1
|
Zhong W, Neugebauer J, Pathak JL, Li X, Pals G, Zillikens MC, Eekhoff EMW, Bravenboer N, Zhang Q, Hammerschmidt M, Wirth B, Micha D. Functional Insights in PLS3-Mediated Osteogenic Regulation. Cells 2024; 13:1507. [PMID: 39273077 PMCID: PMC11394082 DOI: 10.3390/cells13171507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional compensation by actin-bundling proteins ACTN1, ACTN4, and FSCN1 was investigated in zebrafish following morpholino-mediated pls3 knockdown. Primary dermal fibroblasts from six patients with a PLS3 variant were also used to examine expression of these proteins during osteogenic differentiation. In addition, Pls3 knockdown in the murine MLO-Y4 cell line was employed to provide insights in global gene expression. Our results showed that ACTN1 and ACTN4 can rescue the skeletal deformities in zebrafish after pls3 knockdown, but this was inadequate for FSCN1. Patients' fibroblasts showed the same osteogenic transdifferentiation ability as healthy donors. RNA-seq results showed differential expression in Wnt1, Nos1ap, and Myh3 after Pls3 knockdown in MLO-Y4 cells, which were also associated with the Wnt and Th17 cell differentiation pathways. Moreover, WNT2 was significantly increased in patient osteoblast-like cells compared to healthy donors. Altogether, our findings in different bone cell types indicate that the mechanism of PLS3-related pathology extends beyond actin-bundling proteins, implicating broader pathways of bone metabolism.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (W.Z.); (G.P.)
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands;
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China; (J.L.P.); (X.L.); (Q.Z.)
| | - Janine Neugebauer
- Institute of Human Genetics University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; (J.N.); (B.W.)
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janak L. Pathak
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China; (J.L.P.); (X.L.); (Q.Z.)
| | - Xingyang Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China; (J.L.P.); (X.L.); (Q.Z.)
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (W.Z.); (G.P.)
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands;
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands;
| | - Elisabeth M. W. Eekhoff
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands;
- Department Internal Medicine, Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands;
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510060, China; (J.L.P.); (X.L.); (Q.Z.)
| | - Matthias Hammerschmidt
- Developmental Biology Unit, Institute of Zoology, University of Cologne, 50931 Cologne, Germany;
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; (J.N.); (B.W.)
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (W.Z.); (G.P.)
- Amsterdam Movement Sciences, Tissue Function And Regeneration, 1081 HV Amsterdam, The Netherlands;
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
González-Casaus ML. El diálogo oculto entre el hueso y los tejidos a través del remodelado óseo. ADVANCES IN LABORATORY MEDICINE 2024; 5:35-45. [PMID: 38634083 PMCID: PMC11019877 DOI: 10.1515/almed-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
El hueso es mucho más que un reservorio de calcio y fósforo. Su disposición lacuno-canalicular ofrece una importante vía de intercambio con la circulación y actualmente, el esqueleto se considera un gran órgano endocrino, con acciones que van más allá del control del balance fosfocálcico mediado por el factor fibroblástico 23 (FGF23). Paralelamente al efecto modulador de las adipoquinas sobre el remodelado óseo, diversas proteínas óseas, como la osteocalcina y la esclerostina, ejercen cierta acción contra-reguladora sobre el metabolismo energético, posiblemente en un intento de asegurar los enormes requerimientos energéticos del remodelado. En esta interacción del hueso con otros tejidos, especialmente el adiposo, participa la señalización canónica Wnt/β-catenina y por ello la esclerostina, una proteína osteocítica que inhibe esta señalización, emerge como un potencial biomarcador. Es más, su participación en diversas patologías le posiciona como diana terapéutica, existiendo un anticuerpo anti-esclerostina, recientemente aprobado en nuestro país para el tratamiento de la osteoporosis. Esta revisión aborda el carácter endocrino del hueso, el papel de la osteocalcina y, especialmente, el papel regulador y modulador de la esclerostina sobre remodelado óseo y la homeóstasis energética a través de su interacción con la señalización canónica Wnt/β-catenina, así como su potencial utilidad como biomarcador.
