1
|
Machireddy M, Nano S, Debiase L, Lewis J, Cole S, Li J, Niebur GL. Differential gene expression in trabecular bone osteocytes is related to the local strain and strain gradient. Sci Rep 2025; 15:18501. [PMID: 40425655 PMCID: PMC12117145 DOI: 10.1038/s41598-025-00214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Osteocytes regulate the response of osteoclasts and osteoblasts to mechanical loading through signaling molecules, the levels of which are controlled by post-translational modification or degradation and by differential gene transcription and translation. The magnitude and mode of bone tissue deformation that elicits a transcriptional response in individual osteocytes in situ has been difficult to quantify. We measured SOST, Wnt11, TNF, and FRZB gene expression in osteocytes within loaded and unloaded control porcine trabecular bone explants using RNAScope® and compared the local tissue level strain and strain gradient-which we used as an indicator of potential poroelastic fluid flow-in the tissue surrounding osteocytes with high vs. low gene expression. The measured expression of all four genes differed between loaded and unloaded explants, on average, with the mean SOST expression level decreasing by 45%. In the loaded explants, gene expression was altered from baseline in about 30% of the osteocytes, and they were surrounded by tissue with higher strain and strain gradient than the 20 to 25% of osteocytes that remained near baseline expression. Both deviatoric strain and hydrostatic strain gradient were sensitive and specific predictors of the mechanobiological response for individual genes as well as combinations. SOST expression was highly related to elevated strain gradient, providing evidence that osteocytes respond to fluid flow in the lacunar-canalicular system.
Collapse
Affiliation(s)
- Meghana Machireddy
- University of Notre Dame, Bioengineering Graduate Program, Notre Dame, IN, USA
| | - Sarah Nano
- University of Notre Dame, Bioengineering Graduate Program, Notre Dame, IN, USA
| | - Lucas Debiase
- Department of Aerospace and Mechanical Engineering, Notre Dame, IN, USA
| | - Jonathan Lewis
- Department of Aerospace and Mechanical Engineering, Notre Dame, IN, USA
| | - Sara Cole
- Notre Dame Integrated Imaging Facility, Notre Dame, IN, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Glen L Niebur
- University of Notre Dame, Bioengineering Graduate Program, Notre Dame, IN, USA.
- Department of Aerospace and Mechanical Engineering, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Meslier QA, Oehrlein R, Shefelbine SJ. Combined Effects of Mechanical Loading and Piezo1 Chemical Activation on 22-Months-Old Female Mouse Bone Adaptation. Aging Cell 2025:e70087. [PMID: 40410950 DOI: 10.1111/acel.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
With age, bones mechanosensitivity is reduced, which limits their ability to adapt to loading. The exact mechanism leading to this loss of mechanosensitvity is still unclear, making developing effective treatment challenging. Current treatments mostly focus on preventing bone mass loss (such as bisphosphonates) or promoting bone formation (such as Sclerostin inhibitors) to limit the decline of bones mass. However, treatments do not target the cause of bone mass loss which may be, in part, due to the bone's inability to initiate a normal bone mechanoadaptation response. In this work, we investigated the effects of 2 weeks of tibia loading, and Piezo1 agonist injection in vivo on 22-month-old mouse bone adaptation response. We used an optimized loading profile, which induced high fluid flow velocity and low strain magnitude in adult mouse tibia. We found that tibia loading and Yoda2 injection have an additive effect on increasing cortical bone parameters in 22-month-old mice. In vivo osteocytes calcium signaling imaging suggests that Yoda2 is able to reach osteocytes and activate Piezo1. This combination of mechanical and chemical stimulation could be a promising treatment strategy to help promote bone formation in patients who have low bone mass due to aging.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Robert Oehrlein
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Beeve AT, Hassan MG, Li A, Migotsky N, Silva MJ, Scheller EL. Spatial histomorphometry reveals that local peripheral nerves modulate but are not required for skeletal adaptation to applied load in mice. JBMR Plus 2025; 9:ziaf006. [PMID: 40040837 PMCID: PMC11878550 DOI: 10.1093/jbmrpl/ziaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/07/2024] [Indexed: 03/06/2025] Open
Abstract
