1
|
Wang Y, Zhang K, Gao W, Lin H, Li T, Liu TCY, Weng X, Yuan Y. The Effects of different forms of exercise during the early life on the bone microstructure of ovariectomized mice. Bone 2025; 192:117364. [PMID: 39645067 DOI: 10.1016/j.bone.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Postmenopausal osteoporosis is a type of bone disease with bone loss and deterioration of skeletal function that occurs in women after menopause. Studies have found that early-life exercise can reduce the risk of fractures and decrease the occurrence of osteoporosis, making it a promising approach for preventing and reversing bone loss. In this study, to identify the optimal forms of exercise during early life to optimize bone health and provide suggestions for promoting bone health through exercise training during early life, we conducted different forms of exercise interventions including ladder climbing, treadmill running, combined training, and whole-body vibration (WBV) on adolescent mice for 8 weeks and observed the accumulation of bone mass and arrangement of bone microstructure in adult mice. After removing the ovaries bilaterally, the mice were resting for 22 weeks to simulate the bone loss condition observed in postmenopausal women. We examined the resistance of the bone microstructure to degradation in response to exercise during early life and characterized the specific effects of different forms of exercise on countering bone microstructure deterioration. Our findings demonstrate that early-life exercise exerts long-term beneficial effects on bone health. All four forms of early-life exercise can delay bone loss due to decreased estrogen and improve the bone microstructure to varying degrees, with resistance and vibration training demonstrating superior protective benefits.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Keping Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Weiwei Gao
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Haiqi Lin
- School of Physical Education and Sports Science, South China University of Technology, Guangzhou, Guangzhou 510641, China
| | - Tingting Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Timon Cheng Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
2
|
Alghadir AH, Gabr SA, Iqbal A. Hand grip strength, vitamin D status, and diets as predictors of bone health in 6-12 years old school children. BMC Musculoskelet Disord 2023; 24:830. [PMID: 37872520 PMCID: PMC10594896 DOI: 10.1186/s12891-023-06960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Vitamin D and calcium-rich foods, exposure to sunlight, and physical activities (PA) play a pivotal role in promoting the production of sufficient vitamin D and improving grip strength needed for better bone health among school children. PURPOSE This study aimed to determine the effects of hand grip muscle strength (HGS), vitamin D in addition to diets, and PA on bone health status among 6-12 years old schoolchildren. METHODS This study was based on a cross-sectional observational design, which was descriptive in nature. A diverse sample of 560 elementary school children aged 6-12 years old were invited to participate in this descriptive cross-sectional study. The Dual-Energy X-Ray Absorptiometry (DXA), QUS technique, and ACTi graph GT1M accelerometer were used respectively as a valid tools to identify BMD, BMC, and other parameters of bone health like c-BUA values and bone stiffness (SI), and physical activity (PA) of all individuals participated in this study. In addition, a hydraulic dynamometer was used to measure hand grip strength among the participants. Moreover, an immunoassay technique was used to measure the serum levels of vitamin 25(OH)D level, and bone metabolism markers; NTX, DPD, Ca, and sBAP in all participants. Bone loss (osteoporosis) was cross-sectionally predicted in 19.64% of the total population, most of whom were girls (14.3% vs. 5.4% for boys; P = 0.01). Compared to boys, the incidence of osteoporosis was higher and significantly correlated in girls with lower HGS, deficient vitamin D, inadequate vitamin D and Ca intake, greater adiposity, poor PA, and lower sun exposure. Also, in girls, lower vitamin 25(OH)D levels, and poor HGS were shown to be significantly associated with lower values of BMD, BMC, SI, and higher values of bone resorption markers; NTX, DPD, and sBAP and lower serum Ca than do in boys. The findings suggested that deficient vitamin D, lower HGS, adiposity, PA, and sun exposure as related risk factors to the pravelence of bone loss among school children, particularly in girls. In addition, these parameters might be considered diagnostic non-invasive predictors of bone health for clinical use in epidemiological contexts; however, more studies are required.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
3
|
Nissen FI, Esser VFC, Bui M, Li S, Hopper JL, Bjørnerem Å, Hansen AK. Is There a Causal Relationship between Physical Activity and Bone Microarchitecture? A Study of Adult Female Twin Pairs. J Bone Miner Res 2023; 38:951-957. [PMID: 37198881 PMCID: PMC10947270 DOI: 10.1002/jbmr.4826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The reasons for the association between physical activity (PA) and bone microarchitecture traits are unclear. We examined whether these associations were consistent with causation and/or with shared familial factors using a cross-sectional study of 47 dizygotic and 93 monozygotic female twin pairs aged 31-77 years. Images of the nondominant distal tibia were obtained using high-resolutionperipheral quantitative computed tomography. The bone microarchitecture was assessed using StrAx1.0 software. Based on a self-completed questionnaire, a PA index was calculated as a weighted sum of weekly hours of light (walking, light gardening), moderate (social tennis, golf, hiking), and vigorous activity (competitive active sports) = light + 2 * moderate + 3 * vigorous. We applied Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) to test whether cross-pair cross-trait associations changed after adjustment for within-individual associations. Within-individual distal tibia cortical cross-sectional area (CSA) and cortical thickness were positively associated with PA (regression coefficients [β] = 0.20 and 0.22), while the porosity of the inner transitional zone was negatively associated with PA (β = -0.17), all p < 0.05. Trabecular volumetric bone mineral density (vBMD) and trabecular thickness were positively associated with PA (β = 0.13 and 0.14), and medullary CSA was negatively associated with PA (β = -0.22), all p ≤ 0.01. Cross-pair cross-trait associations of cortical thickness, cortical CSA, and medullary CSA with PA attenuated after adjustment for the within-individual association (p = 0.048, p = 0.062, and p = 0.028 for changes). In conclusion, increasing PA was associated with thicker cortices, larger cortical area, lower porosity of the inner transitional zone, thicker trabeculae, and smaller medullary cavities. The attenuation of cross-pair cross-trait associations after accounting for the within-individual associations was consistent with PA having a causal effect on the improved cortical and trabecular microarchitecture of adult females, in addition to shared familial factors. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frida Igland Nissen
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway
- Department of Orthopedic SurgeryUniversity Hospital of North NorwayTromsøNorway
- Department of Obstetrics and GynecologyUniversity Hospital of North NorwayTromsøNorway
| | - Vivienne F. C. Esser
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVICAustralia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVICAustralia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVICAustralia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityMelbourneVICAustralia
- Murdoch Children's Research Institute, Royal Children's HospitalMelbourneVICAustralia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVICAustralia
| | - Åshild Bjørnerem
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway
- Department of Obstetrics and GynecologyUniversity Hospital of North NorwayTromsøNorway
- Norwegian Research Center for Women's Health, OsloUniversity HospitalOsloNorway
| | - Ann Kristin Hansen
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway
- Department of Orthopedic SurgeryUniversity Hospital of North NorwayTromsøNorway
| |
Collapse
|
4
|
Flehr A, Källgård J, Alvén J, Lagerstrand K, Papalini E, Wheeler M, Vandenput L, Kahl F, Axelsson KF, Sundh D, Mysore RS, Lorentzon M. Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2022; 33:1545-1556. [PMID: 35113175 PMCID: PMC9187531 DOI: 10.1007/s00198-021-06224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
UNLABELLED Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. RESULTS The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p < 0.001). CONCLUSION The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction.