Collapse
|
3
|
González-Casaus ML. The hidden cross talk between bone and tissues through bone turnover. ADVANCES IN LABORATORY MEDICINE 2024; 5:24-34. [PMID: 38634076 PMCID: PMC11019897 DOI: 10.1515/almed-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
Bone is more than a reservoir of calcium and phosphorus. Its lacuno-canalicular arrangement provides an important pathway for exchange with circulation and currently, the skeleton is considered a large endocrine organ with actions that go beyond the control of calcium-phosphorus balance mediated by fibroblastic growth factor 23 (FGF23). Parallel to the modulating effect of adipokines on bone turnover, certain bone proteins, such as osteocalcin and sclerostin, play a counter-regulatory role on energy metabolism, probably in an attempt to ensure its high energy requirement for bone turnover. In this crosstalk between bone and other tissues, especially with adipose tissue, canonical Wnt/β-catenin signaling is involved and therefore, sclerostin, an osteocyte derived protein that inhibits this signalling, emerges as a potential biomarker. Furthermore, its involvement in diverse pathologic conditions supports sclerostin as a therapeutic target, with an anti-sclerostin antibody recently approved in our country for the treatment of osteoporosis. This review addresses the endocrine nature of bone, the role of osteocalcin, and specially, the regulatory and modulatory role of sclerostin on bone turnover and energy homeostasis through its inhibitory effect on canonical Wnt/β-catenin signaling, as well as its potential utility as a biomarker.
Collapse
|
4
|
Jurina A, Kasumović D, Delimar V, Filipec Kanižaj T, Japjec M, Dujmović T, Vučić Lovrenčić M, Starešinić M. Fibroblast growth factor 23 and its role in bone diseases. Growth Factors 2024; 42:1-12. [PMID: 37906060 DOI: 10.1080/08977194.2023.2274579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Fibroblast growth factor 23 (FGF23) has been casually linked to numerous hypophosphatemic bone diseases, however connection with bone loss or fragility fractures is still a matter of debate. The purpose of this review is to explore and summarise the known actions of FGF23 in various pathological bone conditions. Besides implication in bone mineralisation, elevated FGF23 showed a pathological effecton bone remodelling, primarily by inhibiting osteoblast function. Unlike the weak association with bone mineral density, high values of FGF23 have been connected with fragility fracture prevalence. This review shows that its effects on bone are concomitantly present on multiple levels, affecting both qualitative and quantitative part of bone strength, eventually leading to impaired bone strength and increased tendency of fractures. Recognising FGF23 as a risk factor for the development of bone diseases and correcting its levels could lead to the reduction of morbidity and mortality in specific groups of patients.
Collapse
Affiliation(s)
- Andrija Jurina
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Dino Kasumović
- Department of Internal Medicine, Division of Nephrology and Dialysis, Dubrava University Hospital, Zagreb, Croatia
| | - Valentina Delimar
- Special Hospital for Medical Rehabilitation KrapinskeToplice, KrapinskeToplice, Croatia
| | - Tajana Filipec Kanižaj
- Department of Internal Medicine, Division of Gastroenterology, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Japjec
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Tomislav Dujmović
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Mario Starešinić
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Maus I, Dreiner M, Zetzsche S, Metzen F, Ross BC, Mählich D, Koch M, Niehoff A, Wirth B. Osteoclast-specific Plastin 3 knockout in mice fail to develop osteoporosis despite dramatic increased osteoclast resorption activity. JBMR Plus 2024; 8:ziad009. [PMID: 38549711 PMCID: PMC10971598 DOI: 10.1093/jbmrpl/ziad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 05/07/2024] Open
Abstract
PLS3 loss-of-function mutations in humans and mice cause X-linked primary osteoporosis. However, it remains largely unknown how PLS3 mutations cause osteoporosis and which function PLS3 plays in bone homeostasis. A recent study showed that ubiquitous Pls3 KO in mice results in osteoporosis. Mainly osteoclasts were impacted in their function However, it has not been proven if osteoclasts are the major cell type affected and responsible for osteoporosis development in ubiquitous Pls3 KO mice. Here, we generated osteoclast-specific Pls3 KO mice. Additionally, we developed a novel polyclonal PLS3 antibody that showed specific PLS3 loss in immunofluorescence staining of osteoclasts in contrast to previously available antibodies against PLS3, which failed to show PLS3 specificity in mouse cells. Moreover, we demonstrate that osteoclast-specific Pls3 KO causes dramatic increase in resorptive activity of osteoclasts in vitro. Despite these findings, osteoclast-specific Pls3 KO in vivo failed to cause any osteoporotic phenotype in mice as proven by micro-CT and three-point bending test. This demonstrates that the pathomechanism of PLS3-associated osteoporosis is highly complex and cannot be reproduced in a system singularly focused on one cell type. Thus, the loss of PLS3 in alternative bone cell types might contributes to the osteoporosis phenotype in ubiquitous Pls3 KO mice.