Mechanical loading is required for bone health and results in skeletal adaptation to optimize strength. Local nerve axons, particularly within the periosteum, may respond to load-induced biomechanical and biochemical cues. However, their role in the bone anabolic response remains controversial. We hypothesized that spatial alignment of periosteal nerves with sites of load-induced bone formation would clarify this relationship. To achieve this, we developed RadialQuant, a custom tool for spatial histomorphometry. Tibiae of control and neurectomized (sciatic/femoral nerve cut) pan-neuronal Baf53b-tdTomato reporter mice were loaded for 5 days. Bone formation and periosteal nerve axon density were then quantified simultaneously in non-decalcified sections of the mid-diaphysis using RadialQuant. In control animals, anabolic loading induced maximal periosteal bone formation at the site of peak compression, as has been reported previously. By contrast, loading did not significantly change overall periosteal nerve density. Neurectomy depleted ~90% of all periosteal axons, with near-total depletion on load-responsive surfaces. Neurectomy alone also caused de novo bone formation on the lateral aspect of the mid-diaphysis. However, neurectomy did not inhibit load-induced increases in periosteal bone area, mineralizing surface, or bone formation rate. Rather, neurectomy spatially redistributed load-induced bone formation toward the lateral tibial surface with a reduction in periosteal bone formation at the posterolateral apex (-63%) and enhancement at the lateral surface (+1360%). Altogether, this contributed to comparable load-induced changes in cortical bone area fraction. Our results show that local skeletal innervation modulates but is not required for skeletal adaptation to applied load in our model. This supports the continued use of loading and weight-bearing exercise as an effective strategy to increase bone mass, even in settings of peripheral nerve damage or dysfunction.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Anna Li
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Nicole Migotsky
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Orthopaedics, Washington University, St. Louis, MO 63110, United States
| | - Matthew J Silva
- Department of Orthopaedics, Washington University, St. Louis, MO 63110, United States
| | - Erica L Scheller
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
5
|
Zhao D, Tu C, Zhang L, Guda T, Gu S, Jiang JX. Activation of connexin hemichannels enhances mechanosensitivity and anabolism in disused and aged bone. JCI Insight 2024; 9:e177557. [PMID: 39641271 PMCID: PMC11623949 DOI: 10.1172/jci.insight.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- School of Medicine, Northwest University, Xi’an, China
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
6
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
7
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
8
|
Machireddy M, Oberman AG, DeBiase L, Stephens M, Li J, Littlepage LE, Niebur GL. Controlled mechanical loading affects the osteocyte transcriptome in porcine trabecular bone in situ. Bone 2024; 181:117028. [PMID: 38309412 PMCID: PMC10923013 DOI: 10.1016/j.bone.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.
Collapse
Affiliation(s)
- Meghana Machireddy
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Lucas DeBiase
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, IN 46556, USA
| | - Jun Li
- Dept. of Applied Mathematics, Computations, and Statistics, University of Notre Dame, IN 46556, USA
| | - Laurie E Littlepage
- Dept. of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA; Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Kaya S, Alliston T, Evans DS. Genetic and Gene Expression Resources for Osteoporosis and Bone Biology Research. Curr Osteoporos Rep 2023; 21:637-649. [PMID: 37831357 PMCID: PMC11098148 DOI: 10.1007/s11914-023-00821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| |
Collapse
|
10
|
