1
|
Kawano Y, Kawano H, Busch S, Li AJ, Zhang J, Salama NA, Quarato ER, Georger M, Vdovichenko N, Azadniv M, Byun DK, LaMere EA, LaMere MW, Liesveld JL, Becker MW, Calvi LM. Monocytes/macrophages contamination disrupts functional and transcriptional characteristics of murine bone marrow- and bone-derived stromal cells. JBMR Plus 2025; 9:ziaf047. [PMID: 40329992 PMCID: PMC12054994 DOI: 10.1093/jbmrpl/ziaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 05/08/2025] Open
Abstract
Stromal cells are critical regulators of hematopoietic stem/progenitor cells and skeletal homeostasis. Although precise systems for functional analysis are critical to investigate mechanistically bone and bone marrow (BM)-derived stromal cells, the establishment of reproducible, highly enriched ex vivo methods for stromal cell isolation, culture and evaluation have been challenging, leading to inconsistent data on stromal cell function. In this work, we carefully tested ex vivo culture of murine stromal cells from BM and bone and discovered abundant and persistent contamination of monocytes and macrophages. We succeeded in establishing highly enriched ex vivo culture system for stromal cells by eliminating persistent monocytes and macrophages using selection against the immunological markers F4/80, Ly6C, and CD45. Transcriptional and functional assays of enriched stromal cell culture revealed differential characteristics of stromal cells from different origins, a dormant signature for bone-derived cells and a highly proliferative progenitor-like signature for BM-derived cells. Monocyte and macrophage contamination reduced signatures of immature stromal cells such as expression levels of SOX9 and CD140a as well as the cells' ability to support hematopoietic stem and progenitor cells based on our growth factor-free co-culture system of hematopoietic cells and stromal cells followed by in vivo functional assays. The inhibitory effects of macrophages on stromal cells may be explained by their potent production of inflammatory cytokines such as CXCL2, CCL3, and complement factor (C1q) confirmed by protein immunoassay of culture supernatant, as well as the differential contribution of pre-osteoblasts to the stromal cell population. This study highlights the functional diversity of stromal cells depending on the microenvironment of origin while addressing a critical limitation of murine ex vivo systems. Our robust culture system enables the study of isolated stromal cells function as well as the impact of stromal cells-macrophage crosstalk.
Collapse
Affiliation(s)
- Yuko Kawano
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Hiroki Kawano
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Stephanie Busch
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Allison J Li
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Jane Zhang
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Emily R Quarato
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mary Georger
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Nataliia Vdovichenko
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mitra Azadniv
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Daniel K Byun
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Elizabeth A LaMere
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Mark W LaMere
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Jane L Liesveld
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michael W Becker
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Hematology/Oncology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| |
Collapse
|
2
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 PMCID: PMC12016487 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Takaoka H, Miyamura T, Shimada K. Femoral bone mineral density as a tool of personalized medicine for rheumatoid arthritis: Interleukin-6 inhibitors for patients with low density whereas tumor necrosis factor inhibitor for patients with preserved density? SAGE Open Med 2024; 12:20503121241277498. [PMID: 39315386 PMCID: PMC11418348 DOI: 10.1177/20503121241277498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives There is a lack of indicators to distinguish between interleukin-6 inhibitors responders and tumor necrosis factor inhibitors responders in the treatment of rheumatoid arthritis. Osteoporosis is a complication of rheumatoid arthritis and is closely related to inflammatory pathology. The purpose of this study was to evaluate whether bone mineral density can distinguish interleukin-6 inhibitors responders from tumor necrosis factor inhibitors responders in rheumatoid arthritis. Methods Either interleukin-6 inhibitors or tumor necrosis factor inhibitors was introduced as the first biologics to patients naïve to both corticosteroid and osteoporosis treatment. Correlations between baseline bone mineral density and Clinical Disease Activity Index after 3 months were analyzed. Results The subjects were 26 rheumatoid arthritis patients with a median age of 60 years old, disease duration of 1.4 years, Clinical Disease Activity Index of 13.7, and C-reactive protein of 1.69 mg/dL. The subjects were divided into two groups (high (H) and low (L)) according to their femoral bone mineral density with a cutoff of young adult mean of 80%. Six in group H and 11 in group L received interleukin-6 inhibitors, and nine in group H received tumor necrosis factor inhibitors. Clinical Disease Activity Index remission rate by interleukin-6 inhibitors was significantly greater in group L (8/11 (72.7%)) than in group H (1/6 (16.7%); p < 0.05). In the whole group H, significantly more patients obtained Clinical Disease Activity Index remission by tumor necrosis factor inhibitors (7/9, 77.8%) than by interleukin-6 inhibitors (1/6 (16.7%); p = 0.04). Conclusions In patients with rheumatoid arthritis, interleukin-6 inhibitors may be more beneficial for patients with low femoral bone mineral density, whereas tumor necrosis factor inhibitors may be advantageous for those with preserved bone mineral density.
