1
|
Bauer C, Patten RK, Sun Q, Li H, Konja D, Woessner M, Lin X, Garnham A, Hare DL, Ebeling PR, Sim M, Lewis JR, Wang Y, Parker L, Levinger I. The effect of prednisolone ingestion and acute exercise on lipocalin-2 and its variants in young men: a pilot randomised crossover study. Sci Rep 2025; 15:4453. [PMID: 39910157 PMCID: PMC11799433 DOI: 10.1038/s41598-025-88115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Lipocalin-2 (LCN2) has three main variants; polyaminated (hLCN2) and non-polyaminated (C87A and R81E). The polyaminated form is proposed to positively influence energy control, whereas the non-polyaminated forms negatively impact energy control in mice. Glucocorticoids negatively affect glucose regulation and exercise has a positive effect. We hypothesise that glucocorticoids will suppress, while exercise will increase hLCN2, and decrease C87A and R81E, which will be associated with improved insulin sensitivity. In a randomised crossover design, nine young healthy men (aged 27.8 ± 4.9 years; BMI 24.4 ± 2.4 kg/m2) completed 30 min of high-intensity aerobic exercise (90-95% heart rate reserve) after glucocorticoid or placebo ingestion. Blood was collected and analyzed for LCN2 and its variants levels at baseline, immediately, 60 min and 180 min post-exercise. Insulin sensitivity was assessed using hyperinsulinemic-euglycemic clamp. A main effect, increase in LCN2 was detected for prednisolone ingestion (overall treatment effect p = 0.001), but not LCN2 variants (all p > 0.05). Main effects for time were observed for exercise for LCN2 and all variants (overall time effect all p < 0.02). Regardless of treatment, LCN2, C87A, R81E, and hLCN2 increased immediately after exercise compared with baseline (all p < 0.04). C87A, but not LCN2 or its other variants, remained elevated at 180 min post-ex (p = 0.007). LCN2, but not its variants, was elevated in response to prednisolone ingestion. LCN2 and its variants are transiently increased by acute exercise, but this increase was not related to insulin sensitivity. The clinical implication of elevated LCN2 and its variants post-exercise on satiety and energy regulation, as well as the mechanisms involved warrant further investigation.Clinical trial registration: www.anzctr.org.au , ACTRN12615000755538.
Collapse
Affiliation(s)
- Carlie Bauer
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Qiyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haoyun Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mary Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Andrew Garnham
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - David L Hare
- Department of Cardiology, Austin Health, University of Melbourne, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Endocrinology, Monash Health, Clayton, VIC, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, Australia
- Medical School, The University of Western Australia, Perth, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia.
- Australian Institute for Musculoskeletal Science, Victoria University, University of Melbourne, Western Health, St. Albans, Australia.
| |
Collapse
|
2
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
3
|
Lalunio H, Parker L, Hanson ED, Gregorevic P, Levinger I, Hayes A, Goodman CA. Detecting the vitamin D receptor (VDR) protein in mouse and human skeletal muscle: Strain-specific, species-specific and inter-individual variation. Mol Cell Endocrinol 2023; 578:112050. [PMID: 37683909 DOI: 10.1016/j.mce.2023.112050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Vitamin D, and its receptor (VDR), play roles in muscle development/function, however, VDR detection in muscle has been controversial. Using different sample preparation methods and antibodies, we examined differences in muscle VDR protein abundance between two mouse strains and between mice and humans. The mouse D-6 VDR antibody was not reliable for detecting VDR in mouse muscle, but was suitable for human muscle, while the rabbit D2K6W antibody was valid for mouse and human muscle. VDR protein was generally lower in muscles from C57 B l/6 than FVB/N mice and was higher in human than mouse muscle. Two putative VDR bands were detected in human muscle, possibly representing VDR isoforms/splice variants, with marked inter-individual differences. This study provides new information on detecting VDR in muscle and on inter-mouse strain and inter-human individual differences in VDR expression. These findings may have implications for future pre-clinical and clinical studies and prompt further investigation to confirm possible VDR isoforms in human muscle.