Ng CA, Gandham A, Mesinovic J, Owen PJ, Ebeling PR, Scott D. Effects of Moderate- to High-Impact Exercise Training on Bone Structure Across the Lifespan: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Bone Miner Res 2023; 38:1612-1634. [PMID: 37555459 DOI: 10.1002/jbmr.4899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Moderate- to high-impact exercise improves bone mineral density (BMD) across the lifespan, but its effects on bone structure, which predicts fracture independent of areal BMD, are unclear. This systematic review and meta-analysis investigated effects of impact exercise on volumetric BMD (vBMD) and bone structure. Four databases (PubMed, Embase, SPORTDiscus, Web of Science) were searched up to March 2022 for randomized controlled trials (RCTs) investigating the effects of impact exercise, with ground reaction forces equal to or greater than running, compared with sham or habitual activity, on bone vBMD and structure. Bone variables were measured by quantitative computed tomography or magnetic resonance imaging at the tibia, radius, lumbar spine, and femur. Percentage changes in bone variables were compared among groups using mean differences (MD) and 95% confidence intervals (CI) calculated via random effects meta-analyses. Subgroup analyses were performed in children/adolescents (<18 years), adults (18-50 years), postmenopausal women, and older men. Twenty-eight RCTs (n = 2985) were included. Across all studies, impact exercise improved trabecular vBMD at the distal tibia (MD = 0.54% [95% CI 0.17, 0.90%]), total vBMD at the proximal femur (3.11% [1.07, 5.14%]), and cortical thickness at the mid/proximal radius (1.78% [0.21, 3.36%]). There was no effect on vBMD and bone structure at the distal radius, femoral shaft, or lumbar spine across all studies or in any subgroup. In adults, impact exercise decreased mid/proximal tibia cortical vBMD (-0.20% [-0.24, -0.15%]). In postmenopausal women, impact exercise improved distal tibia trabecular vBMD (0.79% [0.32, 1.25%]). There was no effect on bone parameters in children/adolescents in overall analyses, and there were insufficient studies in older men to perform meta-analyses. Impact exercise may have beneficial effects on bone structure and vBMD at various skeletal sites, but additional high-quality RCTs in different age and sex subgroups are needed to identify optimal exercise protocols for improving bone health across the lifespan. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carrie-Anne Ng
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - Anoohya Gandham
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Patrick J Owen
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
11
|
Kaya S, Bailey KN, Schurman CA, Evans DS, Alliston T. Bone-cartilage crosstalk informed by aging mouse bone transcriptomics and human osteoarthritis genome-wide association studies. Bone Rep 2023; 18:101647. [PMID: 36636109 PMCID: PMC9830153 DOI: 10.1016/j.bonr.2022.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
| | - Karsyn N. Bailey
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| |
Collapse
|
12
|
Ning B, Mustafy T, Londono I, Laporte C, Villemure I. Impact loading intensifies cortical bone (re)modeling and alters longitudinal bone growth of pubertal rats. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01706-5. [PMID: 37000273 DOI: 10.1007/s10237-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
Physical exercise is important for musculoskeletal development during puberty, which builds bone mass foundation for later in life. However, strenuous levels of training might bring adverse effects to bone health, reducing longitudinal bone growth. Animal models with various levels of physical exercise were largely used to provide knowledge to clinical settings. Experiments from our previous studies applied different levels of mechanical loading on rat tibia during puberty accompanied by weekly in vivo micro-CT scans. In the present article, we apply 3D image registration-based methods to retrospectively analyze part of the previously acquired micro-CT data. Longitudinal bone growth, growth plate thickness, and cortical bone (re)modeling were evaluated from rats' age of 28-77 days. Our results show that impact loading inhibited proximal bone growth throughout puberty. We hypothesize that impact loading might bring different growth alterations to the distal and proximal growth plates. High impact loading might lead to pathological consequence of osteochondrosis and catch-up growth due to growth inhibition. Impact loading also increased cortical bone (re)modeling before and after the peak proximal bone growth period of young rats, of which the latter case might be caused by the shift from modeling to remodeling as the dominant activity toward the end of rat puberty. We confirm that the tibial endosteum is more mechano-sensitive than the periosteum in response to mechanical loading. To our knowledge, this is the first study to follow up bone growth and bone (re)modeling of young rats throughout the entire puberty with a weekly time interval.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Tanvir Mustafy
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, 1216, Bangladesh
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada.