Collapse
Affiliation(s)
- Alison Flehr
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Julius Källgård
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Alvén
- Dept. of Molecular and Clinical Medicine, Inst. of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Computer Vision and Medical Image Analysis, Dept. of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin Lagerstrand
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiation Physics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Evin Papalini
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Wheeler
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Liesbeth Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Kahl
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Primary Care, Skövde, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Raghunath Shirish Mysore
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
5
|
Bolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, Kohn DH. External bone size identifies different strength-decline trajectories for the male human femora. J Struct Biol 2020; 212:107650. [PMID: 33096230 DOI: 10.1016/j.jsb.2020.107650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Understanding skeletal aging and predicting fracture risk is increasingly important with a growing elderly population. We hypothesized that when categorized by external bone size, the male femoral diaphysis would show different strength-age trajectories which can be explained by changes in morphology, composition and collagen cross-linking. Cadaveric male femora were sorted into narrow (n = 15, 26-89 years) and wide (n = 15, 29-82 years) groups based upon total cross-sectional area of the mid-shaft normalized to bone length (Tt.Ar/Le) and tested for whole bone strength, tissue-level strength, and tissue-level post-yield strain. Morphology, cortical TMD (Ct.TMD), porosity, direct measurements of enzymatic collagen cross-links, and pentosidine were obtained. The wide group alone showed significant negative correlations with age for tissue-level strength (R2 = 0.50, p = 0.002), tissue-level post-yield strain (R2 = 0.75, p < 0.001) and borderline significance for whole bone strength (R2 = 0.14, p = 0.108). Ct.TMD correlated with whole bone and tissue-level strength for both groups, but pentosidine normalized to enzymatic cross-links correlated negatively with all mechanical properties for the wide group only. The multivariate analysis showed that just three traits for each mechanical property explained the majority of the variance for whole bone strength (Ct.Area, Ct.TMD, Log(PEN/Mature; R2 = 0.75), tissue-level strength (Age, Ct.TMD, Log(DHLNL/HLNL); R2 = 0.56), and post-yield strain (Age, Log(Pyrrole), Ct.Area; R2 = 0.51). Overall, this highlights how inter-individual differences in bone structure, composition, and strength change with aging and that a one-size fits all understanding of skeletal aging is insufficient.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Ferrous S Ward
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA; Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Karl J Jepsen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
6
|
Langsetmo L, Burghardt AJ, Schousboe JT, Cawthon PM, Cauley JA, Lane NE, Orwoll ES, Ensrud KE. Objective measures of moderate to vigorous physical activity are associated with higher distal limb bone strength among elderly men. Bone 2020; 132:115198. [PMID: 31866494 PMCID: PMC6993955 DOI: 10.1016/j.bone.2019.115198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Our aim was to determine the association between objectively measured physical activity (PA) and bone strength of the distal limbs among older men. We studied 994 men from the MrOS cohort study (mean age 83.9) who had repeat (Year 7 and 14) 5-day activity assessment with at least 90% wear time (SenseWearPro3 Armband) and Year 14 measures using high resolution peripheral quantitative tomography (HR-pQCT) (Scanco). Total energy expenditure (TEE), total steps per day, peak cadence (mean of top 30 steps/min over 24 h) and time spent in a given level of activity: sedentary (reference, <1.5 metabolic equivalents of task [METs]), light (1.5 to <3 METs), or moderate to vigorous physical activity(MVPA: ≥3 METs) were calculated as mean over the two time points. Estimated failure load was determined from HR-pQCT data using finite element analysis. We used standardized variables and adjusted for potential confounders using linear regression. The means ±SDs for daily activity were: 2338 ± 356 kcal/d [TEE]; 5739 ± 2696 steps/day [step count], 60 ± 20 cpm [peak cadence], 67 ± 28 min/d [light activity], and 85 ± 52 min/d [MVPA]. Higher TEE, step count, and peak cadence were each associated with higher failure load of the distal radius (effect sizes respectively: 0.13 [95% CI: 0.05, 0.20], 0.11 [95% CI: 0.04, 0.18], and 0.08 [95% CI: 0.01, 0.15]) and higher failure load of the distal tibia (effect sizes respectively 0.21 [95% CI: 0.13, 0.28], 0.19 [95% CI: 0.13, 0.26], 0.19 [95% CI, 0.13, 0.25]). Time spent in MVPA vs. time sedentary was related to bone strength at both sites after adjustment, whereas time spent in light activity vs. time sedentary was not. TEE was associated with compartmental area and BMD parameters at distal tibia, but only area parameters at the distal radius. In summary, MVPA over a 7-year period of time may have a modest association with bone strength and geometry among older men.
Collapse
Affiliation(s)
- Lisa Langsetmo
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, United States of America.