Collapse
Affiliation(s)
- Hannah Lalunio
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Erik D Hanson
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry and Molecular Biology, Monash University, VIC, Australia
| | - Itamar Levinger
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, Victoria, Australia; Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Hou B, Qiu J. Correlation analysis of bone metabolism indices and glycosylated hemoglobin in middle-aged and older adult patients with type 2 diabetes mellitus. Medicine (Baltimore) 2023; 102:e35115. [PMID: 37713851 PMCID: PMC10508373 DOI: 10.1097/md.0000000000035115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
This study aimed to evaluate the association between bone metabolism indices and glycated hemoglobin (HbA1c) levels in middle-aged and older adult patients with type 2 diabetes mellitus (T2DM). We retrospectively analyzed 372 T2DM patients aged > 45 years who had attended the Endocrinology Department at our hospital (males, n = 192; postmenopausal females, n = 180). We collected data concerning patient characteristics, HbA1c levels, and bone metabolism indices (25-hydroxyvitamin D [25(OH)D], β-isomerized C-terminal telopeptides, N-terminal osteocalcin [N-MID], procollagen type 1 N-terminal propeptide [P1NP], bone-specific alkaline phosphatase [BAP], calcium [Ca], and phosphorus [P]). Study patients were divided into 3 groups according to their HbA1c levels: Group A, HbA1c < 7.5%; Group B, HbA1c 7.5 to 8.9%; and Group C, HbA1c ≥ 9.0%. Pearson correlation was used to determine the correlation between HbA1c levels and the bone metabolism indices. Multiple linear regression analysis was performed to identify factors influencing HbA1c in T2DM patients. Among the 3 groups, no differences were observed in 25(OH)D, β-CTx, Ca, or P indices among the 3 groups, whereas a statistically significant difference in N-MID was observed. Pearson correlation analysis showed an inverse correlation between HbA1c levels and N-MID and no correlation with other bone metabolism indices. Multiple linear regression analysis showed that N-MID was a factor influencing HbA1c levels after adjusting for age and body mass index (BMI). Serum N-MID levels negatively correlated with HbA1c levels in middle-aged and older adult men with T2DM. Therefore, high serum N-MID levels may contribute to blood glucose control in T2DM patients.
Collapse
Affiliation(s)
- Bo Hou
- Department of Endocrinology, Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| | - Jiang Qiu
- Department of Endocrinology, Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| |
Collapse
|
5
|
Delangre E, Pommier G, Tolu S, Uzan B, Bailbé D, Movassat J. Lithium treatment mitigates the diabetogenic effects of chronic cortico-therapy. Biomed Pharmacother 2023; 164:114895. [PMID: 37224758 DOI: 10.1016/j.biopha.2023.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids (GCs) are the main treatment for autoimmune and inflammatory disorders and are also used as immunosuppressive therapy for patients with organ transplantation. However, these treatments have several side effects, including metabolic disorders. Indeed, cortico-therapy may induce insulin resistance, glucose intolerance, disrupted insulin and glucagon secretion, excessive gluconeogenesis, leading to diabetes in susceptible individuals. Recently, lithium has been shown to alleviate deleterious effects of GCs in various diseased conditions. EXPERIMENTAL APPROACH In this study, using two rat models of GC-induced metabolic disorders, we investigated the effects of Lithium Chloride (LiCl) in the mitigation of deleterious effects of GCs. Rats were treated either with corticosterone or dexamethasone, and with or without LiCl. Animals were then assessed for glucose tolerance, insulin sensitivity, in vivo and ex vivo glucose-induced insulin secretion and hepatic gluconeogenesis. KEY RESULTS We showed that in rats chronically treated with corticosterone, lithium treatment markedly reduced insulin resistance. In addition, in rats treated with dexamethasone, lithium administration improved glucose tolerance, associated with enhanced insulin secretion in vivo. Moreover, liver gluconeogenesis was reduced upon LiCl treatment. The improvement of insulin secretion in vivo appeared to be due to an indirect regulation of β cell function, since the ex vivo assessment of insulin secretion and β cell mass in islets from animals treated with LiCl revealed no difference compared to untreated animals. CONCLUSION AND IMPLICATIONS Collectively, our data provide evidences for the beneficial effects of lithium to mitigate the adverse metabolic effects of chronic cortico-therapy.
Collapse
Affiliation(s)
- Etienne Delangre
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Université Paris Cité, UFR Sciences du Vivant, F-75013 Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Benjamin Uzan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
6
|
Li JX, Cummins CL. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat Rev Endocrinol 2022; 18:540-557. [PMID: 35585199 PMCID: PMC9116713 DOI: 10.1038/s41574-022-00683-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 02/08/2023]
Abstract
Glucocorticoid hormones were discovered to have use as potent anti-inflammatory and immunosuppressive therapeutics in the 1940s and their continued use and development have successfully revolutionized the management of acute and chronic inflammatory diseases. However, long-term use of glucocorticoids is severely hampered by undesirable metabolic complications, including the development of type 2 diabetes mellitus. These effects occur due to glucocorticoid receptor activation within multiple tissues, which results in inter-organ crosstalk that increases hepatic glucose production and inhibits peripheral glucose uptake. Despite the high prevalence of glucocorticoid-induced hyperglycaemia associated with their routine clinical use, treatment protocols for optimal management of the metabolic adverse effects are lacking or underutilized. The type, dose and potency of the glucocorticoid administered dictates the choice of hypoglycaemic intervention (non-insulin or insulin therapy) that should be provided to patients. The longstanding quest to identify dissociated glucocorticoid receptor agonists to separate the hyperglycaemic complications of glucocorticoids from their therapeutically beneficial anti-inflammatory effects is ongoing, with selective glucocorticoid receptor modulators in clinical testing. Promising areas of preclinical research include new mechanisms to disrupt glucocorticoid signalling in a tissue-selective manner and the identification of novel targets that can selectively dissociate the effects of glucocorticoids. These research arms share the ultimate goal of achieving the anti-inflammatory actions of glucocorticoids without the metabolic consequences.