Collapse
Affiliation(s)
- Ilka Maus
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Sebastian Zetzsche
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Fabian Metzen
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Bryony C Ross
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Mählich
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, 50931 Cologne, Germany
- Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
- Faculty of Medicine, Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
6
|
Zhong W, Pathak JL, Liang Y, Zhytnik L, Pals G, Eekhoff EMW, Bravenboer N, Micha D. The intricate mechanism of PLS3 in bone homeostasis and disease. Front Endocrinol (Lausanne) 2023; 14:1168306. [PMID: 37484945 PMCID: PMC10361617 DOI: 10.3389/fendo.2023.1168306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Since our discovery in 2013 that genetic defects in PLS3 lead to bone fragility, the mechanistic details of this process have remained obscure. It has been established that PLS3 variants cause syndromic and nonsyndromic osteoporosis as well as osteoarthritis. PLS3 codes for an actin-bundling protein with a broad pattern of expression. As such, it is puzzling how PLS3 specifically leads to bone-related disease presentation. Our review aims to summarize the current state of knowledge regarding the function of PLS3 in the predominant cell types in the bone tissue, the osteocytes, osteoblasts and osteoclasts. This is related to the role of PLS3 in regulating mechanotransduction, calcium regulation, vesicle trafficking, cell differentiation and mineralization as part of the complex bone pathology presented by PLS3 defects. Considering the consequences of PLS3 defects on multiple aspects of bone tissue metabolism, our review motivates the study of its mechanism in bone diseases which can potentially help in the design of suitable therapy.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Janak L. Pathak
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department Internal Medicine Section Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, AMS, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Simic MK, Mohanty ST, Xiao Y, Cheng TL, Taylor VE, Charlat O, Croucher PI, McDonald MM. Multi-Targeting DKK1 and LRP6 Prevents Bone Loss and Improves Fracture Resistance in Multiple Myeloma. J Bone Miner Res 2023; 38:814-828. [PMID: 36987921 PMCID: PMC10947379 DOI: 10.1002/jbmr.4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
An imbalance between bone resorption and bone formation underlies the devastating osteolytic lesions and subsequent fractures seen in more than 90% of multiple myeloma (MM) patients. Currently, Wnt-targeted therapeutic agents that prevent soluble antagonists of the Wnt signaling pathway, sclerostin (SOST) and dickkopf-1 (DKK1), have been shown to prevent bone loss and improve bone strength in preclinical models of MM. In this study, we show increasing Wnt signaling via a novel anti-low-density lipoprotein receptor-related protein 6 (LRP6) antibody, which potentiates Wnt1-class ligand signaling through binding the Wnt receptor LRP6, prevented the development of myeloma-induced bone loss primarily through preventing bone resorption. When combined with an agent targeting the soluble Wnt antagonist DKK1, we showed more robust improvements in bone structure than anti-LRP6 treatment alone. Micro-computed tomography (μCT) analysis demonstrated substantial increases in trabecular bone volume in naïve mice given the anti-LRP6/DKK1 combination treatment strategy compared to control agents. Mice injected with 5TGM1eGFP murine myeloma cells had significant reductions in trabecular bone volume compared to naïve controls. The anti-LRP6/DKK1 combination strategy significantly improved bone volume in 5TGM1-bearing mice by 111%, which was also superior to anti-LRP6 single treatment; with similar bone structural changes observed within L4 lumbar vertebrae. Consequently, this combination strategy significantly improved resistance to fracture in lumbar vertebrae in 5TGM1-bearing mice compared to their controls, providing greater protection against fracture compared to anti-LRP6 antibody alone. Interestingly, these improvements in bone volume were primarily due to reduced bone resorption, with significant reductions in osteoclast numbers and osteoclast surface per bone surface demonstrated in 5TGM1-bearing mice treated with the anti-LRP6/DKK1 combination strategy. Importantly, Wnt stimulation with either single or combined Wnt-targeted agents did not exacerbate tumor activity. This work provides a novel approach of targeting both membrane-bound and soluble Wnt pathway components to provide superior skeletal outcomes in patients with multiple myeloma and other bone destructive cancers. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marija K. Simic
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- St Vincent's Clinical Campus, School of Clinical MedicineUniversity of New South WalesKensingtonNSWAustralia
| | - Sindhu T. Mohanty
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - Ya Xiao
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - Tegan L. Cheng
- Centre for Children's Bone and Musculoskeletal HealthThe Children's Hospital at WestmeadWestmeadNSWAustralia
| | - Victoria E. Taylor
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - Olga Charlat
- Novartis Institutes for Biomedical ResearchCambridgeMAUSA
| | - Peter I. Croucher
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- St Vincent's Clinical Campus, School of Clinical MedicineUniversity of New South WalesKensingtonNSWAustralia