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States of America
| | - John T Schousboe
- HealthPartners Institute, Bloomington, MN, United States of America; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, United States of America
| | - Peggy M Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, United States of America
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, United States of America
| | - Kristine E Ensrud
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, United States of America; Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America; Center for Care Delivery & Outcomes Research, VA Health Care System, Minneapolis, MN, United States of America
| |
Collapse
|
7
|
COLEDAM D. Early and current physical activity: cross-sectional associations with overweight among adults. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2020; 60:E354-E360. [PMID: 31967093 PMCID: PMC6953456 DOI: 10.15167/2421-4248/jpmh2019.60.4.1265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Introduction The health benefits of physical activity in all ages are widely known, however the effects of early physical activity on future health are not yet fully understood. The aim of this study was to analyze the cross-sectional associations between previous and current physical activity with overweight among adults. Methods A probabilistic sample of 534 teachers was included in the study. Independent variables were physical activity in childhood, adolescence, and current, and clustering of the variables, all analyzed using a self-report questionnaire. The dependent variable was overweight, estimated by the body mass index, assessed using self-report measures of weight and height. Covariates were sex, age, skin color, income, sedentary behavior, medication use for weight control, and nutritionist counseling. Poisson regression was adopted to estimate Prevalence Ratios (PR) in the multivariate analysis. Results Physical activity at ages 6-10 (PR = 1.03 to 1.13), 12-14 (PR = 0.96 to 0.98), and 15-17 (PR = 0.76 to 0.90) years was not associated with overweight. Participants who do not meet the recommendation of current physical activity have a higher likelihood of being overweight (PR = 1.55 to 2.17) and the magnitude of the association increased when analyzing those who were not physically active through all periods analyzed (PR = 3.69 to 4.69). Conclusion Performing physical activity only in early life does not seem to promote health benefits in the sample analyzed. Although current physical activity is associated with the outcome, the promotion of both early and current physical activity seems to be a better strategy to prevent overweight among adults.
Collapse
Affiliation(s)
- D.H.C. COLEDAM
- Correspondence: Diogo Henrique Constantino Coledam, Federal Institute of Education, Science and Technology of São Paulo, 100 Zélia de Lima Rosa av. Boituva, São Paulo, Brazil - Tel. +55 15 33638610 - E-mail:
| |
Collapse
|
8
|
Nagata JM, Carlson JL, Golden NH, Murray SB, Long J, Leonard MB, Peebles R. Associations between exercise, bone mineral density, and body composition in adolescents with anorexia nervosa. Eat Weight Disord 2019; 24:939-945. [PMID: 29949128 PMCID: PMC6286679 DOI: 10.1007/s40519-018-0521-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To identify the effect of duration of weight-bearing exercise and team sports participation on bone mineral density (BMD) and body composition among adolescents with anorexia nervosa (AN). METHOD We retrospectively reviewed electronic medical records of all patients 9-20 years old with a DSM-5 diagnosis of AN evaluated by the Stanford Eating Disorders Program (1997-2011) who underwent dual-energy X-ray absorptiometry. RESULTS A total of 188 adolescents with AN were included (178 females and 10 males). Using multivariate linear regression, duration of weight-bearing exercise (B = 0.15, p = 0.005) and participation in team sports (B = 0.53, p = 0.001) were associated with higher BMD at the hip and team sports (B = 0.39, p = 0.006) were associated with higher whole body BMC, controlling for covariates. Participation in team sports (B = - 1.06, p = 0.007) was associated with greater deficits in FMI Z-score. LBMI Z-score was positively associated with duration of weight-bearing exercise (B = 0.10, p = 0.018) and may explain the relationship between exercise and bone outcomes. CONCLUSION Duration of weight-bearing exercise and team sports participation may be protective of BMD at the hip and whole body BMC, while participation in team sports was associated with greater FMI deficits among adolescents with AN. LEVEL OF EVIDENCE Level V, descriptive retrospective study.
Collapse
Affiliation(s)
- Jason M Nagata
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Pediatrics, University of California, San Francisco, 3333 California Street, Suite 245, Box 0503, San Francisco, CA, 94143, USA.
| | - Jennifer L Carlson
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Neville H Golden
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stuart B Murray
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Jin Long
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mary B Leonard
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rebecka Peebles
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Effects of physical activity on children's growth. J Pediatr (Rio J) 2019; 95 Suppl 1:72-78. [PMID: 30593790 DOI: 10.1016/j.jped.2018.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To describe the current scientific knowledge on the effects of physical exercise on the growth of children and adolescents since intrauterine life. SOURCE OF DATA A search was carried out in the Medline, Embase, Scielo, and Cochrane databases of studies published from 1990 to 2018. The authors included studies with different designs: clinical trials, cohort, cross-sectional and review studies. SYNTHESIS OF DATA Studies that addressed the subject of physical exercise or physical activity, and weight-height growth or bone or muscle tissue growth were identified. These studies were analyzed, classified, and presented by age group: fetuses, preterm newborns, preschoolers, schoolchildren, and adolescents. It was observed that almost all studies indicated the safety of physical exercises, of mild to moderate intensity, for pregnant women, as well as children and adolescents, including both aerobic and anaerobic exercises. The retrieve studies did not demonstrate that the practice of physical exercises or certain sports, especially basketball and floor gymnastics, influenced the linear growth of children or adolescents. Some studies showed an increase in bone and muscle tissue growth in child and adolescent athletes. CONCLUSIONS Despite the small number of studies with adequate methodology, especially randomized clinical trials, evidence appears to indicate that physical exercise is safe for both the pregnant woman and the child, from fetal life to adolescence. Physical exercise does not appear to impair the child's linear growth and contributes to the ideal shaping of bone and muscle tissues, ensuring possible beneficial effects throughout life.
Collapse
|
10
|
Alves JGB, Alves GV. Effects of physical activity on children's growth. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2019. [DOI: 10.1016/j.jpedp.2019.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Sum M, Zhu TY, Zhou B, Zhang Z, Bilezikian JP, Guo XE, Qin L, Walker M. Chinese Women in Both the United States and Hong Kong Have Cortical Microstructural Advantages and More Trabecular Plates Compared With White Women. JBMR Plus 2018; 3:e10083. [PMID: 31044182 DOI: 10.1002/jbm4.10083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/01/2023] Open
Abstract
We cross-sectionally compared racial differences in bone quality between Chinese women in the United States (US) and Hong Kong (HK) with white women. A total of 514 women were included. We measured bone geometry, mass, microstructure, and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT), individual trabecula segmentation (ITS), and microfinite element analysis (μFEA). After adjustment for age and body mass index (BMI), premenopausal Chinese women in the US and HK had smaller bone area but greater radial cortical (Ct.) thickness and Ct. and trabecular (Tb.) volumetric bone mineral density (vBMD) versus white women but did not differ from each other. At the radius, Tb. number was lower and spacing greater in Chinese women from HK and the US versus white women, whereas Chinese women did not differ from each other. Tb. thickness was highest in Chinese women from HK, intermediate in Chinese-Americans, and lowest in white women. Chinese women had more trabecular plates versus white women, leading to greater age- and BMI-adjusted stiffness for premenopausal Chinese women in HK and the US (both p < 0.05) versus white women. Tibial differences were similar in premenopausal women; analogous trends in microstructure were present in postmenopausal women at the tibia, although stiffness did not differ. In contrast, at the radius, cortical, plate-to-rod ratio, and stiffness were similar between postmenopausal HK and white women. Adjusting for age, weight, and height rather than age and BMI tended to reduce differences in bone size and Tb. parameters but accentuate cortical differences such that Chinese premenopausal women in both locations and postmenopausal women from HK had higher stiffness at both skeletal sites compared with white women. Compared with white women, Chinese women in the US and HK have vBMD and microstructural advantages leading to higher or similar mechanical competence in pre- and postmenopausal women, respectively, despite smaller bone size.