Collapse
Affiliation(s)
- Jia-Xu Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Parker L, Ang T, Morrison DJ, Lee NJ, Levinger I, Keske MA. Prior aerobic exercise mitigates the decrease in serum osteoglycin and lipocalin-2 following high-glucose mixed-nutrient meal ingestion in young men. Am J Physiol Endocrinol Metab 2022; 323:E319-E332. [PMID: 35767699 DOI: 10.1152/ajpendo.00025.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoglycin (OGN) and lipocalin-2 (LCN2) are hormones that can be secreted by bone and have been linked to glucose homeostasis in rodents. However, the endocrine role of these hormones in humans is contradictory and unclear. We examined the effects of exercise and meal ingestion on circulating serum OGN and LCN2 levels in eight healthy males {age: 28 [25, 30] years [median ± interquartile range (IQR)] and body mass index [BMI]: 24.3 [23.6, 25.5] kg/m2}. In a randomized crossover design, participants ingested a high-glucose (1.1 g glucose/kg body wt) mixed-nutrient meal (45% carbohydrate, 20% protein, and 35% fat) on a rest-control day and 3 and 24 h after aerobic cycling exercise (1 h at 70%-75% V̇o2peak). Acute aerobic exercise increased serum LCN2 levels immediately after exercise (∼61%), which remained elevated 3-h postexercise (∼55%). In contrast, serum OGN remained similar to baseline levels throughout the 3-h postexercise recovery period. The ingestion of a high-glucose mixed-nutrient meal led to a decrease in serum OGN at 90-min (approximately -17%) and 120-min postprandial (approximately -44%), and a decrease in LCN2 at 120-min postprandial (approximately -26%). Compared with the control meal, prior exercise elevated serum OGN and LCN2 levels at 120-min postprandial when the meal was ingested 3-h (OGN: ∼74% and LCN2: ∼68%) and 24-h postexercise (OGN: ∼56% and LCN2: ∼16%). Acute exercise increases serum LCN2 and attenuates the postprandial decrease in OGN and LCN2 following high-glucose mixed-nutrient meal ingestion. The potential endocrine role of circulating OGN and LCN2 in humans warrants further investigation.NEW & NOTEWORTHY We provide novel evidence that OGN and LCN2 decrease 120 min after ingesting a high-glucose mixed-nutrient meal in healthy adults. Acute aerobic exercise increases circulating LCN2 for up to 3-h postexercise, whereas circulating OGN remains similar to baseline. Despite differing postexercise responses, postprandial LCN2 and OGN are elevated when the high-glucose meal is ingested 3-h and 24-h postexercise. Findings support that OGN and LCN2 are dynamically linked to energy homeostasis in humans.