| | - Michelle M. McDonald
- Skeletal Diseases ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- St Vincent's Clinical Campus, School of Clinical MedicineUniversity of New South WalesKensingtonNSWAustralia
- School of Medical Science, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
8
|
Peris P, Monegal A, Mäkitie RE, Guañabens N, González-Roca E. Osteoporosis related to WNT1 variants: a not infrequent cause of osteoporosis. Osteoporos Int 2023; 34:405-411. [PMID: 36396825 DOI: 10.1007/s00198-022-06609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
UNLABELLED Nearly 10% of subjects with severe idiopathic osteoporosis present pathogenic WNT1 mutations. Clinical characteristics include a family history of osteoporosis, early adulthood onset, and fragility fractures which may evolve to pseudoarthrosis. WNT1 should be genetically screened in these patients as the phenotype is often variable and therapeutic approaches may differ. INTRODUCTION Recent studies have shown that homozygous WNT1 gene mutations may be related to severe osteoporosis resembling osteogenesis imperfecta (OI). Conversely, heterozygous WNT1 mutations are linked to a milder phenotype of early-onset osteoporosis. Treatment with bisphosphonates is reported to be unsatisfactory. Our aim was to analyze the presence and prevalence of WNT1 mutations and the main associated clinical characteristics in subjects with primary early-onset osteoporosis. METHODS A cohort comprising 56 subjects (aged 19-60 years) with severe, early-onset osteoporosis was screened by massive parallel sequencing with a 23-gene panel. The gene panel included 19 genes known to cause OI (including the WNT1 gene), three genes related to osteoporosis, and the gene related to hypophosphatasia (ALPL). RESULTS We identified five patients (3 men) with heterozygous WNT1 variants. All presented severe osteoporosis with early fracture onset and a family history of fragility fractures. None presented a characteristic phenotype of OI or skeletal deformities. One patient was previously treated with bisphosphonates, presenting inadequate response to treatment and two developed pseudoarthrosis after upper arm fractures. All subjects were diagnosed in adulthood. CONCLUSIONS Nearly 1/10 adult subjects with severe idiopathic osteoporosis may present pathogenic WNT1 mutations. Clinical characteristics commonly include a family history of osteoporosis, onset in early adulthood, marked decrease in bone mass, and prevalent fractures, particularly vertebral. WNT1 should be genetically screened in these subjects as the phenotype is often variable and the therapeutic approach may differ. The role of WNT1 mutations in the development of pseudoarthrosis should also be elucidated.
Collapse
Affiliation(s)
- Pilar Peris
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - Ana Monegal
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland
| | - Nuria Guañabens
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Eva González-Roca
- Department of Immunology, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Department of Molecular Biology, CORE Laboratory, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Wu Z, Feng Z, Zhu X, Dai Z, Min K, Qiu Y, Yi L, Xu L, Zhu Z. Identification of a novel splicing mutation and genotype-phenotype correlations in rare PLS3-related childhood-onset osteoporosis. Orphanet J Rare Dis 2022; 17:247. [PMID: 35752817 PMCID: PMC9233774 DOI: 10.1186/s13023-022-02380-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background X-linked early-onset osteoporosis, caused by mutations in plastin3 (PLS3), is an extremely rare disease characterized by low bone mineral density (BMD) and recurrent osteoporotic fractures. There is limited information on genetic and phenotypic spectrum, as well as genotype–phenotype correlations of the disease. Moreover, whether decreased PLS3 levels were also involved in osteoporosis among subjects without PLS3 pathogenic mutations remains unknown. Methods Whole-exome sequencing and bidirectional Sanger sequencing were performed for screening and validation of pathogenic mutations. Serum biochemical parameters and clinical information of the subjects were retrospectively collected. ELISA and online datasets were utilized to investigate the association between PLS3 expression and BMD. Results We identified a novel splicing mutation (c.892-2A > G) which led to the skipping of exon 9 in a family with X-linked early-onset osteoporosis. Scoliosis represents a potential new phenotype in the patients harboring PLS3 mutations, which may be corrected by brace treatment. Genotype–phenotype analysis reveals that there was no significant difference in BMD z-scores between different types of reported mutations including this study (p = 0.5). There is a marginally significant negative correlation between age and BMD z-score (p = 0.059, r = − 0.30). The conditions of osteoporosis in all patients were improved after bisphosphonates therapy, with mean BMD z-score increased from − 2.9 to − 0.57 (p < 0.0001). Serum PLS3 levels in adolescents and adults without PLS3 pathogenic mutations but representing osteoporosis were also evaluated, while no association was found between bone mineral density and PLS3 levels (p > 0.05). Conclusions Our findings expanded the mutation and phenotype spectrum of the rare disease and highlights the importance of early diagnosis and early treatment with bisphosphonates. More reports of cases with PLS3 mutation and function studies of the gene are warranted to understand genotype–phenotype correlations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02380-z.
