1
|
Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer? Molecules 2020; 25:molecules25102427. [PMID: 32456012 PMCID: PMC7287590 DOI: 10.3390/molecules25102427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a hallmark in many forms of cancer; with colitis-associated colorectal cancer (CAC) being a progressive intestinal inflammation due to inflammatory bowel disease (IBD). While this is an exemplification of the negatives of inflammation, it is just as crucial to have some degree of the inflammatory process to maintain a healthy immune system. A pivotal component in the maintenance of such intestinal homeostasis is the innate immunity component, inflammasomes. Inflammasomes are large, cytosolic protein complexes formed following stimulation of microbial and stress signals that lead to the expression of pro-inflammatory cytokines. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been extensively studied in part due to its strong association with colitis and CAC. The aryl hydrocarbon receptor (AhR) has recently been acknowledged for its connection to the immune system aside from its role as an environmental sensor. AhR has been described to play a role in the inhibition of the NLRP3 inflammasome activation pathway. This review will summarise the signalling pathways of both the NLRP3 inflammasome and AhR; as well as new-found links between these two signalling pathways in intestinal immunity and some potential therapeutic agents that have been found to take advantage of this link in the treatment of colitis and CAC.
Collapse
|
2
|
Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells. Toxicol Lett 2018; 289:54-62. [DOI: 10.1016/j.toxlet.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/24/2018] [Accepted: 03/10/2018] [Indexed: 11/20/2022]
|
3
|
Vázquez-Gómez G, Rubio-Lightbourn J, Espinosa-Aguirre JJ. MECANISMOS DE ACCIÓN DEL RECEPTOR DE HIDROCARBUROS DE ARILOS EN EL METABOLISMO DEL BENZO[A]PIRENO Y EL DESARROLLO DE TUMORES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Dietary Carbohydrate, Glycemic Index, Glycemic Load, and Breast Cancer Risk Among Mexican Women. Epidemiology 2015; 26:917-24. [DOI: 10.1097/ede.0000000000000374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
LI YOUQIANG, WU YANYUAN, ABBATIELLO THOMASC, WU WARRENL, KIM JURI, SARKISSYAN MARIANNA, SARKISSYAN SUREN, CHUNG SEYUNGS, ELSHIMALI YAHYA, VADGAMA JAYDUTTV. Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol 2015; 46:1461-72. [PMID: 25652255 PMCID: PMC4356499 DOI: 10.3892/ijo.2015.2878] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Hormone therapy targeting estrogen receptor α (ERα) is the most effective treatment for breast cancer. However, this treatment eventually fails as the tumor develops resistance. Although reduced expression of ER-α is a known contributing factor to endocrine resistance, the mechanism of ER-α downregulation in endocrine resistance is still not fully understood. The present study shows that Slug has an inverse relationship with ERα in breast and prostate cancer patient samples. Also the inhibition of Slug blocks mammary stem cell activity in primary mammary epithelial cells. We hypothesize that Slug may be a key transcription factor in the regulation of ERα expression. To understand the Slug-ERα signaling pathway, we employed resistant cell line MCF-TAMR (ERα relatively negative) derived from its parental MCF-7 (ERα positive) cell line and assessed changes in cell phenotype, activity and response to therapy. Conversely, we performed knockdown of Slug in the high-Slug expressing cell line MDA-MB-231 and assessed reversal of the mesenchymal phenotype. Microarray analysis showed that Slug is overexpressed in high grade breast and prostate cancer tissues. Additionally, Slug overexpression leads to drug resistance. Furthermore, we demonstrated that Slug binds directly to ERα promoter E-boxes and represses ERα expression. This resulted in decrease in epithelial-to-mesenchymal transition in cancer cells. These findings demonstrate that Slug, by regulation of ERα expression, contributes to tumor progression and could serve as an important target for cancer therapy.