Collapse
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dale J Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicola J Lee
- Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
8
|
Bauer C, Tacey A, Garnham A, Smith C, Woessner MN, Lin X, Zarekookandeh N, Hare DL, Lewis JR, Parker L, Levinger I. The effects of acute high intensity interval exercise and hyperinsulinemic‐euglycemic clamp on osteoglycin levels in young and middle‐aged men. JBMR Plus 2022; 6:e10667. [DOI: 10.1002/jbm4.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carlie Bauer
- Institute for Health and Sport, Victoria University Melbourne Australia
| | - Alexander Tacey
- Institute for Health and Sport, Victoria University Melbourne Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University Melbourne Australia
| | - Cassandra Smith
- Institute for Health and Sport, Victoria University Melbourne Australia
- Australian Institute for Musculoskeletal Science, Victoria University, University of Melbourne, Western Health St Albans VIC Australia
- Institute for Nutrition Research, School of Medical and Health Sciences Edith Cowan University, Joondalup; Medical School WA Australia
| | - Mary N. Woessner
- Institute for Health and Sport, Victoria University Melbourne Australia
| | - Xuzhu Lin
- Institute for Health and Sport, Victoria University Melbourne Australia
| | | | - David L Hare
- University of Melbourne and the Department of Cardiology, Austin Health Melbourne VIC Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences Edith Cowan University, Joondalup; Medical School WA Australia
- University of Western Australia and Centre for Kidney Research, Children's Hospital at Westmead
- School of Public Health Sydney Medical School, The University of Sydney NSW Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University Geelong Australia
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University Melbourne Australia
- Australian Institute for Musculoskeletal Science, Victoria University, University of Melbourne, Western Health St Albans VIC Australia
| |
Collapse
|
9
|
Woessner MN, Hiam D, Smith C, Lin X, Zarekookandeh N, Tacey A, Parker L, Landen S, Jacques M, Lewis JR, Brennan-Speranza T, Voisin S, Duque G, Eynon N, Levinger I. Osteoglycin Across the Adult Lifespan. J Clin Endocrinol Metab 2022; 107:e1426-e1433. [PMID: 34850904 DOI: 10.1210/clinem/dgab861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Osteoglycin (OGN) is a proteoglycan released from bone and muscle which has been associated with markers of metabolic health. However, it is not clear whether the levels of circulating OGN change throughout the adult lifespan or if they are associated with clinical metabolic markers or fitness. OBJECTIVE We aimed to identify the levels of circulating OGN across the lifespan and to further explore the relationship between OGN and aerobic capacity as well as OGN's association with glucose and HOMA-IR. METHODS 107 individuals (46 males and 61 females) aged 21-87 years were included in the study. Serum OGN levels, aerobic capacity (VO2peak), glucose, and homeostatic model assessment for insulin resistance (HOMA-IR) were assessed. T-tests were used to compare participant characteristics between sexes. Regression analyses were performed to assess the relationship between OGN and age, and OGN and fitness and metabolic markers. RESULTS OGN displayed a nonlinear, weak "U-shaped" relationship with age across both sexes. Men had higher levels of OGN than women across the lifespan (β = 0.23, P = .03). Age and sex explained 16% of the variance in OGN (adjusted R2 = 0.16; P < .001). Higher OGN was associated with higher VO2peak (β = 0.02, P = .001); however, those aged <50 showed a stronger positive relationship than those aged >50. A higher OGN level was associated with a higher circulating glucose level (β = 0.17, P < .01). No association was observed between OGN and HOMA-IR. CONCLUSION OGN was characterized by a U-shaped curve across the lifespan which was similar between sexes. Those with a higher aerobic capacity or higher glucose concentration had higher OGN levels. Our data suggest an association between OGN and aerobic fitness and glucose regulation. Future studies should focus on exploring the potential of OGN as a biomarker for chronic disease.
Collapse
Affiliation(s)
- Mary N Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Xuzhu Lin
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Navabeh Zarekookandeh
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Shanie Landen
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Macsue Jacques
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
- The University of Sydney, School of Public Health, Sydney Medical School, Centre for Kidney Research, Children's Hospital at Westmead, NSW, Australia
| | | | - Sarah Voisin
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Nir Eynon
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|
11
|
Tacey A, Hayes A, Zulli A, Levinger I. Osteocalcin and vascular function: is there a cross-talk? Mol Metab 2021; 49:101205. [PMID: 33684607 PMCID: PMC8027272 DOI: 10.1016/j.molmet.2021.101205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Background The bone-derived protein osteocalcin (OC), in its undercarboxylated (ucOC) form, has a beneficial effect on energy metabolism and may be a future therapeutic target for metabolic diseases. Increasing evidence suggests a link between ucOC and cardiovascular disease (CVD) development; however, the exact relationship is conflicting and unclear. Scope of review The aim of this review was to summarise the current research examining the interaction between OC and vascular dysfunction, the initiating stage in the development of atherosclerosis and CVD. Major conclusions In humans, the association between OC and vascular function is inconsistent. Several studies report that total OC (tOC) is associated with adverse function or beneficial function, whereas others report that tOC and ucOC has no effect on vascular function. The conflicting data are likely due to several methodological inconsistencies, in particular the lack of studies reporting circulating ucOC levels. In animal models, the direct administration of ucOC to isolated blood vessels ex vivo produced minimal changes in endothelial function, but importantly, no adverse responses. Finally, in human endothelial and vascular smooth muscle cells, ucOC treatment did not influence classical markers of cellular function, including endothelin-1, vascular adhesion molecule-1 and monocyte chemoattractant protein-1 after exposure to high glucose and inflammatory conditions. The lack of adverse effects in ex vivo and in vitro studies suggests that ucOC may be targeted as a future therapeutic for metabolic diseases, without the risk of detrimental effects in the vasculature. However, further studies are needed to confirm these findings and to investigate whether there is a direct beneficial influence of ucOC. ucOC is implicated in the regulation of glucose homeostasis; but its role in the vasculature has been minimally reported. Studies which examine the association between ucOC and vascular function in humans often report inconsistent outcomes. In addition, ex vivo and in vitro studies have reported that ucOC likely does not directly regulate endothelial function. ucOC may be targeted as a therapeutic treatment for metabolic diseases without a risk of adverse effects in the vasculature.