Collapse
Affiliation(s)
- Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Xiufen Zhu
- Osteoporosis and Metabolic Bone Disease Center, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Kaixing Min
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Long Yi
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. .,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China.
| |
Collapse
|
11
|
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, Salles JP, Charon V, Guggenbuhl P, Muller M, Cohen-Solal M, Collet C. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet 2022; 31:1622-1634. [PMID: 34875064 PMCID: PMC9122655 DOI: 10.1093/hmg/ddab349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Thomas Edouard
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence des Anomalies du Développement de l'Ouest, Hôpital Sud de Rennes, Rennes F-35033, France
| | - Marion Aubert-Mucca
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Manon Ricquebourg
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Jean Pierre Salles
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Valérie Charon
- Department of Radiology, CHU de Rennes, Rennes F-35000, France
| | | | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
- Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris F-75019, France
| |
Collapse
|
12
|
Abstract
Osteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < - 2.0 in growing children and a Z-score ≤ - 2.0 or a T-score ≤ - 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.
Collapse
Affiliation(s)
- Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland.
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 3015, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Sclerostin: From Molecule to Clinical Biomarker. Int J Mol Sci 2022; 23:ijms23094751. [PMID: 35563144 PMCID: PMC9104784 DOI: 10.3390/ijms23094751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerostin, a glycoprotein encoded by the SOST gene, is mainly produced by mature osteocytes and is a critical regulator of bone formation through its inhibitory effect on Wnt signaling. Osteocytes are differentiated osteoblasts that form a vast and highly complex communication network and orchestrate osteogenesis in response to both mechanical and hormonal cues. The three most commonly described pathways of SOST gene regulation are mechanotransduction, Wnt/β-catenin, and steroid signaling. Downregulation of SOST and thereby upregulation of local Wnt signaling is required for the osteogenic response to mechanical loading. This review covers recent findings concerning the identification of SOST, in vitro regulation of SOST gene expression, structural and functional properties of sclerostin, pathophysiology, biological variability, and recent assay developments for measuring circulating sclerostin. The three-dimensional structure of human sclerostin was generated with the AlphaFold Protein Structure Database applying a novel deep learning algorithm based on the amino acid sequence. The functional properties of the 3-loop conformation within the tertiary structure of sclerostin and molecular interaction with low-density lipoprotein receptor-related protein 6 (LRP6) are also reviewed. Second-generation immunoassays for intact/biointact sclerostin have recently been developed, which might overcome some of the reported methodological obstacles. Sclerostin assay standardization would be a long-term objective to overcome some of the problems with assay discrepancies. Besides the use of age- and sex-specific reference intervals for sclerostin, it is also pivotal to use assay-specific reference intervals since available immunoassays vary widely in their methodological characteristics.
Collapse
|
14
|
Loid P, Hauta-alus H, Mäkitie O, Magnusson P, Mäkitie RE. Lipocalin-2 is associated with FGF23 in WNT1 and PLS3 osteoporosis. Front Endocrinol (Lausanne) 2022; 13:954730. [PMID: 36157448 PMCID: PMC9493469 DOI: 10.3389/fendo.2022.954730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The pathogenic mechanisms of early-onset osteoporosis caused by WNT1 and PLS3 mutations are incompletely understood and diagnostic biomarkers of these disorders are limited. Recently, lipocalin-2 has been recognized as an osteokine involved in bone development and homeostasis. However, the role of lipocalin-2 in WNT1 and PLS3 osteoporosis is unknown. OBJECTIVE We aimed to investigate if plasma lipocalin-2 could be utilized as a biomarker for WNT1 and PLS3 osteoporosis and to evaluate the association between lipocalin-2 and other parameters of bone metabolism. METHODS We measured plasma lipocalin-2 in 17 WNT1 and 14 PLS3 mutation-positive patients and compared them to those of 34 mutation-negative (MN) healthy subjects. We investigated possible associations between lipocalin-2 and several bone biomarkers including collagen type I cross-linked C-telopeptide (CTX), alkaline phosphatase (ALP), type I procollagen intact N-terminal propeptide (PINP), intact and C-terminal fibroblast growth factor 23 (FGF23), dickkopf-1 (DKK1) and sclerostin as well as parameters of iron metabolism (iron, transferrin, transferrin saturation, soluble transferrin receptor and ferritin). RESULTS We found no differences in plasma lipocalin-2 levels in WNT1 or PLS3 patients compared with MN subjects. However, lipocalin-2 was associated with C-terminal FGF23 in WNT1 patients (r=0.62; p=0.008) and PLS3 patients (r=0.63, p=0.017), and with intact FGF23 in PLS3 patients (r=0.80; p<0.001). In addition, lipocalin-2 correlated with serum transferrin in WNT1 patients (r=0.72; p=0.001). CONCLUSION We conclude that plasma lipocalin-2 is not altered in WNT1 or PLS3 mutation-positive subjects but is associated with FGF23 in abnormal WNT1 or PLS3 signaling and with iron status in abnormal WNT1 signaling.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- *Correspondence: Petra Loid,
| | - Helena Hauta-alus