Collapse
Affiliation(s)
- Hirokazu Takaoka
- Section of Internal Medicine and Rheumatology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Tomohiro Miyamura
- Division of general Medicine, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Kota Shimada
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| |
Collapse
|
4
|
Bell RD, Brendel M, Konnaris MA, Xiang J, Otero M, Fontana MA, Bai Z, Krenitsky DM, Meednu N, Rangel-Moreno J, Scheel-Toellner D, Carr H, Nayar S, McMurray J, DiCarlo E, Anolik JH, Donlin LT, Orange DE, Kenney HM, Schwarz EM, Filer A, Ivashkiv LB, Wang F. Automated multi-scale computational pathotyping (AMSCP) of inflamed synovial tissue. Nat Commun 2024; 15:7503. [PMID: 39209814 PMCID: PMC11362542 DOI: 10.1038/s41467-024-51012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder in which patients suffer from inflammatory-erosive arthritis. Recent advances on histopathology heterogeneity of RA synovial tissue revealed three distinct phenotypes based on cellular composition (pauci-immune, diffuse and lymphoid), suggesting that distinct etiologies warrant specific targeted therapy which motivates a need for cost effective phenotyping tools in preclinical and clinical settings. To this end, we developed an automated multi-scale computational pathotyping (AMSCP) pipeline for both human and mouse synovial tissue with two distinct components that can be leveraged together or independently: (1) segmentation of different tissue types to characterize tissue-level changes, and (2) cell type classification within each tissue compartment that assesses change across disease states. Here, we demonstrate the efficacy, efficiency, and robustness of the AMSCP pipeline as well as the ability to discover novel phenotypes. Taken together, we find AMSCP to be a valuable cost-effective method for both pre-clinical and clinical research.
Collapse
Affiliation(s)
- Richard D Bell
- Arthritis and Tissue Degeneration Program and Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| | - Matthew Brendel
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Maxwell A Konnaris
- Huck Institute of the Life Sciences, Pennsylvania State University, State College, University Park, PA, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | | | - Miguel Otero
- Weill Cornell Medical College, New York, NY, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Mark A Fontana
- Arthritis and Tissue Degeneration Program and Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Daria M Krenitsky
- Allergy, Immunology and Rheumatology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nida Meednu
- Allergy, Immunology and Rheumatology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Allergy, Immunology and Rheumatology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Hayley Carr
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Saba Nayar
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Jack McMurray
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Jennifer H Anolik
- Allergy, Immunology and Rheumatology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Dana E Orange
- Arthritis and Tissue Degeneration Program and Research Institute, Hospital for Special Surgery, New York, NY, USA
- The Rockefeller University, New York, NY, USA
| | - H Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and Research Institute, Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
5
|
Duan R, Milton P, Sittplangkoon C, Liu X, Sui Z, Boyce BF, Yao Z. Chimeric antigen receptor dendritic cells targeted delivery of a single tumoricidal factor for cancer immunotherapy. Cancer Immunol Immunother 2024; 73:203. [PMID: 39105847 PMCID: PMC11303651 DOI: 10.1007/s00262-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.