Collapse
Affiliation(s)
- Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.
| |
Collapse
|
12
|
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci 2021; 22:ijms22020623. [PMID: 33435513 PMCID: PMC7827500 DOI: 10.3390/ijms22020623] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects.
Collapse
|
13
|
Chen X, Yang K, Jin X, Meng Z, Liu B, Yu H, Lu P, Wang K, Fan Z, Tang Z, Zhang F, Liu C. Bone Autophagy: A Potential Way of Exercise-Mediated Meg3/P62/Runx2 Pathway to Regulate Bone Formation in T2DM Mice. Diabetes Metab Syndr Obes 2021; 14:2753-2764. [PMID: 34168475 PMCID: PMC8216663 DOI: 10.2147/dmso.s299744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meg3 has been shown to attenuate T2DM bone autophagy by activating p62 to inhibit bone formation. However, whether exercise can reverse this process to promote T2DM bone formation and its mechanism remains unknown. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with 8-week HIIT and downhill running exercise. Micro-CT was used to scan the bone microstructure. Bone morphology was observed by HE staining, and the osteoblast (OB) activity in bones was observed by AKP staining. Calcium ion and phosphorus concentration in serum was detected by ELISA; RT-PCR was used to detect the mRNA level, and Western blot was used to detect the protein level of related indexes in Meg3/p62/Runx2 pathway. RESULTS The inhibition of bone autophagy, in the bones of T2DM mice, resulted in the degradation of the bone tissue morphology and structure, with the increase of the expressions of Meg3, PI3K, Akt, mTOR, p62 and NF-κB. However, 8-week HIIT and downhill running could reverse this process, especially downhill running, manifested with the up-regulation of miR-16 mRNA level, along with Beclin-1, LC3 II and Runx2 mRNA and protein level. CONCLUSION T2DM leads to pathology in model mice. Eight-week HIIT and downhill running exercise can inhibit Meg3, activate autophagy of osteoblasts and promote bone formation in T2DM mice.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Correspondence: Xing Jin; Zhaoxiang Meng Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China Email
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Zhaoxiang Meng Email
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huilin Yu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kui Wang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhangling Fan
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Ziang Tang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Feng Zhang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
14
|
Aoyagi J, Kanai T, Ito T, Odaka J, Saito T, Betsui H, Kurosaki M, Maru T, Yamagata T. Glucocorticoid effects on bone strength in children with renal diseases. Nephrology (Carlton) 2020; 26:119-125. [PMID: 33207023 DOI: 10.1111/nep.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 12/01/2022]
Abstract
AIM Glucocorticoids (GC) are essential medicines for idiopathic steroid-sensitive nephrotic syndrome (ISSNS) and IgA nephropathy (IgAN), with good clinical results. However, they cause bone fragility. The aim of this study was to elucidate GC effects on bone strength assessed as bone mineral density (BMD) and bone quality, using bone turnover markers (BTM), in children with ISSNS or IgAN. METHODS Eleven children with ISSNS and 13 with IgAN were included. All the patients received GC treatment according to each protocol. The BMD and BTM-serum alkaline phosphatase (S-ALP), tartrate-resistant acid phosphatase 5b (S-TRACP-5b), and undercarboxylated osteocalcin (S-ucOC)-were measured from the initiation of steroid treatment (STx) to the end of STx in both groups. RESULTS In ISSNS, S-ALP and S-ucOC levels were decreased significantly at 1 month. BMD and S-TRACP-5b levels showed no significant change through this observation period. In IgAN, BMD and S-ALP levels were decreased significantly at 1 and 3 months, respectively, and recovered to baseline at 10 months after the initiation of GC dosage reduction. S-TRACP-5b levels were decreased significantly at 3 months and remained lower than at baseline through the observation period. In both groups, S-ucOC levels did not directly reflect bone strength. CONCLUSION This study clarified the following three points regarding GC effects on bone strength in children with ISSNS or IgAN: first, S-ALP is a more sensitive bone quality marker than S-TRACP-5b; second, BMD loss was observed only when both S-ALP and S-TRACP-5b levels decreased, and third, S-ucOC levels do not directly reflect bone strength.