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
13
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
14
|
Nepal AK, van Essen HW, Reijnders CMA, Lips P, Bravenboer N. Mechanical loading modulates phosphate related genes in rat bone. PLoS One 2023; 18:e0282678. [PMID: 36881582 PMCID: PMC9990935 DOI: 10.1371/journal.pone.0282678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Mechanical loading determines bone mass and bone structure, which involves many biochemical signal molecules. Of these molecules, Mepe and Fgf23 are involved in bone mineralization and phosphate homeostasis. Thus, we aimed to explore whether mechanical loading of bone affects factors of phosphate homeostasis. We studied the effect of mechanical loading of bone on the expression of Fgf23, Mepe, Dmp1, Phex, Cyp27b1, and Vdr. Twelve-week old female rats received a 4-point bending load on the right tibia, whereas control rats were not loaded. RT-qPCR was performed on tibia mRNA at 4, 5, 6, 7 or 8 hours after mechanical loading for detection of Mepe, Dmp1, Fgf23, Phex, Cyp27b1, and Vdr. Immunohistochemistry was performed to visualise FGF23 protein in tibiae. Serum FGF23, phosphate and calcium levels were measured in all rats. Four-point bending resulted in a reduction of tibia Fgf23 gene expression by 64% (p = 0.002) and a reduction of serum FGF23 by 30% (p<0.001), six hours after loading. Eight hours after loading, Dmp1 and Mepe gene expression increased by 151% (p = 0.007) and 100% (p = 0.007). Mechanical loading did not change Phex, Cyp27b1, and Vdr gene expression at any time-point. We conclude that mechanical loading appears to provoke both a paracrine as well as an endocrine response in bone by modulating factors that regulate bone mineralization and phosphate homeostasis.
Collapse
Affiliation(s)
- Ashwini Kumar Nepal
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hubertus W. van Essen
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christianne M. A. Reijnders
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Lips
- Department of Internal Medicine, Endocrine Section, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
16
|
Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, Lee B, Silva MJ. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022; 36:e22502. [PMID: 35969160 PMCID: PMC9430819 DOI: 10.1096/fj.202200591r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading on the skeleton stimulates bone formation. Although the exact mechanism underlying this process remains unknown, a growing body of evidence indicates that the Wnt signaling pathway is necessary for the skeletal response to loading. Recently, we showed that Wnts produced by osteoblast lineage cells mediate the osteo-anabolic response to tibial loading in adult mice. Here, we report that Wnt1 specifically plays a crucial role in mediating the mechano-adaptive response to loading. Independent of loading, short-term loss of Wnt1 in the Osx-lineage resulted in a decreased cortical bone area in the tibias of 5-month-old mice. In females, strain-matched loading enhanced periosteal bone formation in Wnt1F/F controls, but not in Wnt1F/F; OsxCreERT2 knockouts. In males, strain-matched loading increased periosteal bone formation in both control and knockout mice; however, the periosteal relative bone formation rate was 65% lower in Wnt1 knockouts versus controls. Together, these findings show that Wnt1 supports adult bone homeostasis and mediates the bone anabolic response to mechanical loading.
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Waco, TX, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
17
|
Liu P, Tu J, Wang W, Li Z, Li Y, Yu X, Zhang Z. Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts. Front Bioeng Biotechnol 2022; 10:830722. [PMID: 35252138 PMCID: PMC8893233 DOI: 10.3389/fbioe.2022.830722] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts and osteoblasts play a major role in bone tissue homeostasis. The homeostasis and integrity of bone tissue are maintained by ensuring a balance between osteoclastic and osteogenic activities. The remodeling of bone tissue is a continuous ongoing process. Osteoclasts mainly play a role in bone resorption, whereas osteoblasts are mainly involved in bone remodeling processes, such as bone cell formation, mineralization, and secretion. These cell types balance and restrict each other to maintain bone tissue metabolism. Bone tissue is very sensitive to mechanical stress stimulation. Unloading and loading of mechanical stress are closely related to the differentiation and formation of osteoclasts and bone resorption function as well as the differentiation and formation of osteoblasts and bone formation function. Consequently, mechanical stress exerts an important influence on the bone microenvironment and bone metabolism. This review focuses on the effects of different forms of mechanical stress stimulation (including gravity, continuously compressive pressure, tensile strain, and fluid shear stress) on osteoclast and osteoblast function and expression mechanism. This article highlights the involvement of osteoclasts and osteoblasts in activating different mechanical transduction pathways and reports changings in their differentiation, formation, and functional mechanism induced by the application of different types of mechanical stress to bone tissue. This review could provide new ideas for further microscopic studies of bone health, disease, and tissue damage reconstruction.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
- Basic Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| |
Collapse
|
18
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
19
|
Bouchard AL, Dsouza C, Julien C, Rummler M, Gaumond MH, Cermakian N, Willie BM. Bone adaptation to mechanical loading in mice is affected by circadian rhythms. Bone 2022; 154:116218. [PMID: 34571201 DOI: 10.1016/j.bone.2021.116218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.