Collapse
Affiliation(s)
- Melissa Sum
- Division of Endocrinology Department of Medicine New York University Langone Health Medical Center New York NY USA
| | - Tracy Y Zhu
- Bone Quality and Health Assessment Center of the Department of Orthopaedics and Traumatology the Chinese University of Hong Kong Hong Kong SAR PR China
| | - Bin Zhou
- Bone Bioengineering Laboratory Department of Biomedical Engineering Fu Foundation School of Engineering and Applied Science Columbia University New York NY USA
| | - Zhendong Zhang
- Department of Orthopedic Surgery First Affiliated Hospital School of Medicine Shihezi University Shihezi China
| | - John P Bilezikian
- Division of Endocrinology Department of Medicine Columbia University College of Physicians and Surgeons New York NY USA
| | - X Edward Guo
- Bone Bioengineering Laboratory Department of Biomedical Engineering Fu Foundation School of Engineering and Applied Science Columbia University New York NY USA
| | - Ling Qin
- Bone Quality and Health Assessment Center of the Department of Orthopaedics and Traumatology the Chinese University of Hong Kong Hong Kong SAR PR China
| | - Marcella Walker
- Division of Endocrinology Department of Medicine Columbia University College of Physicians and Surgeons New York NY USA
| |
Collapse
|
12
|
Sundh D, Nilsson M, Zoulakis M, Pasco C, Yilmaz M, Kazakia GJ, Hellgren M, Lorentzon M. High-Impact Mechanical Loading Increases Bone Material Strength in Postmenopausal Women-A 3-Month Intervention Study. J Bone Miner Res 2018; 33:1242-1251. [PMID: 29578618 PMCID: PMC6055617 DOI: 10.1002/jbmr.3431] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
Bone adapts to loading in several ways, including redistributing bone mass and altered geometry and microarchitecture. Because of previous methodological limitations, it is not known how the bone material strength is affected by mechanical loading in humans. The aim of this study was to investigate the effect of a 3-month unilateral high-impact exercise program on bone material properties and microarchitecture in healthy postmenopausal women. A total of 20 healthy and inactive postmenopausal women (aged 55.6 ± 2.3 years [mean ± SD]) were included and asked to perform an exercise program of daily one-legged jumps (with incremental number, from 3×10 to 4×20 jumps/d) during 3 months. All participants were asked to register their performed jumps in a structured daily diary. The participants chose one leg as the intervention leg and the other leg was used as control. The operators were blinded to the participant's choice of leg for intervention. The predefined primary outcome was change in bone material strength index (BMSi), measured at the mid tibia with a handheld reference probe indentation instrument (OsteoProbe). Bone microstructure, geometry, and density were measured with high-resolution peripheral quantitative computed tomography (XtremeCT) at the ultradistal and at 14% of the tibia bone length (distal). Differences were analyzed by related samples Wilcoxon signed rank test. The overall compliance to the jumping program was 93.6%. Relative to the control leg, BMSi of the intervention leg increased 7% or 0.89 SD (p = 0.046), but no differences were found for any of the XtremeCT-derived bone parameters. In conclusion, a unilateral high-impact loading program increased BMSi in postmenopausal women rapidly without affecting bone microstructure, geometry, or density, indicating that intense mechanical loading has the ability to rapidly improve bone material properties before changes in bone mass or structure. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,City District Administration of Örgryte-Härlanda, Gothenburg, Sweden
| | - Michail Zoulakis
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Courtney Pasco
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Melis Yilmaz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Martin Hellgren
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
13
|
Minett MM, Weidauer L, Wey HE, Binkley TL, Beare TM, Specker BL. Sports Participation in High School and College Leads to High Bone Density and Greater Rates of Bone Loss in Young Men: Results from a Population-Based Study. Calcif Tissue Int 2018; 103:5-15. [PMID: 29302709 DOI: 10.1007/s00223-017-0383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022]
Abstract
Estimated lifetime risk of an osteoporotic fracture in men over the age of 50 years is substantial and lifestyle factors such as physical activity may explain variation in bone mass and bone loss associated with aging. Men (n = 253) aged 20-66 years were followed for 7.5 years and factors that influence changes in means and rates of change in bone mass, density, and size using dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) were investigated; in particular, seasons of sports participation during high school and college. Men with greater sports participation had higher total hip bone mineral content (BMC) (48.4 ± 0.9 and 48.6 ± 0.9 g for 7-12 and 13+ seasons vs. 45.6 ± 0.8 and 45.4 ± 0.7 g for 0 and 1-6 seasons, respectively p < 0.05) and areal bone mineral density (aBMD) (1.082 ± 0.015 and 1.087 ± 0.015 g/cm2 for 7-12 and 13+ seasons vs. 1.011 ± 0.015 and 1.029 ± 0.013 g/cm2 for 0 and 1-6 seasons, respectively p < 0.05) than men who participated in less sport-seasons. However, men with higher sports participation also had greater rates of bone loss in their mid-twenties at the hip (BMC - 0.8 and - 1.2% and aBMD - 0.8 and - 0.9% for 7-12 and 13+ seasons of sport participation, respectively) compared to those with 0 seasons of sport participation (BMC - 0.6% and aBMD - 0.6%) (all p < 0.05). Similar results were observed for femoral neck aBMD. Men with 7+ seasons of sport participation had higher cross-sectional area at the 20% distal radius site than those with no sports participation (all p < 0.05). These findings support significant effects of high school and/or college sports participation on bone mass and geometry in men throughout adulthood.