Collapse
Affiliation(s)
- Jun Aoyagi
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Takahiro Kanai
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Takane Ito
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Jun Odaka
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Takashi Saito
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Hiroyuki Betsui
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Masanori Kurosaki
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Tomomi Maru
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| | - Takanori Yamagata
- Department of Paediatrics, Jichi Medical University, Yakushiji Shimotsuke, Tochigi, Japan
| |
Collapse
|
15
|
Parker L, Morrison DJ, Wadley GD, Shaw CS, Betik AC, Roberts‐Thomson K, Kaur G, Keske MA. Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high‐glucose mixed meal in healthy young men. J Physiol 2020; 599:83-102. [DOI: 10.1113/jp280651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Andrew C. Betik
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Katherine Roberts‐Thomson
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| |
Collapse
|
16
|
Yang Y, Zhong W, Huang J, Geng L, Feng Q. Association of serum osteocalcin levels with glucose metabolism in trauma patients. Medicine (Baltimore) 2020; 99:e21901. [PMID: 32899020 PMCID: PMC7478502 DOI: 10.1097/md.0000000000021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteocalcin (OC) is an endocrine hormone that regulates glucose metabolism.The aim of this study was to investigate the relationship between serum OC levels and glucose metabolism after trauma.This was a retrospective study of trauma patients admitted to the Department of Emergency Medicine between October 2017 and April 2019. Age, height, weight, injury severity score, and previous medical history were recorded. Serum N-terminal mid-fragment of OC (N-MID OC), hemoglobin Alc (HbA1c), fasting plasma glucose (FPG), fasting insulin (FINS), C-peptide, and other biochemical indicators were measured. Differences between the HbA1c-L (HbA1c <6.5%) and HbA1c-H (HbA1c ≥6.5%) groups were compared. The association of N-MID OC with indicators of glucose metabolism was analyzed.Out of 394 trauma patients, leukocyte and FPG levels in the HbA1c-H group (n = 93) were higher (P < .05), while N-MID OC levels were lower (P = .011) than the HbA1c-L group (n = 301). N-MID OC was negatively correlated with HbA1c in the total population (r = -0.273, P < .001) as well as in the HbA1c-L (r = -0.289, P < .001) and HbA1c-H (r = -0.390, P < 0.001) groups, and was positively correlated with C-peptide in the HbA1c-H group (r = 0.395, P < .001). The different quartiles in the HbA1c-L showed that N-MID OC declined with increasing HbA1c, which was higher than N-MID OC levels in the HbA1c-H group. Multiple linear regression analysis revealed that serum HbA1c was independently associated with serum OC levels after trauma (β=-1.608, P < .001).This study strongly suggests the importance of serum OC on glucose metabolism in trauma patients. HbA1c is independently associated with serum OC levels.
Collapse
|
17
|
de Guia RM. Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes Metab Syndr 2020; 14:1273-1280. [PMID: 32755820 DOI: 10.1016/j.dsx.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Glucocorticoids and the GR serve as an essential molecular mediator of stress and different physiologic processes. This review summarizes main findings from studies on the role of the GC/GR signaling in the modulation of genes for nutrient processing by the different organs involved in metabolic diseases. METHODS Descriptive review of relevant papers known to the author was conducted. RESULTS Several high-throughput screenings in the past 15 years have identified potential GR DNA-binding regions in different cell types with genes that are annotated to be important for the control of metabolism. Transcriptional regulation of these GC-responsive genes provides links between the hypothalamic-pituitary-adrenal axis (HPA) and systemic energy homeostasis in both physiological and pathophysiological states. Future studies must reconsider the use of agonist, the utilization of animal models of stress and metabolic disorders, and validation in humans. CONCLUSION This review recapitulates the significant role of the GC/GR signaling in molecular metabolic control and metabolic disorders. Potential future research focus and optimizations have also been identified.