Collapse
Affiliation(s)
- YOUQIANG LI
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- University of California at Los Angeles David Geffen School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - YANYUAN WU
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- University of California at Los Angeles David Geffen School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - THOMAS C. ABBATIELLO
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - WARREN L. WU
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - JU RI KIM
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - MARIANNA SARKISSYAN
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - SUREN SARKISSYAN
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - SEYUNG S. CHUNG
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - YAHYA ELSHIMALI
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - JAYDUTT V. VADGAMA
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- University of California at Los Angeles David Geffen School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
6
|
Pallotta MT, Fallarino F, Matino D, Macchiarulo A, Orabona C. AhR-Mediated, Non-Genomic Modulation of IDO1 Function. Front Immunol 2014; 5:497. [PMID: 25360135 PMCID: PMC4197771 DOI: 10.3389/fimmu.2014.00497] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023] Open
Abstract
The evolutionary process has conferred a dual – enzymatic and signaling – function on the ancestral metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which has long been known for converting the essential amino acid tryptophan (TRP) into neuroactive and immunoactive catabolites (kynurenines). In addition to TRP catabolic activity, phosphorylated immunoreceptor tyrosine-based inhibitory motifs, present in the IDO1 protein, act as docking sites for different molecular partners, which activate positive (transcriptional) or negative (post-translational) modulation of IDO1 protein. The ligand-operated transcription factor aryl hydrocarbon receptor (AhR) contributes to Ido1 transcription, and it can be operated by both exogenous and endogenous ligands, including l-kynurenine itself, the first byproduct of TRP catabolism. Ligand-bound AhR is also a component of a ubiquitin ligase complex responsible for regulatory proteolysis of different target proteins. Because IDO1 half-life is controlled by the ubiquitin–proteasome system, we here discuss the possibility that AhR, in addition to enhancing Ido1 transcription, contributes to IDO1 regulation by a non-genomic mechanism affecting the protein’s half-life.
Collapse
Affiliation(s)
- Maria Teresa Pallotta
- Pharmacology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Francesca Fallarino
- Pharmacology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Davide Matino
- Pharmacology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia , Perugia , Italy
| | - Ciriana Orabona
- Pharmacology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
7
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
8
|
Sallée M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel) 2014; 6:934-49. [PMID: 24599232 PMCID: PMC3968369 DOI: 10.3390/toxins6030934] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher risk of cardiovascular diseases and suffer from accelerated atherosclerosis. CKD patients are permanently exposed to uremic toxins, making them good candidates as pathogenic agents. We focus here on uremic toxins from tryptophan metabolism because of their potential involvement in cardiovascular toxicity: indolic uremic toxins (indoxyl sulfate, indole-3 acetic acid, and indoxyl-β-d-glucuronide) and uremic toxins from the kynurenine pathway (kynurenine, kynurenic acid, anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quinolinic acid). Uremic toxins derived from tryptophan are endogenous ligands of the transcription factor aryl hydrocarbon receptor (AhR). AhR, also known as the dioxin receptor, interacts with various regulatory and signaling proteins, including protein kinases and phosphatases, and Nuclear Factor-Kappa-B. AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin and some polychlorinated biphenyls is associated with an increase in cardiovascular disease in humans and in mice. In addition, this AhR activation mediates cardiotoxicity, vascular inflammation, and a procoagulant and prooxidant phenotype of vascular cells. Uremic toxins derived from tryptophan have prooxidant, proinflammatory, procoagulant, and pro-apoptotic effects on cells involved in the cardiovascular system, and some of them are related with cardiovascular complications in CKD. We discuss here how the cardiovascular effects of these uremic toxins could be mediated by AhR activation, in a “dioxin-like” effect.
Collapse
Affiliation(s)
- Marion Sallée
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Laetitia Dou
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Claire Cerini
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Stéphane Poitevin
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Philippe Brunet
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| | - Stéphane Burtey
- Aix Marseille Université, Inserm, VRCM, UMR_S 1076, Marseille13005, France.
| |
Collapse
|
9
|
Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity. Sci Rep 2014; 4:4048. [PMID: 24513978 PMCID: PMC3920272 DOI: 10.1038/srep04048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022] Open
Abstract
Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells.