Collapse
Affiliation(s)
- Maggie M Minett
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA.
| | - Lee Weidauer
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA
| | - Howard E Wey
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA
- College of Nursing, South Dakota State University, Brookings, SD, 57007, USA
| | - Teresa L Binkley
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA
| | - Tianna M Beare
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA
| | - Bonny L Specker
- EA Martin Program, South Dakota State University, Box 506, Wecota Hall, Brookings, SD, 57007, USA
| |
Collapse
|
14
|
Bonaretti S, Majumdar S, Lang TF, Khosla S, Burghardt AJ. The comparability of HR-pQCT bone measurements is improved by scanning anatomically standardized regions. Osteoporos Int 2017; 28:2115-2128. [PMID: 28391447 PMCID: PMC5526099 DOI: 10.1007/s00198-017-4010-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
UNLABELLED We investigated the sensitivity of distal bone density, structure, and strength measurements by high-resolution peripheral quantitative computed tomography (HR-pQCT) to variability in limb length. Our results demonstrate that HR-pQCT should be performed at a standard %-of-total-limb-length to avoid substantial measurement bias in population study comparisons and the evaluation of individual skeletal status in a clinical context. INTRODUCTION High-resolution peripheral quantitative computed tomography (HR-pQCT) measures of bone do not account for anatomic variability in bone length: a 1-cm volume is acquired at a fixed offset from an anatomic landmark. Our goal was to evaluate HR-pQCT measurement variability introduced by imaging fixed vs. proportional volumes and to propose a standard protocol for relative anatomic positioning. METHODS Double-length (2-cm) scans were acquired in 30 adults. We compared measurements from 1-cm sub-volumes located at the default fixed offset, and the average %-of-length offset. The average position corresponded to 4.0% ± 1.1 mm for radius, and 7.2% ± 2.2 mm for tibia. We calculated the RMS difference in bone parameters and T-scores to determine the measurement variability related to differences in limb length. We used anthropometric ratios to estimate the mean limb length for published HR-pQCT reference data, and then calculated mean %-of-length offsets. RESULTS Variability between fixed vs. relative scan positions was highest in the radius, and for cortical bone in general (RMS difference Ct.Th = 19.5%), while individuals had T-score differentials as high as +3.0 SD (radius Ct.BMD). We estimated that average scan position for published HR-pQCT reference data corresponded to 4.0% at the radius, and 7.3% at tibia. CONCLUSION Variability in limb length introduces significant bias to HR-pQCT measures, confounding cross-sectional analyses and limiting the clinical application for individual assessment of skeletal status. We propose to standardize scan positioning using 4.0 and 7.3% of total bone length for the distal radius and tibia, respectively.
Collapse
Affiliation(s)
- S Bonaretti
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California, QB3 Building, Suite 203, 1700 4th St, San Francisco, CA, 94158, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - S Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California, QB3 Building, Suite 203, 1700 4th St, San Francisco, CA, 94158, USA
| | - T F Lang
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California, QB3 Building, Suite 203, 1700 4th St, San Francisco, CA, 94158, USA
| | - S Khosla
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - A J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California, QB3 Building, Suite 203, 1700 4th St, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Nilsson M, Sundh D, Mellström D, Lorentzon M. Current Physical Activity Is Independently Associated With Cortical Bone Size and Bone Strength in Elderly Swedish Women. J Bone Miner Res 2017; 32:473-485. [PMID: 27676223 DOI: 10.1002/jbmr.3006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022]
Abstract
Physical activity is believed to have the greatest effect on the skeleton if exerted early in life, but whether or not possible benefits of physical activity on bone microstructure or geometry remain at old age has not been investigated in women. The aim of this study was to investigate if physical activity during skeletal growth and young adulthood or at old age was associated with cortical geometry and trabecular microarchitecture in weight-bearing and non-weight-bearing bone, and areal bone mineral density (aBMD) in elderly women. In this population-based cross-sectional study 1013 women, 78.2 ± 1.6 (mean ± SD) years old, were included. Using high-resolution 3D pQCT (XtremeCT), cortical cross-sectional area (Ct.CSA), cortical thickness (Ct.Th), cortical periosteal perimeter (Ct.Pm), volumetric cortical bone density (D.Ct), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured at the distal (14% level) and ultra-distal tibia and radius, respectively. aBMD was assessed using DXA (Hologic Discovery A) of the spine and hip. A standardized questionnaire was used to collect information about previous exercise and the Physical Activity Scale for the Elderly (PASE) was used for current physical activity. A linear regression model (including levels of exercise during skeletal growth and young adulthood [10 to 30 years of age], PASE score, and covariates) revealed that level of current physical activity was independently associated with Ct.CSA (β = 0.18, p < 0.001) and Ct.Th (β = 0.15, p < 0.001) at the distal tibia, Tb.Th (β = 0.11, p < 0.001) and BV/TV (β = 0.10, p = 0.001) at the ultra-distal tibia, and total hip aBMD (β = 0.10, p < 0.001). Current physical activity was independently associated with cortical bone size, in terms of thicker cortex but not larger periosteal circumference, and higher bone strength at the distal tibia on elderly women, indicating that physical activity at old age may decrease cortical bone loss in weight-bearing bone in elderly women. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| |
Collapse
|
16
|
Hinton PS, Nigh P, Thyfault J. Serum sclerostin decreases following 12months of resistance- or jump-training in men with low bone mass. Bone 2017; 96:85-90. [PMID: 27744012 PMCID: PMC5328803 DOI: 10.1016/j.bone.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE We previously reported that 12months of resistance training (RT, 2×/wk, N=19) or jump training (JUMP, 3×/wk, N=19) increased whole body and lumbar spine BMD and increased serum bone formation markers relative to resorption in physically active (≥4h/wk) men (mean age: 44±2y; median: 44y) with osteopenia of the hip or spine. The purpose of this secondary analysis was to examine the effects of the RT or JUMP intervention on potential endocrine mediators of the exercise effects on bone, specifically IGF-I, PTH and sclerostin. METHODS Fasting blood samples were collected after a 24-h period of no exercise at baseline and after 12months of RT or JUMP. IGF-I, PTH and sclerostin were measured in serum by ELISA. The effects of RT or JUMP on IGF-I, PTH and sclerostin were evaluated using 2×2 repeated measures ANOVA (time, group). This study was conducted in accordance with the Declaration of Helsinki and was approved by the University of Missouri IRB. RESULTS Sclerostin concentrations in serum significantly decreased and IGF-I significantly increased after 12months of RT or JUMP; while PTH remained unchanged. CONCLUSION The beneficial effects of long-term, progressive-intensity RT or JUMP on BMD in moderately active men with low bone mass are associated with decreased sclerostin and increased IGF-I.