Collapse
Affiliation(s)
- Roldan M de Guia
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Keio Global Research Institute (KGRI) and Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan; Czech Centre for Phenogenomics (CCP), Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
18
|
Avinash H, Sudha V, Laxminarayan B, Nandakrishna B, Shastry BA, Asha K, Hande M, Shalini A. The role of osteocalcin in mechanism of Steroid induced diabetes mellitus. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-019-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Florin A, Lambert C, Sanchez C, Zappia J, Durieux N, Tieppo AM, Mobasheri A, Henrotin Y. The secretome of skeletal muscle cells: A systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100019. [DOI: 10.1016/j.ocarto.2019.100019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
|
20
|
Smith C, Voisin S, Al Saedi A, Phu S, Brennan-Speranza T, Parker L, Eynon N, Hiam D, Yan X, Scott D, Blekkenhorst LC, Lewis JR, Seeman E, Byrnes E, Flicker L, Duque G, Yeap BB, Levinger I. Osteocalcin and its forms across the lifespan in adult men. Bone 2020; 130:115085. [PMID: 31622778 DOI: 10.1016/j.bone.2019.115085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Osteocalcin (OC), an osteoblast-specific secreted protein expressed by mature osteoblasts, is used in clinical practice and in research as a marker of bone turnover. The carboxylated (cOC) and undercarboxylated (ucOC) forms may have a different biological function but age-specific reference ranges for these components are not established. Given the different physiological roles, development of reference ranges may help to identify people at risk for bone disease. METHODS Blood was collected in the morning after an overnight fast from 236 adult men (18 to 92 years old) free of diabetes, antiresorptive, warfarin or glucocorticoid use. Serum was analyzed for total osteocalcin (tOC) and the ucOC fraction using the hydroxyapatite binding method. cOC, ucOC/tOC and cOC/tOC ratios were calculated. Reference intervals were established by polynomial quantile regression analysis. RESULTS The normal ranges for young men (≤30 years) were: tOC 17.9-56.8 ng/mL, ucOC 7.1-22.0 ng/mL, cOC 8.51-40.3 ng/mL (2.5th to 97.5th quantiles). Aging was associated with a "U" shaped pattern for tOC, cOC and ucOC levels. ucOC/tOC ratio was higher, while cOC/tOC ratio was lower in men of advanced age. Age explained ∼31%, while body mass index explained ∼4%, of the variance in the ratios. CONCLUSIONS We have defined normal reference ranges for the OC forms in Australian men and demonstrated that the OC ratios may be better measures, than the absolute values, to identify the age-related changes on OC in men. These ratios may be incorporated into future research and clinical trials, and their associations with prediction of events, such as fracture or diabetes risk, should be determined.
Collapse
Affiliation(s)
- Cassandra Smith
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Steven Phu
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Tara Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, New South Wales, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - David Scott
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Medical School, University of Western Australia, Perth, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Medical School, University of Western Australia, Perth, Australia; Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ego Seeman
- University of Melbourne and the Department of Endocrinology, Austin Health and the Mary Mackillop Institute of Healthy Aging, Australian Catholic University, Melbourne, Australia
| | - Elizabeth Byrnes
- Department of Biochemistry, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia; Western Australian Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Itamar Levinger
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Lin X, Parker L, McLennan E, Hayes A, McConell G, Brennan-Speranza TC, Levinger I. Undercarboxylated Osteocalcin Improves Insulin-Stimulated Glucose Uptake in Muscles of Corticosterone-Treated Mice. J Bone Miner Res 2019; 34:1517-1530. [PMID: 30908701 DOI: 10.1002/jbmr.3731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/05/2023]
Abstract
Short-term administration of glucocorticoids (GCs) impairs muscle insulin sensitivity at least in part via the reduction of undercarboxylated osteocalcin (ucOC). However, whether ucOC treatment reverses the GC-induced muscle insulin resistance remains unclear. To test the hypothesis that ucOC directly ameliorates impaired insulin-stimulated glucose uptake (ISGU) induced by short-term GC administration in mice muscle and to identify the molecular mechanisms, mice were implanted with placebo or corticosterone (CS) slow-release pellets. Two days post-surgery, insulin-tolerance tests (ITTs) were performed. On day 3, serum was collected and extensor digitorum longus (EDL) and soleus muscles were isolated and treated ex vivo with vehicle, ucOC (30 ng/mL), insulin (60 µU/mL), or both. Circulating hormone levels, muscle glucose uptake, and muscle signaling proteins were assessed. CS administration reduced both serum osteocalcin and ucOC levels, whole-body insulin sensitivity, and muscle ISGU in EDL. Ex vivo ucOC treatment restored ISGU in CS-affected muscle, without increasing non-insulin-stimulated glucose uptake. In CS-affected EDL muscle, ucOC enhanced insulin action on phosphorylated (p-)protein kinase B (Akt)Ser473 and the p-extracellular signal-regulated kinase isoform 2 (ERK2)Thr202/Tyr204 /total (t)ERK2 ratio, which correlated with ISGU. In CS-affected soleus muscle, ucOC enhanced insulin action on p-mammalian target of rapamycin (mTOR)Ser2481 , the p-mTORSer2481 /tmTOR ratio, p-Akt substrate of 160kD (AS160)Thr642 , and p-protein kinase C (PKC) (pan)Thr410 , which correlated with ISGU. Furthermore, p-PKC (pan)Thr410 correlated with p-AktSer473 and p-AS160Thr642 . ucOC exerts direct insulin-sensitizing effects on CS-affected mouse muscle, likely through an enhancement in activity of key proteins involved in both insulin and ucOC signaling pathways. Furthermore, these effects are muscle type-dependent. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuzhu Lin