Collapse
Affiliation(s)
- Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Philip Milton
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- School of Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Chutamath Sittplangkoon
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Orthopedics, Tianjin Hospital, Tianjin, 30021, People's Republic of China
| | - Zhining Sui
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Yao Z, Ayoub A, Srinivasan V, Wu J, Tang C, Duan R, Milosavljevic A, Ebetino F, Frontier A, Boyce B. Hydroxychloroquine and a low activity bisphosphonate conjugate prevent and reverse ovariectomy-induced bone loss in mice through dual antiresorptive and anabolic effects. RESEARCH SQUARE 2024:rs.3.rs-4237258. [PMID: 38746138 PMCID: PMC11092802 DOI: 10.21203/rs.3.rs-4237258/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Osteoporosis is incurable because there are no dual antiresorptive and anabolic therapeutic agents that can be administered long-term. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation and thus have limited effect in preventing osteoporotic fracture. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation. We attempted to covalently link HCQ to a hydroxyalklyl BP (HABP) with anticipated low antiresorptive activity, to target delivery of HCQ to bone to test if this targeting increases its efficacy to prevent TRAF3 degradation in the bone microenvironment and thus reduce bone resorption and increase bone formation, while reducing its systemic side effects. Unexpectedly, HABP-HCQ was found to exist as a salt in aqueous solution, composed of a protonated HCQ cation and a deprotonated HABP anion. Nevertheless, it inhibited osteoclastogenesis, stimulated osteoblast differentiation, and increased TRAF3 protein levels in vitro. HABP-HCQ significantly inhibited both osteoclast formation and bone marrow fibrosis in mice given multiple daily PTH injections. In contrast, HCQ inhibited fibrosis, but not osteoclast formation, while the HABP alone inhibited osteoclast formation, but not fibrosis, in the mice. HABP-HCQ, but not HCQ, prevented trabecular bone loss following ovariectomy in mice and, importantly, increased bone volume in ovariectomized mice with established bone loss because HABP-HCQ increased bone formation and decreased bone resorption parameters simultaneously. In contrast, HCQ increased bone formation, but did not decrease bone resorption parameters, while HABP also restored the bone lost in ovariectomized mice, but it inhibited parameters of both bone resorption and formation. Our findings suggest that the combination of HABP and HCQ could have dual antiresorptive and anabolic effects to prevent and treat osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- University of Rochester Medical Center
| | | | | | | | | | | | | |
Collapse
|
7
|
Jung J, Han H. The diverse influences of relaxin-like peptide family on tumor progression: Potential opportunities and emerging challenges. Heliyon 2024; 10:e24463. [PMID: 38298643 PMCID: PMC10828710 DOI: 10.1016/j.heliyon.2024.e24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Relaxin-like peptide family exhibit differential expression patterns in various types of cancers and play a role in cancer development. This family participates in tumorigenic processes encompassing proliferation, migration, invasion, tumor microenvironment, immune microenvironment, and anti-cancer resistance, ultimately influencing patient prognosis. In this review, we explore the mechanisms underlying the interaction between the RLN-like peptide family and tumors and provide an overview of therapeutic approaches utilizing this interaction.
Collapse
Affiliation(s)
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Zhang S, Niu Q, Tong L, Liu S, Wang P, Xu H, Li B, Zhang H. Identification of the susceptible genes and mechanism underlying the comorbid presence of coronary artery disease and rheumatoid arthritis: a network modularization analysis. BMC Genomics 2023; 24:411. [PMID: 37474895 PMCID: PMC10360345 DOI: 10.1186/s12864-023-09519-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE The comorbidities of coronary artery disease (CAD) and rheumatoid arthritis (RA) are mutual risk factors, which lead to higher mortality, but the biological mechanisms connecting the two remain unclear. Here, we aimed to identify the risk genes for the comorbid presence of these two complex diseases using a network modularization approach, to offer insights into clinical therapy and drug development for these diseases. METHOD The expression profile data of patients CAD with and without RA were obtained from the GEO database (GSE110008). Based on the differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) was used to construct a gene network, detect co-expression modules, and explore their relation to clinical traits. The Zsummary index, gene significance (GS), and