Collapse
Affiliation(s)
- Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, United States.
| | - Peggy Nigh
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, United States
| | - John Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, United States; Internal Medicine - Division of GI and Hepatology, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
17
|
Sundh D, Mellström D, Ljunggren Ö, Karlsson MK, Ohlsson C, Nilsson M, Nilsson AG, Lorentzon M. Low serum vitamin D is associated with higher cortical porosity in elderly men. J Intern Med 2016; 280:496-508. [PMID: 27196563 DOI: 10.1111/joim.12514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. OBJECTIVE To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. METHODS A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. RESULTS Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P < 0.05) whilst cortical volumetric BMD, area, trabecular bone volume fraction and femoral neck areal BMD were lower in men in the lowest quartile of vitamin D levels compared to the highest. In men with vitamin D deficiency (<25 nmol L-1 ) or insufficiency [25-49 nmol L-1 , in combination with an elevated serum level of parathyroid hormone (>6.8 pmol L-1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P < 0.01). A linear regression model including age, weight, height, daily calcium intake, physical activity, smoking vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R2 = 1.1%, P = 0.024), area (β = 0.123, R2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R2 = 0.9%, P = 0.04). CONCLUSION Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry.
Collapse
Affiliation(s)
- D Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ö Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - C Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A G Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Effects of Leisure-Time Physical Activity on Vertebral Dimensions in the Northern Finland Birth Cohort 1966. Sci Rep 2016; 6:27844. [PMID: 27282350 PMCID: PMC4901287 DOI: 10.1038/srep27844] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/18/2016] [Indexed: 11/09/2022] Open
Abstract
Vertebral fractures are a common burden amongst elderly and late middle aged people. Vertebral cross-sectional area (CSA) is a major determinant of vertebral strength and thus associated with vertebral fracture risk. Previous studies suggest that physical activity affects vertebral CSA. We aimed to investigate the relationship between leisure-time physical activity (LTPA) from adolescence to middle age and vertebral dimensions in adulthood. We utilized the Northern Finland Birth Cohort 1966, of which 1188 subjects had records of LTPA at 14, 31 and 46 years, and had undergone lumbar magnetic resonance imaging (MRI) at the mean age of 47 years. Using MRI data, we measured eight dimensions of the L4 vertebra. Socioeconomic status, smoking habits, height and weight were also recorded at 14, 31 and 46 years. We obtained lifetime LTPA (14-46 years of age) trajectories using latent class analysis, which resulted in three categories (active, moderately active, inactive) in both genders. Linear regression analysis was used to analyze the association between LTPA and vertebral CSA with adjustments for vertebral height, BMI, socioeconomic status and smoking. High lifetime LTPA was associated with larger vertebral CSA in women but not men. Further research is needed to investigate the factors behind the observed gender-related differences.
Collapse
|
19
|
Biver E, Perréard Lopreno G, Hars M, van Rietbergen B, Vallée JP, Ferrari S, Besse M, Rizzoli R. Occupation-dependent loading increases bone strength in men. Osteoporos Int 2016; 27:1169-1179. [PMID: 26576541 DOI: 10.1007/s00198-015-3409-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/05/2015] [Indexed: 01/09/2023]
Abstract
SUMMARY Ex vivo analyses of humeri and radii from an anthropological collection and in vivo analyses of the distal radius of retired men indicate that occupation-dependent loading positively influences bone strength by an increase of bone size when young followed by a slowdown of the age-related endocortical and trabecular bone alteration. INTRODUCTION Skeleton responds to mechanical stimuli, but it is not established whether chronic loading in the context of occupational activities (OA) influences bone properties. We assessed the impact of occupation-dependent loading on upper limb bone strength. METHODS Individuals were classified according to the intensity of physical loading associated with their OA in two models. Ex vivo, computed tomography scans of the humeri and radii of 219 male skeletons (age of death, 20-93 years) from an anthropological collection of the 20th century (Simon collection) were used to determine estimates of bone strength and cross-sectional geometry. In vivo, distal radius were analysed in 180 men enrolled in the Geneva Retirees Cohort study using high-resolution peripheral quantitative computed tomography and finite element analysis. RESULTS Heavy-loading OA was associated with higher bone strength in both models. This benefit was associated with higher total area (Tt.Ar), medullary area (Me.Ar) and cortical area (Ct.Ar) in young adult skeletons, but the difference decreased in older age. In older men, the humerus supporting heavy loading had a lower Me.Ar. This effect resulted in greater asymmetries of the Me.Ar and the Ct.Ar/Tt.Ar ratio between the humeri of men with unilateral versus bilateral heavy-loading OA. In vivo, an additional benefit of heavy-loading OA was observed on the distal radius trabecular density and microstructure. CONCLUSION Repeated occupation-dependent loading positively influences bone strength by an increase of bone size when young followed by a slowdown of the age-related endocortical and trabecular bone alteration. These data supports the necessity to promote bone health in the context of sedentary occupation.
Collapse
Affiliation(s)
- E Biver
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland.
| | - G Perréard Lopreno
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Institut - Section of Earth and Environmental Sciences, University of Geneva. Uni Carl Vogt, 66 boulevard Carl Vogt, 1211, Geneva 4, Switzerland
| | - M Hars
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, MB 5600, Netherlands
| | - J P Vallée
- Division of Radiology, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| | - S Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| | - M Besse
- Laboratory of Prehistoric Archaeology and Anthropology, F.-A. Forel Institut - Section of Earth and Environmental Sciences, University of Geneva. Uni Carl Vogt, 66 boulevard Carl Vogt, 1211, Geneva 4, Switzerland
| | - R Rizzoli
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 4 Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| |
Collapse
|
20
|
Antony B, Venn A, Cicuttini F, March L, Blizzard L, Dwyer T, Cross M, Jones G, Ding C. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults. Arthritis Res Ther 2015; 17:298. [PMID: 26503530 PMCID: PMC4623258 DOI: 10.1186/s13075-015-0813-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. METHODS Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. RESULTS In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. CONCLUSION While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors rather than physical activity may be important.
Collapse
Affiliation(s)
- Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Alison Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Lyn March
- Institute of Bone and Joint Research, University of Sydney, Sydney, Australia.
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Terence Dwyer
- Murdoch Childrens Research Institute, Melbourne, Australia.
| | - Marita Cross
- Institute of Bone and Joint Research, University of Sydney, Sydney, Australia.