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Lewan Parker
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Emma McLennan
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Glenn McConell
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Australia
| | - Itamar Levinger
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Parker L, Shaw CS, Byrnes E, Stepto NK, Levinger I. Acute continuous moderate-intensity exercise, but not low-volume high-intensity interval exercise, attenuates postprandial suppression of circulating osteocalcin in young overweight and obese adults. Osteoporos Int 2019; 30:403-410. [PMID: 30306222 DOI: 10.1007/s00198-018-4719-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022]
Abstract
UNLABELLED Bone remodeling markers (BRMs) are suppressed following the consumption of a meal. Our findings indicate that a single session of continuous moderate-intensity exercise, but not low-volume high-intensity interval exercise, performed 1 h after a meal attenuates the postprandial suppression of BRMs. INTRODUCTION Acute exercise transiently increases BRMs including osteocalcin (tOC) and the undercarboxylated form of osteocalcin (ucOC), a hormone that is implicated in glucose regulation. The effects of acute exercise and exercise-intensity on postprandial levels of tOC and ucOC are unknown. METHODS Twenty-seven adults that were overweight or obese (age 30 ± 1 years; BMI 30 ± 1 kg∙m-2; mean ± SEM) were randomly allocated to perform a single session of low-volume high-intensity interval exercise (LV-HIIE; nine females, five males) or continuous moderate-intensity exercise (CMIE; eightfemales, five males) 1 h after consumption of a standard breakfast. Serum tOC, ucOC, and ucOC/tOC were measured at baseline, 1 h, and 3 h after breakfast consumption on a rest day (no exercise) and the exercise day (exercise 1 h after breakfast). RESULTS Compared to baseline, serum tOC and ucOC were suppressed 3 h after breakfast on the rest day (- 10 ± 1% and - 6 ± 2%, respectively; p < 0.05), whereas ucOC/tOC was elevated (2.5 ± 1%; p = 0.08). Compared to the rest day, CMIE attenuated the postprandial-induced suppression of tOC (rest day - 10 ± 2% versus CMIE - 5 ± 2%, p < 0.05) and ucOC (rest day - 6 ± 4% versus CMIE 11 ± 2%, p < 0.05), and increased postprandial ucOC/tOC (rest day 3 ± 2% versus CMIE 15 ± 1%, p < 0.05). In contrast, LV-HIIE did not alter postprandial tOC, ucOC, or ucOC/tOC (all p > 0.1). CONCLUSIONS Acute CMIE, but not LV-HIIE, attenuates the postprandial-induced suppression of tOC and ucOC. CMIE may be an effective tool to control the circulating levels of BRMs following meal consumption in overweight/obese adults.
Collapse
Affiliation(s)
- L Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia.
| | - C S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - E Byrnes
- PathWest QEII Medical Centre, Perth, Australia
| | - N K Stepto
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, Melbourne, Australia
- Monash Centre of Health Research and Implementation (MCHRI), School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - I Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Tacey A, Parker L, Yeap BB, Joseph J, Lim EM, Garnham A, Hare DL, Brennan-Speranza T, Levinger I. Single-dose prednisolone alters endocrine and haematologic responses and exercise performance in men. Endocr Connect 2019; 8:111-119. [PMID: 30673629 PMCID: PMC6373622 DOI: 10.1530/ec-18-0473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the effect of a single dose of prednisolone on (A) high-intensity interval cycling performance and (B) post-exercise metabolic, hormonal and haematological responses. Nine young men participated in this double-blind, randomised, cross-over study. The participants completed exercise sessions (4 × 4 min cycling bouts at 90-95% of peak heart rate), 12 h after ingesting prednisolone (20 mg) or placebo. Work load was adjusted to maintain the same relative heart rate between the sessions. Exercise performance was measured as total work performed. Blood samples were taken at rest, immediately post exercise and up to 3 h post exercise. Prednisolone ingestion decreased total work performed by 5% (P < 0.05). Baseline blood glucose was elevated following prednisolone compared to placebo (P < 0.001). Three hours post exercise, blood glucose in the prednisolone trial was reduced to a level equivalent to the baseline concentration in the placebo trial (P > 0.05). Prednisolone suppressed the increase in blood lactate immediately post exercise (P < 0.05). Total white blood cell count was elevated at all time-points with prednisolone (P < 0.01). Androgens and sex hormone-binding globulin were elevated immediately after exercise, irrespective of prednisolone or placebo. In contrast, prednisolone significantly reduced the ratio of testosterone/luteinizing hormone (P < 0.01). Acute prednisolone treatment impairs high-intensity interval cycling performance and alters metabolic and haematological parameters in healthy young men. Exercise may be an effective tool to minimise the effect of prednisolone on blood glucose levels.
Collapse
Affiliation(s)
- Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lewan Parker
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, and Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - John Joseph
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Ee M Lim
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Andrew Garnham
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - David L Hare
- University of Melbourne and the Department of Cardiology, Austin Health, Melbourne, Victoria, Australia
| | - Tara Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- Correspondence should be addressed to I Levinger:
| |
Collapse
|