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Identification of Potential Osteoporosis miRNA Biomarkers Using Bioinformatics Approaches. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3562942. [PMID: 34777562 PMCID: PMC8579105 DOI: 10.1155/2021/3562942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a degenerative osteoarthropathy commonly found in old people and postmenopausal women. Many studies showed that microRNAs (miRNAs) can regulate the expression of osteoporosis-related genes and are abnormally expressed in patients with osteoporosis. miRNAs therefore have the potential to serve as biomarkers of osteoporosis. In this study, the limma package was used for the differential expression analysis of mRNA expression profiles and 357 significantly differentially expressed genes (DEGs) were obtained. Metascape was used for functional enrichment analysis of DEGs. The result revealed that DEGs were mainly enriched in signaling pathways like MAPK6/MAPK4. Based on the STRING database, the protein-protein interaction (PPI) network of DEGs was constructed. MCODE was used to analyze the functional subsets, and a key functional subset composed of 9 genes was screened out. In addition, the miRNA-mRNA regulatory interaction network (RegIN) was analyzed by the CyTargetLinker plugin, which generated 55 miRNA-mRNA regulatory interactions. Through literature searching, the osteoporosis-related gene FOXO1 in the key functional subset was determined to be the main object of the study. In qRT-PCR assay, the expression of the predicted miRNAs was tested in peripheral blood mononuclear cells of mice with osteoporosis, in which 13 miRNAs were remarkably highly expressed. All in all, this study, based on bioinformatics analysis and testing assay of miRNA expression, determined the potential biomarkers of osteoporosis.
Collapse
|
16
|
Ghatan S, Costantini A, Li R, De Bruin C, Appelman-Dijkstra NM, Winter EM, Oei L, Medina-Gomez C. The Polygenic and Monogenic Basis of Paediatric Fractures. Curr Osteoporos Rep 2021; 19:481-493. [PMID: 33945105 PMCID: PMC8551106 DOI: 10.1007/s11914-021-00680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Fractures are frequently encountered in paediatric practice. Although recurrent fractures in children usually unveil a monogenic syndrome, paediatric fracture risk could be shaped by the individual genetic background influencing the acquisition of bone mineral density, and therefore, the skeletal fragility as shown in adults. Here, we examine paediatric fractures from the perspective of monogenic and complex trait genetics. RECENT FINDINGS Large-scale genome-wide studies in children have identified ~44 genetic loci associated with fracture or bone traits whereas ~35 monogenic diseases characterized by paediatric fractures have been described. Genetic variation can predispose to paediatric fractures through monogenic risk variants with a large effect and polygenic risk involving many variants of small effects. Studying genetic factors influencing peak bone attainment might help in identifying individuals at higher risk of developing early-onset osteoporosis and discovering drug targets to be used as bone restorative pharmacotherapies to prevent, or even reverse, bone loss later in life.
Collapse
Affiliation(s)
- S Ghatan
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - A Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Li
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - C De Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - E M Winter
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - L Oei
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Translational Skeletal Genomics Group, Department of Internal Medicine, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, Ee-571, 3015, GD, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Silva PPB, Pereira RMR, Takayama L, Borba CG, Duarte FH, Trarbach EB, Martin RM, Bronstein MD, Tritos NA, Jallad RS. Impaired Bone Microarchitecture in Premenopausal Women With Acromegaly: The Possible Role of Wnt Signaling. J Clin Endocrinol Metab 2021; 106:2690-2706. [PMID: 33871626 DOI: 10.1210/clinem/dgab260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Acromegaly can impair bone integrity, increasing the risk of vertebral fractures (VFs). OBJECTIVE To evaluate the impact of isolated GH/IGF-I hypersecretion on bone turnover markers, Wnt inhibitors, bone mineral density (BMD), microarchitecture, bone strength and vertebral fractures in female patients with acromegaly (Acro), compared with healthy control group (HC). DESIGN, SETTING, AND PATIENTS Cross-sectional study including 83 premenopausal women without any pituitary deficiency:18 acromegaly in remission (AcroR), 12 in group with active acromegaly (AcroA), and 53 HC. Serum procollagen type 1 N-terminal propeptide, β-carboxy-terminal crosslinked telopeptide of type 1 collagen, osteocalcin, sclerostin, and DKK1 were measured in blood samples. dual-energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography (HR-pQCT) and vertebral fractures evaluation were also assessed simultaneously. MAIN OUTCOME AND RESULTS AcroA showed significantly lower sclerostin and higher DKK1 compared with HC. On HR-pQCT of tibia and radius, Acro showed impairment of trabecular (area and trabecular number), increased cortical porosity, and increased cortical area and cortical thickness compared with HC. The only significant correlation found with HR-pQCT parameters was a positive correlation between cortical porosity and serum DKK1 (R = 0.45, P = 0.044). Mild VFs were present in approximately 30% of patients. CONCLUSIONS Eugonadal women with acromegaly without any pituitary deficiency showed increased cortical BMD, impairment of trabecular bone microstructure, and increased VF. Sclerostin was not correlated with any HR-pQCT parameters; however, DKK1 was correlated with cortical porosity in tibia (P = 0.027). Additional studies are needed to clarify the role of Wnt inhibitors on bone microarchitecture impairment in acromegaly.