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Changhai Ding
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
21
|
Herrmann D, Buck C, Sioen I, Kouride Y, Marild S, Molnár D, Mouratidou T, Pitsiladis Y, Russo P, Veidebaum T, Ahrens W. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act 2015; 12:112. [PMID: 26377674 PMCID: PMC4574210 DOI: 10.1186/s12966-015-0273-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/29/2015] [Indexed: 11/17/2022] Open
Abstract
Background Physical activity (PA), weight-bearing exercises (WBE) and muscle strength contribute to skeletal development, while sedentary behaviour (SB) adversely affects bone health. Previous studies examined the isolated effect of PA, SB or muscle strength on bone health, which was usually assessed by x-ray methods, in children. Little is known about the combined effects of these factors on bone stiffness (SI) assessed by quantitative ultrasound. We investigated the joint association of PA, SB and muscle strength on SI in children. Methods In 1512 preschool (2- < 6 years) and 2953 school children (6–10 years), data on calcaneal SI as well as on accelerometer-based sedentary time (SED), light (LPA), moderate (MPA) and vigorous PA (VPA) were available. Parents reported sports (WBE versus no WBE), leisure time PA and screen time of their children. Jumping distance and handgrip strength served as indicators for muscle strength. The association of PA, SB and muscle strength with SI was estimated by multivariate linear regression, stratified by age group. Models were adjusted for age, sex, country, fat-free mass, daylight duration, consumption of dairy products and PA, or respectively SB. Results Mean SI was similar in preschool (79.5 ± 15.0) and school children (81.3 ± 12.1). In both age groups, an additional 10 min/day in MPA or VPA increased the SI on average by 1 or 2 %, respectively (p ≤ .05). The negative association of SED with SI decreased after controlling for MVPA. LPA was not associated with SI. Furthermore, participation in WBE led to a 3 and 2 % higher SI in preschool (p = 0.003) and school children (p < .001), respectively. Although muscle strength significantly contributed to SI, it did not affect the associations of PA with SI. In contrast to objectively assessed PA, reported leisure time PA and screen time showed no remarkable association with SI. Conclusion This study suggests that already an additional 10 min/day of MPA or VPA or the participation in WBE may result in a relevant increase in SI in children, taking muscle strength and SB into account. Our results support the importance of assessing accelerometer-based PA in large-scale studies. This may be important when deriving dose–response relationships between PA and bone health in children.
Collapse
Affiliation(s)
- Diana Herrmann
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany.
| | - Christoph Buck
- Department of Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany.
| | - Isabelle Sioen
- Department of Public Health, Ghent University, 4K3, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Yiannis Kouride
- Research and Education Institute of Child Health, 138 Limassol Ave, #205, 2015, Strovolos, Cyprus.
| | - Staffan Marild
- Department of Paediatrics, Queen Silvia Children's Hospital, University of Gothenburg, Rondvägen 15, 41685, Gothenburg, Sweden.
| | - Dénes Molnár
- Department of Pediatrics, Medical Faculty, University of Pecs, Jozsef A. u. 7, 7623, Pecs, Hungary.
| | - Theodora Mouratidou
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Yannis Pitsiladis
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN, UK.
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100, Avellino, Italy.
| | - Toomas Veidebaum
- Department of Chronic Diseases, Centre of Behavioural and Health Sciences, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia.
| | - Wolfgang Ahrens
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstr. 30, 28359, Bremen, Germany. .,Faculty of Mathematics and Computer Science, Bremen University, Bibliothekstraße 1, 28359, Bremen, Germany.
| | | |
Collapse
|
22
|
Sundh D, Mellström D, Nilsson M, Karlsson M, Ohlsson C, Lorentzon M. Increased Cortical Porosity in Older Men With Fracture. J Bone Miner Res 2015; 30:1692-700. [PMID: 25777580 DOI: 10.1002/jbmr.2509] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 11/12/2022]
Abstract
Cortical porosity increases with age and affects bone strength, but its association with fracture in older men is unknown. The aim of this study was to investigate whether cortical porosity is associated with prevalent fractures in older men. A subsample of 456 men aged 80.2 ± 3.5 (mean ± SD) years, with available high-resolution peripheral quantitative computed tomography measurements at the tibia from the 5-year follow-up exam, was drawn from the prospective MrOS Gothenburg study. Dual-energy X-ray absorptiometry was used to measure areal bone mineral density (aBMD). Data on physical activity, calcium intake, medications, diseases, and smoking were collected on questionnaires at the follow-up exam. Of 87 men (19.1%) with fracture at or after age 50 years (all fracture group), 52 (11.4%) had had a self-reported fracture before the baseline exam and 35 (7.7%) had had an X-ray-verified fracture between baseline and follow-up. Men in the all-fracture group and in the X-ray-verified group had 15.8% (13.2% ± 4.9% versus 11.4% ± 3.8%; p < 0.001) and 21.6% (14.1% ± 5.2% versus 11.6% ± 3.9%; p < 0.01) higher cortical porosity, respectively, than men in the nonfracture group. The independent associations between bone microstructure parameters and fracture were tested using multivariate logistic regression with age, height, weight, calcium intake, smoking, physical activity, medications, and diseases as covariates. Cortical porosity was independently associated with any fracture (reported or X-ray-verified; OR per SD increase 1.49; 95% confidence interval (CI), 1.17 to 1.90) and with any X-ray-verified fracture alone (OR 1.73; 95% CI, 1.23 to 2.42). Including aBMD (spine or hip, respectively) in the multivariate logistic regression above revealed that cortical porosity was associated with any fracture (OR 1.54; 95% CI, 1.17 to 2.01) and with X-ray-verified fracture alone (OR 1.49; 95% CI, 1.00 to 2.22). Cortical porosity was associated with prevalence of fracture even after adjustment for aBMD.
Collapse
Affiliation(s)
- Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, and Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Claes Ohlsson
- Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Tolonen S, Sievänen H, Mikkilä V, Telama R, Oikonen M, Laaksonen M, Viikari J, Kähönen M, Raitakari OT. Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up--the Cardiovascular Risk in Young Finns Study. Bone 2015; 75:77-83. [PMID: 25697084 DOI: 10.1016/j.bone.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
High peak bone mass and strong bone phenotype are known to be partly explained by physical activity during growth but there are few prospective studies on this topic. In this 28-year follow-up of Cardiovascular Risk in Young Finns Study cohort, we assessed whether habitual childhood and adolescence physical activity or inactivity at the age of 3-18 years were associated with adult phenotype of weight-bearing tibia and the risk of low-energy fractures. Baseline physical activity and data on clinical, nutritional and lifestyle factors were assessed separately for females and males aged 3-6-years (N=395-421) and 9-18-years (N=923-965). At the age of 31-46-years, the prevalence of low-energy fractures was assessed with a questionnaire and several tibial traits were measured with pQCT (bone mineral content (BMC; mg), total and cortical cross-sectional areas (mm(2)), trabecular (for the distal site only) and cortical (for the shaft only) bone densities (mg/cm(3)), stress-strain index (SSI; mm(3), for the shaft only), bone strength index (BSI; mg(2)/cm(4), for the distal site only) and the cortical strength index (CSI, for the shaft only)). For the statistical analysis, each bone trait was categorized as below the cohort median or the median and above and the adjusted odds ratios (OR) were determined. In females, frequent physical activity at the age of 9-18-years was associated with higher adulthood values of BSI, total and cortical areas, BMC, CSI and SSI at the tibia independently of many health and lifestyle factors (ORs 0.33-0.53, P≤0.05; P-values for trend 0.002-0.05). Cortical density at the tibial shaft showed the opposite trend (P-value for trend 0.03). Similarly in males, frequent physical activity was associated with higher values of adult total and cortical areas and CSI at the tibia (ORs 0.48-0.53, P≤0.05; P-values for trend 0.01-0.02). However, there was no evidence that childhood or adolescence physical activity was associated with lower risk of low energy fractures during the follow-up. In conclusion, frequent habitual physical activity in adolescence seems to confer benefits on tibial bone size and geometry in adulthood.