Collapse
Affiliation(s)
- Alice L Bouchard
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Chrisanne Dsouza
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Marie-Hélène Gaumond
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada; Department of Experimental Surgery, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
Harris TL, Silva MJ. Gene expression of intracortical bone demonstrates loading-induced increases in Wnt1 and Ngf and inhibition of bone remodeling processes. Bone 2021; 150:116019. [PMID: 34023542 PMCID: PMC8408835 DOI: 10.1016/j.bone.2021.116019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Osteocytes are the primary mechanosensitive cells in bone. However, their location in mineralized matrix has limited the in vivo study of osteocytic genes induced by mechanical loading. Laser Capture Microdissection (LCM) allows isolation of intracortical bone (Intra-CB), enriched for osteocytes, from bone tissue for gene expression analysis. We used microarray to analyze gene expression from mouse tibial Intra-CB dissected using LCM 4 h after a single loading bout or after 5 days of loading. Osteocyte enrichment was supported by greater expression of Sost, Dmp1, Dkk1, and Mepe in Intra-CB regions vs. Mixed regions containing periosteum and muscle (fold-change (FC) = 3.4, 2.2, 5.1, 3.0, respectively). Over 150 differentially expressed genes (DEGs) due to loading (loaded vs. contralateral control) in Intra-CB were found on Day 1 and Day 5, but only 10 genes were differentially expressed on both days, including Ngf (Day 1 FC = 13.5, Day 5 FC = 11.1) and Wnt1 (Day 1 FC = 1.5, Day 5 FC = 5.1). The expression of Ngf and Wnt1 within Intra-CB was confirmed by in situ hybridization, and a significant increase in number of Wnt1 mRNA molecules occurred on day 1. We also found changes in extracellular matrix remodeling with Timp1 (FC = 3.1) increased on day 1 and MMP13 (FC = 0.3) decreased on day 5. Supporting this result, IHC for osteocytic MMP13 demonstrated a marginal decrease due to loading on day 5. Gene Ontology (GO) biological processes for loading DEGs indicated regulation of vasculature, neuronal and immune processes while cell-type specific gene lists suggested regulation of osteoclast, osteoblast, and endothelial related genes. In summary, microarray analysis of microdissected Intra-CB revealed differential regulation of Ngf, Wnt1, and MMP13 due to loading in osteocytes.
Collapse
Affiliation(s)
- Taylor L Harris
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
22
|
Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:e2023999118. [PMID: 34161267 PMCID: PMC8237574 DOI: 10.1073/pnas.2023999118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-β) signaling (TβRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TβRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TβRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| | - Stefaan W Verbruggen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- The Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143;
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| |
Collapse
|
23
|
Fioravanti G, Hua PQ, Tomlinson RE. The TrkA agonist gambogic amide augments skeletal adaptation to mechanical loading. Bone 2021; 147:115908. [PMID: 33713848 PMCID: PMC8097708 DOI: 10.1016/j.bone.2021.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The periosteal and endosteal surfaces of mature bone are densely innervated by sensory nerves expressing TrkA, the high-affinity receptor for nerve growth factor (NGF). In previous work, we demonstrated that administration of exogenous NGF significantly increased load-induced bone formation through the activation of Wnt signaling. However, the translational potential of NGF is limited by the induction of substantial mechanical and thermal hyperalgesia in mice and humans. Here, we tested the effect of gambogic amide (GA), a recently identified robust small molecule agonist for TrkA, on hyperalgesia and load-induced bone formation. Behavioral analysis was used to assess pain up to one week after axial forelimb compression. Contrary to our expectations, GA treatment was not associated with diminished use of the loaded forelimb or sensitivity to thermal stimulus. Furthermore, dynamic histomorphometry revealed a significant increase in relative periosteal bone formation rate as compared to vehicle treatment. Additionally, we found that GA treatment was associated with an increase in the number of osteoblasts per bone surface in loaded limbs as well as a significant increase in the fold change of Ngf, Wnt7b, and Axin2 mRNA expression as compared to vehicle (control). To test the effect of GA on osteoblasts directly, we cultured MC3T3-E1 cells for up to 21 days in osteogenic differentiation media containing NGF, GA, or vehicle (control). Media containing GA induced the significant upregulation of the osteoblastic differentiation markers Runx2, Bglap2, and Sp7 in a dose-dependent manner, whereas treatment with NGF was not associated with any significant increases in these markers. Furthermore, consistent with our in vivo findings, we observed that administration of 50 nM of GA upregulated expression of Ngf at both Day 3 and Day 7. However, cells treated with the highest dose of GA (500 nM) had significantly increased apoptosis and impaired cell proliferation. In conclusion, our study indicates GA may be useful for augmenting skeletal adaptation to mechanical forces without inducing hyperalgesia.