module membership (MM) were utilized to screen the important differentiated modules and hub genes. The GO and KEGG pathway enrichment analysis were applied to analyze potential mechanisms. RESULT Based on the 278 DEGs obtained, 41 modules were identified, of which 17 and 24 modules were positively and negatively correlated with the comorbid occurrence of CAD and RA (CAD&RA), respectively. Thirteen modules with Zsummary < 2 were found to be the underlying modules, which may be related to CAD&RA. With GS ≥ 0.5 and MM ≥ 0.8, 49 hub genes were identified, such as ADO, ABCA11P, POT1, ZNF141, GPATCH8, ATF6 and MIA3, etc. The area under the curve values of the representative seven hub genes under the three models (LR, KNN, SVM) were greater than 0.88. Enrichment analysis revealed that the biological functions of the targeted modules were mainly involved in cAMP-dependent protein kinase activity, demethylase activity, regulation of calcium ion import, positive regulation of tyrosine, phosphorylation of STAT protein, and tissue migration, etc. CONCLUSION: Thirteen characteristic modules and 49 susceptibility hub genes were identified, and their corresponding molecular functions may reflect the underlying mechanism of CAD&RA, hence providing insights into the development of clinical therapies against these diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huamin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Myocardial Infarction-Induced INSL6 Decrease Contributes to Breast Cancer Progression. DISEASE MARKERS 2023; 2023:8702914. [PMID: 36798786 PMCID: PMC9928516 DOI: 10.1155/2023/8702914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Myocardial infarction (MI) induces early-stage breast cancer progression and increases breast cancer patients' mortality and morbidity. Insulin-like peptide 6 (INSL6) overexpression can impede cardiotoxin-induced injury through myofiber regeneration, playing a significant role in MI progression. To investigate the diverse significance of INSL6 in a variety of malignant tumors, we explored INSL6 through MI GEO dataset and multiple omics data integrative analysis, such as gene expression level, enriched pathway analysis, protein-protein interaction (PPI) analysis, and immune subtypes as well as diagnostic value and prognostic value in pancancer. INSL6 expression was downregulated in the MI group, and overall survival analysis demonstrated that INSL6 could be the prognostic biomarkers in the overall survival of breast cancer (BRCA). INSL6 expression differs significantly not only in most cancers but also in different molecular and immune subtypes of cancers. INSL6 might be a potential diagnostic and prognostic biomarker of cancers due to the high accuracy in diagnostic and prognostic value. Furthermore, we focused on BRCA and further investigated INSL6 from the perspective of the correlations with clinical characteristics, prognosis in different clinical subgroups, coexpression genes, and differentially expressed genes (DEGs) and PPI analysis. Overall survival and disease-specific survival analysis of subgroups in BRCA demonstrated that lower INSL6 expression had a worse prognosis. Therefore, INSL6 aberrant expression is associated with the progression and immune cell infiltration of the tumor, especially in KIRP and BRCA. Therefore, INSL6 may serve as a potential prognostic biomarker and the crosstalk between MI and tumor progression.
Collapse
|
10
|
Kenney HM, Wood RW, Ramirez G, Bell RD, Chen KL, Schnur L, Rahimi H, Korman BD, Xing L, Ritchlin CT, Schwarz EM, Cole CL. Implementation of automated behavior metrics to evaluate voluntary wheel running effects on inflammatory-erosive arthritis and interstitial lung disease in TNF-Tg mice. Arthritis Res Ther 2023; 25:17. [PMID: 36732826 PMCID: PMC9893562 DOI: 10.1186/s13075-022-02985-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although treatment options and algorithms for rheumatoid arthritis (RA) have improved remarkably in recent decades, there continues to be no definitive cure or pharmacologic intervention with reliable long-term efficacy. For this reason, the combination of medications and healthy lifestyle modifications are essential for controlling joint disease, and extra-articular manifestations of RA, such as interstitial lung disease (ILD) and other lung pathologies, which greatly impact morbidity and mortality. Generally, exercise has been deemed beneficial in RA patients, and both patients and clinicians are motivated to incorporate effective non-pharmacologic interventions. However, there are limited evidence-based and specific exercise regimens available to support engagement in such activities for RA patients. Here, we provided the continuous opportunity for exercise to mice and implemented automated recording and quantification of wheel running behavior. This allowed us to describe the associated effects on the progression