Collapse
Affiliation(s)
- S Tolonen
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland; Vaasa Central Hospital, Vaasa, Finland.
| | - H Sievänen
- The UKK-institute for Health Promotion Research, Tampere, Finland
| | - V Mikkilä
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - R Telama
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - M Oikonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - M Laaksonen
- Division of Nutrition, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - J Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Finland
| | - M Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - O T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
24
|
Janz KF, Thomas DQ, Ford MA, Williams SM. Top 10 research questions related to physical activity and bone health in children and adolescents. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2015; 86:5-12. [PMID: 25664669 DOI: 10.1080/02701367.2014.995019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Evidence strongly supports a positive, causal effect of physical activity on bone strength and suggests long-term benefits of childhood physical activity to the prevention of osteoporosis. The contribution of healthy bone development in youth is likely to be as important to fracture prevention as the amount of late adulthood bone loss. Families, schools (particularly physical education), and communities are key settings for health promotion focused on bone-enhancing physical activity. However, little research has explored the topic of health promotion and physical education as they pertain to bone health, so best practices are not known. Based on our understanding of the literature, we present the top 10 research questions in health promotion and physical education that should be answered to advance bone-enhancing physical activity in children and adolescents.
Collapse
|
25
|
Strope MA, Nigh P, Carter MI, Lin N, Jiang J, Hinton PS. Physical Activity-Associated Bone Loading During Adolescence and Young Adulthood Is Positively Associated With Adult Bone Mineral Density in Men. Am J Mens Health 2014; 9:442-50. [PMID: 25237041 DOI: 10.1177/1557988314549749] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Physical activity during growth increases bone mass and strength; however, it remains unclear whether these benefits persist. The purpose of this study was to determine: (a) if bone loading during adolescence (13-18 years) or young adulthood (19-29 years) in men is associated with greater bone mineral density (BMD) in adulthood; (b) if current participation in high-impact activity (ground reaction force>4×body weight) and/or resistance training is associated with greater BMD; and, (c) if continuous participation in a high-impact activity from adolescence to adulthood is associated with greater BMD. Apparently healthy, physically active men aged 30 to 65 years (n=203) participated in this cross-sectional study. Exercise-associated bone loading was estimated based on ground reaction forces of historical physical activity. Current BMD was measured using dual-energy X-ray absorptiometry. Participants were grouped based on current participation in a high-impact activity (n=18), resistance training (n=57), both (n=14), or neither (n=114); groups were compared by two-way analysis of covariance. Bone loading during adolescence and young adulthood were significant, positive predictors of BMD of the whole body, total hip, and lumbar spine, adjusting for lean body mass and/or age in the regression models. Individuals who currently participate in a high-impact activity had greater lumbar spine BMD than nonparticipants. Men who continuously participated in a high-impact activity had greater hip and lumbar spine BMD than those who did not. In conclusion, physical activity-associated bone loading both during and after skeletal growth is positively associated with adult bone mass.
Collapse
Affiliation(s)
| | - Peggy Nigh
- University of Missouri, Columbia, MO, USA
| | | | | | - Jun Jiang
- University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
26
|
Abrahamsen B, Brask-Lindemann D, Rubin KH, Schwarz P. A review of lifestyle, smoking and other modifiable risk factors for osteoporotic fractures. BONEKEY REPORTS 2014; 3:574. [PMID: 25228987 DOI: 10.1038/bonekey.2014.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/08/2014] [Indexed: 12/25/2022]
Abstract
Although many strong risk factors for osteoporosis-such as family history, fracture history and age-are not modifiable, a number of important risk factors are potential targets for intervention. Thus, simple, non-pharmacological intervention in patients at increased risk of osteoporotic fractures could include reduction of excessive alcohol intake, smoking cessation, adequate nutrition, patient education, daily physical activity and a careful review of medications that could increase the risk of falls and fractures. There remains, however, an unmet need for high-quality intervention studies in most of these areas.
Collapse
Affiliation(s)
- Bo Abrahamsen
- Department of Medicine, Research Centre of Ageing and Osteoporosis, Glostrup Hospital , Copenhagen, Denmark ; Odense Patient Data Exploratory Network OPEN, Institute of Clinical Research, University of Southern Denmark , Odense, Denmark
| | | | - Katrine Hass Rubin
- Odense Patient Data Exploratory Network OPEN, Institute of Clinical Research, University of Southern Denmark , Odense, Denmark
| | - Peter Schwarz
- Department of Medicine, Research Centre of Ageing and Osteoporosis, Glostrup Hospital , Copenhagen, Denmark ; Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
27
|
Abstract
Skeletal health is modulated by a variety of factors, including genetic makeup, hormonal axes, and environment. Across all ages, extremes of body weight may exert a deleterious effect on bone accretion and increase fracture risk. The incidence of both anorexia nervosa and obesity, each involving extreme alterations in body composition, is rising among youth, and secondary osteoporosis is increasingly being diagnosed among affected children and adolescents. Compared with the elderly, the definition of osteoporosis that stems from any underlying condition differs for the pediatric population and special precautions are required with regard to treatment of young patients. Early recognition and management of both underweight and overweight youth and the accompanying consequences on bone and mineral metabolism are essential for preservation of skeletal health, although prevention of bone loss and optimization of bone mineral accrual remain the most important protective measures.
Collapse
Affiliation(s)
- Shara R Bialo
- Division of Pediatric Endocrinology, Hasbro Children's Hospital/Alpert Medical School of Brown University, 593 Eddy Street, MPSII, Providence, RI, 02903, USA,
| | | |
Collapse
|