Collapse
Affiliation(s)
- Gabriella Fioravanti
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Phuong Q Hua
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
24
|
Deane CS, Willis CRG, Phillips BE, Atherton PJ, Harries LW, Ames RM, Szewczyk NJ, Etheridge T. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans. J Cachexia Sarcopenia Muscle 2021; 12:629-645. [PMID: 33951310 PMCID: PMC8200445 DOI: 10.1002/jcsm.12706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance. METHODS Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle. RESULTS Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes. CONCLUSIONS Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ryan M Ames
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute & Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| |
Collapse
|
25
|
Nieminen-Pihala V, Tarkkonen K, Laine J, Rummukainen P, Saastamoinen L, Nagano K, Baron R, Kiviranta R. Early B-cell Factor1 (Ebf1) promotes early osteoblast differentiation but suppresses osteoblast function. Bone 2021; 146:115884. [PMID: 33582307 DOI: 10.1016/j.bone.2021.115884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Early B cell factor 1 (Ebf1) is a transcription factor that regulates B cell, neuronal cell and adipocyte differentiation. We and others have shown that Ebf1 is expressed in osteoblasts and that global deletion of Ebf1 results in increased bone formation in vivo. However, as Ebf1 is expressed in multiple tissues and cell types, it has remained unclear, which of the phenotypic changes in bone are derived from bone cells. The aim of this study was to determine the cell-autonomous and differentiation stage-specific roles of Ebf1 in osteoblasts. In vitro, haploinsufficient Ebf1+/- calvarial cells showed impaired osteoblastic differentiation indicated by lower alkaline phosphatase (ALP) activity and reduced mRNA expression of osteoblastic genes, while overexpression of Ebf1 in wild type mouse calvarial cells led to enhanced osteoblast differentiation with increased expression of Osterix (Osx). We identified a putative Ebf1 binding site in the Osterix promoter by ChIP assay in MC3T3-E1 osteoblasts and showed that Ebf1 was able to activate Osx-luc reporter construct that included this Ebf1 binding site, suggesting that Ebf1 indeed regulates osteoblast differentiation by inducing Osterix expression. To reconcile our previous data and that of others with our novel findings, we hypothesized that Ebf1 could have a dual role in osteoblast differentiation promoting early but inhibiting late stages of differentiation and osteoblast function. To test this hypothesis in vivo, we generated conditional Ebf1 knockout mice, in which Ebf1 deletion was targeted to early or late osteoblasts by crossing Ebf1fl/fl mice with Osx- or Osteocalcin (hOC)-Cre mouse lines, respectively. Deletion of Ebf1 in early Ebf1Osx-/- osteoblasts resulted in significantly increased bone volume and trabecular number at 12 weeks by μCT analysis, while Ebf1hOC-/- mice did not have a bone phenotype. To conclude, our data demonstrate that Ebf1 promotes early osteoblast differentiation by regulating Osterix expression. However, Ebf1 inhibits bone accrual in the Osterix expressing osteoblasts in vivo but it is redundant in the maintenance of mature osteoblast function.