Collapse
Affiliation(s)
- Paula P B Silva
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Rosa M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 01246903, Brazil
- Rheumatology Division Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP 05403-010, Brazil
| | - Liliam Takayama
- Rheumatology Division Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP 05403-010, Brazil
| | - Clarissa G Borba
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Felipe H Duarte
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
| | - Ericka B Trarbach
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| | - Regina Matsunaga Martin
- Diseases Unit Osteometabolic, Endocrinology Service, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC-FMUSP), São Paulo, SP 05403-010, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| | - Nicholas A Tritos
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raquel S Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, SP 05403-010, Brazil
- Laboratorio de Endocrinologia Celular e Molecular/LIM25, Disciplina de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brasil
| |
Collapse
|
18
|
Mäkitie RE, Henning P, Jiu Y, Kämpe A, Kogan K, Costantini A, Välimäki V, Medina‐Gomez C, Pekkinen M, Salusky IB, Schalin‐Jäntti C, Haanpää MK, Rivadeneira F, Bassett JHD, Williams GR, Lerner UH, Pereira RC, Lappalainen P, Mäkitie O. An ARHGAP25 variant links aberrant Rac1 function to early-onset skeletal fragility. JBMR Plus 2021; 5:e10509. [PMID: 34258505 PMCID: PMC8260816 DOI: 10.1002/jbm4.10509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Petra Henning
- Department of Internal Medicine and Clinical NutritionCentre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Yaming Jiu
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Konstantin Kogan
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Ville‐Valtteri Välimäki
- Department of Orthopaedics and TraumatologyHelsinki University Central Hospital and Helsinki University, Jorvi HospitalEspooFinland
| | - Carolina Medina‐Gomez
- Department of Internal MedicineErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Minna Pekkinen
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Isidro B. Salusky
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Camilla Schalin‐Jäntti
- Endocrinology, Abdominal CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Maria K. Haanpää
- Department of Genomics and Clinical GeneticsTurku University HospitalTurkuFinland
| | - Fernando Rivadeneira
- Department of Internal MedicineErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - John H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical NutritionCentre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Renata C. Pereira
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Pekka Lappalainen
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Outi Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
- Children's HospitalUniversity and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
19
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
20
|
Fratzl-Zelman N, Wesseling-Perry K, Mäkitie RE, Blouin S, Hartmann MA, Zwerina J, Välimäki VV, Laine CM, Välimäki MJ, Pereira RC, Mäkitie O. Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations. Bone 2021; 146:115900. [PMID: 33618074 DOI: 10.1016/j.bone.2021.115900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Patients with osteoporosis-associated WNT1 or PLS3 mutations have unique bone histomorphometric features and osteocyte-specific hormone expression patterns. OBJECTIVE To investigate the effects of WNT1 and PLS3 mutations on bone material properties. DESIGN Transiliac bone biopsies were evaluated by quantitative backscattered electron imaging, immunohistochemistry, and bone histomorphometry. SETTING Ambulatory patients. PATIENTS Three pediatric and eight adult patients with WNT1 or PLS3 mutations. INTERVENTION Bone mineralization density distribution and osteocyte protein expression was evaluated in 11 patients and repeated in six patients who underwent repeat biopsy after 24 months of teriparatide treatment. MAIN OUTCOME MEASURE Bone mineralization density distribution and protein expression. RESULTS Children with WNT1 or PLS3 mutations had heterogeneous bone matrix mineralization, consistent with bone modeling during growth. Bone matrix mineralization was homogenous in adults and increased throughout the age spectrum. Teriparatide had very little effect on matrix mineralization or bone formation in patients with WNT1 or PLS3 mutations. However, teriparatide decreased trabecular osteocyte lacunae size and increased trabecular bone FGF23 expression. CONCLUSION The contrast between preserved bone formation with heterogeneous mineralization in children and low bone turnover with homogenous bone mineral content in adults suggests that WNT1 and PLS3 have differential effects on bone modeling and remodeling. The lack of change in matrix mineralization in response to teriparatide, despite clear changes in osteocyte lacunae size and protein expression, suggests that altered WNT1 and PLS3 expression may interfere with coupling of osteocyte, osteoblast, and osteoclast function. Further studies are warranted to determine the mechanism of these changes.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Ville-Valtteri Välimäki
- Department of Orthopaedics and Traumatology, Helsinki University Central Hospital and Helsinki University, Jorvi Hospital, Espoo, Finland
