosteal osteoblastic cells located at the hedge of the hematoma. Interestingly, we observed reduced activation of Stat3 in Osm(-/-) mice. In addition, mice deficient in the mOSM receptor (Osmr(-/-)) also had reduced bone formation and osteoblast number within the injury site. These results suggest that mOSM, a product of macrophages, sustains intramembranous bone formation by signaling through Osmr and Stat3, acting on the recruitment, proliferation, and/or osteoblast differentiation of endosteal mesenchymal progenitor cells. Because bone resorption is largely unaltered, OSM could represent a new anabolic treatment for unconsolidated bone fractures.
Collapse
Affiliation(s)
- Pierre Guihard
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Marie-Astrid Boutet
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Bénédicte Brounais-Le Royer
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Anne-Laure Gamblin
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Jérôme Amiaud
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Audrey Renaud
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Martine Berreur
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Françoise Rédini
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Pierre Layrolle
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Frédéric Blanchard
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France.
| |
Collapse
|
48
|
Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 2014; 561:22-8. [DOI: 10.1016/j.abb.2014.05.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
49
|
Johnson RW, White JD, Walker EC, Martin TJ, Sims NA. Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone 2014; 64:47-56. [PMID: 24721701 DOI: 10.1016/j.bone.2014.03.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 02/05/2023]
Abstract
Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is an inhibitory myokine for osteoblasts.
Collapse
Affiliation(s)
- Rachelle W Johnson
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; School of Veterinary Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Emma C Walker
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
50
|
Johnson RW, Brennan HJ, Vrahnas C, Poulton IJ, McGregor NE, Standal T, Walker EC, Koh TT, Nguyen H, Walsh NC, Forwood MR, Martin TJ, Sims NA. The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation. J Bone Miner Res 2014; 29:1492-505. [PMID: 24339143 DOI: 10.1002/jbmr.2159] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/24/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
Abstract
Interleukin-6 (IL-6) family cytokines act via gp130 in the osteoblast lineage to stimulate the formation of osteoclasts (bone resorbing cells) and the activity of osteoblasts (bone forming cells), and to inhibit expression of the osteocyte protein, sclerostin. We report here that a profound reduction in trabecular bone mass occurs both when gp130 is deleted in the entire osteoblast lineage (Osx1Cre gp130 f/f) and when this deletion is restricted to osteocytes (DMP1Cre gp130 f/f). This was caused not by an alteration in osteoclastogenesis, but by a low level of bone formation specific to the trabecular compartment. In contrast, cortical diameter increased to maintain ultimate bone strength, despite a reduction in collagen type 1 production. We conclude that osteocytic gp130 signaling is required for normal trabecular bone mass and proper cortical bone composition.
Collapse
Affiliation(s)
- Rachelle W Johnson
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|