Collapse
Affiliation(s)
| | - Kati Tarkkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Julius Laine
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
26
|
Cortical bone adaptation to a moderate level of mechanical loading in male Sost deficient mice. Sci Rep 2020; 10:22299. [PMID: 33339872 PMCID: PMC7749116 DOI: 10.1038/s41598-020-79098-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Loss-of-function mutations in the Sost gene lead to high bone mass phenotypes. Pharmacological inhibition of Sost/sclerostin provides a new drug strategy for treating osteoporosis. Questions remain as to how physical activity may affect bone mass under sclerostin inhibition and if that effect differs between males and females. We previously observed in female Sost knockout (KO) mice an enhanced cortical bone formation response to a moderate level of applied loading (900 με at the tibial midshaft). The purpose of the present study was to examine cortical bone adaptation to the same strain level applied to male Sost KO mice. Strain-matched in vivo compressive loading was applied to the tibiae of 10-, 26- and 52-week-old male Sost KO and littermate control (LC) mice. The effect of tibial loading on bone (re)modeling was measured by microCT, 3D time-lapse in vivo morphometry, 2D histomorphometry and gene expression analyses. As expected, Sost deficiency led to high cortical bone mass in 10- and 26-week-old male mice as a result of increased bone formation. However, the enhanced bone formation associated with Sost deficiency did not appear to diminish with skeletal maturation. An increase in bone resorption was observed with skeletal maturation in male LC and Sost KO mice. Two weeks of in vivo loading (900 με at the tibial midshaft) induced only a mild anabolic response in 10- and 26-week-old male mice, independent of Sost deficiency. A decrease in the Wnt inhibitor Dkk1 expression was observed 3 h after loading in 52-week-old Sost KO and LC mice, and an increase in Lef1 expression was observed 8 h after loading in 10-week-old Sost KO mice. The current results suggest that long-term inhibition of sclerostin in male mice does not influence the adaptive response of cortical bone to moderate levels of loading. In contrast with our previous strain-matched study in females showing enhanced bone responses with Sost ablation, these results in males indicate that the influence of Sost deficiency on the cortical bone formation response to a moderate level of loading differs between males and females. Clinical studies examining antibodies to inhibit sclerostin may need to consider that the efficacy of additional physical activity regimens may be sex dependent.
Collapse
|
27
|
Zannit HM, Brodt MD, Silva MJ. Proliferating osteoblasts are necessary for maximal bone anabolic response to loading in mice. FASEB J 2020; 34:12739-12750. [PMID: 32744762 DOI: 10.1096/fj.202000614r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Following mechanical loading, osteoblasts may arise via activation, differentiation, or proliferation to form bone. Our objective was to ablate proliferating osteoblast lineage cells in order to investigate the importance of these cells as a source for loading-induced bone formation. We utilized 3.6Col1a1-tk mice in which replicating osteoblast lineage cells can be ablated in an inducible manner using ganciclovir (GCV). Male and female mice were aged to 5- and 12-months and subjected to 5 days of tibial compression. "Experimental" mice were tk-positive, treated with GCV; "control" mice were either tk-negative treated with GCV, or tk-positive treated with PBS. We confirmed that experimental mice had a decrease in tk-positive cells that arose from proliferation. Next, we assessed bone formation after loading to low (7N) and high (11N) forces and observed that periosteal bone formation rate in experimental mice was reduced by approximately 70% for both forces. Remarkably, woven bone formation induced by high-force loading was blocked in experimental mice. Loading-induced lamellar bone formation was diminished but not prevented in experimental mice. We conclude that osteoblast proliferation induced by mechanical loading is a critical source of bone forming osteoblasts for maximal lamellar formation and is essential for woven bone formation.
Collapse
Affiliation(s)
- Heather M Zannit
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| |
Collapse
|
28
|
Tomlinson RE, Christiansen BA, Giannone AA, Genetos DC. The Role of Nerves in Skeletal Development, Adaptation, and Aging. Front Endocrinol (Lausanne) 2020; 11:646. [PMID: 33071963 PMCID: PMC7538664 DOI: 10.3389/fendo.2020.00646] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
The skeleton is well-innervated, but only recently have the functions of this complex network in bone started to become known. Although our knowledge of skeletal sensory and sympathetic innervation is incomplete, including the specific locations and subtypes of nerves in bone, we are now able to reconcile early studies utilizing denervation models with recent work dissecting the molecular signaling between bone and nerve. In total, sensory innervation functions in bone much as it does elsewhere in the body-to sense and respond to stimuli, including mechanical loading. Similarly, sympathetic nerves regulate autonomic functions related to bone, including homeostatic remodeling and vascular tone. However, more study is required to translate our current knowledge of bone-nerve crosstalk to novel therapeutic strategies that can be effectively utilized to combat skeletal diseases, disorders of low bone mass, and age-related decreases in bone quality.
Collapse
Affiliation(s)
- Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ryan E. Tomlinson
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Adrienne A. Giannone
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|