| | - Christine M Laine
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | - Matti J Välimäki
- Division of Endocrinology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Renata C Pereira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Zhang Y, Wang X, Huang X, Shen L, Zhang L, Shou D, Fan X. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone 2021; 143:115619. [PMID: 32858253 DOI: 10.1016/j.bone.2020.115619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
Bone nonunion caused by bacterial infection accounts for bone fractures, bone trauma and bone transplantation surgeries. Severe consequences include delayed unions and amputation and result in functional limitations, work disability, and poor quality of life. However, the mechanism of bone nonunion remains unknown. In this study, we aimed to screen the miRNA biomarkers of bacterial bone infection and investigated whether miRNAs regulate the osteoblasts and thus contribute to bone nonunion. We established a miRNA-mRNA network based on high-throughput RNA sequencing to compare the model rabbits infected with Staphylococcus aureus with the control rabbits. After validation experiments, miRNA-331-3p and fibroblast growth factor 23 (FGF23) were found to be inversely correlated with the pathways of osteoblast mineralization and pathology of infected bone nonunion. In in vitro experiments, miRNA-331-3p was downregulated and FGF23 was upregulated in lipopolysaccharide (LPS)-induced mouse calvarial osteoblasts. Further studies of the mechanism showed that mutated of putative miRNA-331-3p can bind to FGF23 3'-untranslated region sites. MiRNA-331-3p acted as an osteoblast mineralization promoter by directly targeting FGF23. Downregulation of miRNA-331-3p led to inhibition of osteoblast mineralization by regulating the DKK1/β-catenin mediated signaling. Thus, we established an improved animal model and identified new bone-related biomarkers in the infected bone nonunion. The miRNA-331-3p biomarker was demonstrated to regulate osteoblast mineralization by targeting FGF23. The novel mechanism can be used as potential diagnostic biomarkers and therapeutic targets in the infected bone nonunion and other inflammatory bone disorders.
Collapse
Affiliation(s)
- Yang Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou 310012, China
| | - Li Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Mäkitie RE, Hackl M, Weigl M, Frischer A, Kämpe A, Costantini A, Grillari J, Mäkitie O. Unique, Gender-Dependent Serum microRNA Profile in PLS3 Gene-Related Osteoporosis. J Bone Miner Res 2020; 35:1962-1973. [PMID: 32453450 DOI: 10.1002/jbmr.4097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Plastin 3 (PLS3), encoded by PLS3, is a newly recognized regulator of bone metabolism, and mutations in the encoding gene result in severe childhood-onset osteoporosis. Because it is an X chromosomal gene, PLS3 mutation-positive males are typically more severely affected whereas females portray normal to increased skeletal fragility. Despite the severe skeletal pathology, conventional metabolic bone markers tend to be normal and are thus insufficient for diagnosing or monitoring patients. Our study aimed to explore serum microRNA (miRNA) concentrations in subjects with defective PLS3 function to identify novel markers that could differentiate subjects according to mutation status and give insight into the molecular mechanisms by which PLS3 regulates skeletal health. We analyzed fasting serum samples for a custom-designed panel comprising 192 miRNAs in 15 mutation-positive (five males, age range 8-76 years, median 41 years) and 14 mutation-negative (six males, age range 8-69 years, median 40 years) subjects from four Finnish families with different PLS3 mutations. We identified a unique miRNA expression profile in the mutation-positive subjects with seven significantly upregulated or downregulated miRNAs (miR-93-3p, miR-532-3p, miR-133a-3p, miR-301b-3p, miR-181c-5p, miR-203a-3p, and miR-590-3p; p values, range .004-.044). Surprisingly, gender subgroup analysis revealed the difference to be even more distinct in female mutation-positive subjects (congruent p values, range .007-.086) than in males (p values, range .127-.843) in comparison to corresponding mutation-negative subjects. Although the seven identified miRNAs have all been linked to bone metabolism and two of them (miR-181c-5p and miR-203a-3p) have bioinformatically predicted targets in the PLS3 3' untranslated region (3'-UTR), none have previously been reported to associate with PLS3. Our results indicate that PLS3 mutations are reflected in altered serum miRNA levels and suggest there is crosstalk between PLS3 and these miRNAs in bone metabolism. These provide new understanding of the pathomechanisms by which mutations in PLS3 lead to skeletal disease and may provide novel avenues for exploring miRNAs as biomarkers in PLS3 osteoporosis or as target molecules in future therapeutic applications. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Hammersmith Campus, Imperial College, London, London, United Kingdom
| | - Matthias Hackl
- TAmiRNA GmbH, Vienna, Austria.,Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | | | - Amelie Frischer
- Austrian Cluster of Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johannes Grillari
- Austrian Cluster of Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|