of inflammatory-erosive arthritis and ILD in the tumor necrosis factor transgenic (TNF-Tg) mouse model of RA. METHODS Wild-type (WT; males, n=9; females, n=9) and TNF-Tg (males, n=12; females, n=14) mice were singly housed with free access to a running wheel starting at 2 months until 5 to 5.5 months of age. Measures of running included distance, rate, length, and number of run bouts, which were derived from continuously recorded data streams collected automatically and in real-time. In vivo lung, ankle, and knee micro-computed tomography (micro-CT), along with terminal micro-CT and histology were performed to examine the association of running behaviors and disease progression relative to sedentary controls. RESULTS TNF-Tg males and females exhibited significantly reduced running distance, rate, length, and number of run bouts compared to WT counterparts by 5 months of age (p<0.0001). Compared to sedentary controls, running males and females showed increased aerated lung volumes (p<0.05) that were positively correlated with running distance and rate in female mice (WT: Distance, ρ=0.705/rate, ρ=0.693 (p<0.01); TNF-Tg: ρ=0.380 (p=0.06)/ρ=0.403 (p<0.05)). Talus bone volumes were significantly reduced in running versus sedentary males and negatively correlated with running distance and rate in TNF-Tg mice (male: ρ=-903/ρ=-0.865; female: ρ=-0.614/ρ=-0.594 (p<0.001)). Histopathology validated the lung and ankle micro-CT findings. CONCLUSIONS Implementation of automated wheel running behavior metrics allows for evaluation of longitudinal activity modifications hands-off and in real-time to relate with biomarkers of disease severity. Through such analysis, we determined that wheel running activity increases aerated lung volumes, but exacerbates inflammatory-erosive arthritis in TNF-Tg mice. To the end of a clinically relevant model, additional functional assessment of these outcomes and studies of pain behavior are warranted.
Collapse
Affiliation(s)
- H. Mark Kenney
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ronald W. Wood
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Neuroscience, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Urology, University of Rochester Medical Center, Rochester, NY USA
| | - Gabriel Ramirez
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Richard D. Bell
- grid.239915.50000 0001 2285 8823Department of Research, Hospital for Special Surgery, New York, NY USA
| | - Kiana L. Chen
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Lindsay Schnur
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Homaira Rahimi
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pediatrics, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Benjamin D. Korman
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Lianping Xing
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Christopher T. Ritchlin
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Edward M. Schwarz
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Urology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Calvin L. Cole
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Surgery, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
11
|
Liu X, Yao JJ, Chen Z, Lei W, Duan R, Yao Z. Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist. Front Immunol 2022; 13:906357. [PMID: 36119107 PMCID: PMC9471085 DOI: 10.3389/fimmu.2022.906357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of apoptosis protein (IAP) is a class of E3 ubiquitin ligases functioning to support cancer survival and growth. Many small-molecule IAP antagonists have been developed, aiming to degrade IAP proteins to kill cancer. We have evaluated the effect of lipopolysaccharide (LPS), a component of the bacterial outer membrane, on IAP antagonists in treating breast cancer in a mouse model to guide future clinical trials. We show that LPS promotes IAP antagonist-induced regression of triple-negative breast cancer (TNBC) from MDA-MB-231 cells in immunodeficient mice. IAP antagonists such as SM-164, AT-406, and BV6, do not kill MDA-MB-231 cells alone, but allow LPS to induce cancer cell apoptosis rapidly. The apoptosis caused by LPS plus SM-164 is blocked by toll-like receptor 4 (TLR4) or MyD88 inhibitor, which inhibits LPS-induced TNFα production by the cancer cells. Consistent with this, MDA-MB-231 cell apoptosis induced by LPS plus SM-164 is also blocked by the TNF inhibitor. LPS alone does not kill MDA-MB-231 cells because it markedly increases the protein level of cIAP1/2, which is directly associated with and stabilized by MyD88, an adaptor protein of TLR4. ER+ MCF7 breast cancer cells expressing low levels of cIAP1/2 undergo apoptosis in response to SM-164 combined with TNFα but not with LPS. Furthermore, TNFα but not LPS alone inhibits MCF7 cell growth in vitro. Consistent with these, LPS combined with SM-164, but not either of them alone, causes regression of ER+ breast cancer from MCF7 cells in immunodeficient mice. In summary, LPS sensitizes the therapeutic response of both triple-negative and ER+ breast cancer to IAP antagonist therapy by inducing rapid apoptosis of the cancer cells through TLR4- and MyD88-mediated production of TNFα. We conclude that antibiotics that can reduce microbiota-derived LPS should not be used together with an IAP antagonist for cancer therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Jimmy J. Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Zhongxuan Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Zhenqiang Yao,
| |
Collapse
|
12
|
Shen G, Liu X, Lei W, Duan R, Yao Z. Plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects that prevents menopausal-related osteoporosis in mice. J Biol Chem 2022; 298:101767. [PMID: 35235833 PMCID: PMC8958545 DOI: 10.1016/j.jbc.2022.101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporosis is caused by enhanced bone resorption and relatively reduced bone formation. There is an unmet need to develop new agents with both antiresorptive and anabolic effects to treat osteoporosis, although drugs with either effect alone are available. A small molecular compound, plumbagin, was reported to inhibit receptor activator of nuclear factor kappa-B ligand-induced osteoclast (OC) differentiation by inhibiting IκBα phosphorylation-mediated canonical NF-κB activation. However, the key transcriptional factor RelA/p65 in canonical NF-κB pathway functions to promote OC precursor survival but not terminal OC differentiation. Here, we found that plumbagin inhibited the activity of NF-κB inducing kinase, the key molecule that controls noncanonical NF-κB signaling, in an ATP/ADP-based kinase assay. Consistent with this, plumbagin inhibited processing of NF-κB2 p100 to p52 in the progenitor cells of both OCs and osteoblasts (OBs). Interestingly, plumbagin not only inhibited OC but also stimulated OB differentiation in vitro. Importantly, plumbagin prevented trabecular bone loss in ovariectomized mice. This was associated with decreased OC surfaces on trabecular surface and increased parameters of OBs, including OB surface on trabecular surface, bone formation rate, and level of serum osteocalcin, compared to vehicle-treated mice. In summary, we conclude that plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects on bone and could represent a new class of agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Gengyang Shen
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
13
|
Yi X, Tao J, Qian Y, Feng F, Hu X, Xu T, Jin H, Ruan H, Zheng HF, Tong P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front Pharmacol 2022; 13:1056460. [PMID: 36618945 PMCID: PMC9816435 DOI: 10.3389/fphar.2022.1056460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Collapse
Affiliation(s)
- Xiangjiao Yi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianguo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Feng Feng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| |
Collapse
|
14
|
Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021; 11:cells11010132. [PMID: 35011694 PMCID: PMC8750957 DOI: 10.3390/cells11010132] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increased osteoclast (OC) differentiation and activity is the critical event that results in bone loss and joint destruction in common pathological bone conditions, such as osteoporosis and rheumatoid arthritis (RA). RANKL and its decoy receptor, osteoprotegerin (OPG), control OC differentiation and activity. However, there is a specific concern of a rebound effect of denosumab discontinuation in treating osteoporosis. TNFα can induce OC differentiation that is independent of the RANKL/RANK system. In this review, we discuss the factors that negatively and positively regulate TNFα induction of OC formation, and the mechanisms involved to inform the design of new anti-resorptive agents for the treatment of bone conditions with enhanced OC formation. Similar to, and being independent of, RANKL, TNFα recruits TNF receptor-associated factors (TRAFs) to sequentially activate transcriptional factors NF-κB p50 and p52, followed by c-Fos, and then NFATc1 to induce OC differentiation. However, induction of OC formation by TNFα alone is very limited, since it also induces many inhibitory proteins, such as TRAF3, p100, IRF8, and RBP-j. TNFα induction of OC differentiation is, however, versatile, and Interleukin-1 or TGFβ1 can enhance TNFα-induced OC formation through a mechanism which is independent of RANKL, TRAF6, and/or NF-κB. However, TNFα polarized macrophages also produce anabolic factors, including insulin such as 6 peptide and Jagged1, to slow down bone loss in the pathological conditions. Thus, the development of novel approaches targeting TNFα signaling should focus on its downstream molecules that do not affect its anabolic effect.
Collapse
|