Collapse
|
10
|
Wang Q, Schultz BD. Cholera toxin enhances Na(+) absorption across MCF10A human mammary epithelia. Am J Physiol Cell Physiol 2013; 306:C471-84. [PMID: 24371040 DOI: 10.1152/ajpcell.00181.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
11
|
Tan W, Wong TY, Wang Y, Huang J, Leung LK. CYP19 expression is induced by 2,3,7,8-tetrachloro-dibenzo-para-dioxin in human glioma cells. Mol Cell Endocrinol 2013; 375:106-12. [PMID: 23727336 DOI: 10.1016/j.mce.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/24/2022]
Abstract
Dioxins are the most concerned environmental pollutants. Recent studies have shown that these compounds could disrupt the proper functioning of our endocrine system. Estrogen is synthesized in glial cells of the brain. The hormone has been linked to the maintenance of normal brain operation, ranging from neurotransmission to synapse formation. Aromatase or CYP19 is the enzyme responsible for estrogen synthesis. In the present study, we demonstrated that 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) stimulated the enzyme activity in human brain cells as low as 1pM. Increased brain-specific CYP19 mRNA species was also observed in these cells. Since the brain-specific promoter I.f of CYP19 contains two binding motifs for CCAAT/enhancer binding protein, electrophoretic mobility shift assay was performed to validate the activation. We further traced the triggering signal and found that the mitogen-activated protein kinases ERK-1/2 were activated. In summary, TCDD could induce CYP19 transcription in brain cells. Exposure to the pollutant might perturb the hormonal balance in the brain.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
12
|
Xie G, Peng Z, Raufman JP. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1006-15. [PMID: 22361730 PMCID: PMC3362076 DOI: 10.1152/ajpgi.00427.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.
Collapse
Affiliation(s)
- Guofeng Xie
- Division of Gastroenterology and Hepatology, Univ. of Maryland School of Medicine, 22 S. Greene St., N3W62, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
13
|
Wang T, Gavin HM, Arlt VM, Lawrence BP, Fenton SE, Medina D, Vorderstrasse BA. Aryl hydrocarbon receptor activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors. Int J Cancer 2010; 128:1509-23. [PMID: 20521247 DOI: 10.1002/ijc.25493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/18/2010] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the prototypic ligand for the aryl hydrocarbon receptor (AhR), promotes tumor formation in some model systems. However, with regard to breast cancer, epidemiological and animal studies are inconclusive as to whether exposure increases tumor incidence or may instead be protective. We have previously reported that mice exposed to TCDD during pregnancy have impaired differentiation of mammary tissue, including decreased branching and poor development of lobuloalveolar structures. Because normal pregnancy-induced mammary differentiation may protect against subsequent neoplastic transformation, we hypothesized that TCDD-treated mice would be more susceptible to chemical carcinogenesis after parturition. To test this, mice were treated with TCDD or vehicle during pregnancy. Four weeks later, 7,12-dimethylbenz[a]anthracene (DMBA) was administered to induce mammary tumor formation. Contrary to our hypothesis, TCDD-exposed parous mice showed a 4-week delay in tumor formation relative to controls, and they had a lower tumor incidence throughout the 27-week time course. The same results were obtained in nulliparous mice given TCDD and DMBA on the same schedule. We next addressed whether the delayed tumor incidence was a reflection of decreased tumor initiation, by testing the formation of DMBA-DNA adducts and preneoplastic lesions, induction of cytochrome P450s, and cell proliferation. None of these markers of tumor initiation differed between vehicle- and TCDD-treated animals. The expression of CXCL12 and CXCR4 was also measured to address their possible role in tumorigenesis. Taken together, our results suggest that AhR activation by TCDD slows the promotion of preneoplastic lesions to overt mammary tumors.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Bilbao PS, Santillán G, Boland R. ATP stimulates the proliferation of MCF-7 cells through the PI3K/Akt signaling pathway. Arch Biochem Biophys 2010; 499:40-8. [PMID: 20450878 DOI: 10.1016/j.abb.2010.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022]
Abstract
We studied the modulation of the PI3K/Akt signaling pathway by ATP in MCF-7 cells. Western blot analysis showed that ATP stimulated the phosphorylation of Akt in a dose- and time-dependent manner. Akt phosphorylation in response to nucleotides followed the potency order ATP=UTP=ATPgammaS>>ADP=UDP>ADPbetaS=adenosine, suggesting participation of P2Y(2/4) receptors. Inhibitors of PI3K, PLC, PKC and Src or Src antisense oligonucleotides prevented ATP-induced phosphorylation of Akt. Incubation of cells with 2-APB or in a nominally Ca(2+)-free medium plus EGTA showed that Akt phosphorylation by ATP depends on intracellular calcium release but is independent of calcium influx. The PI3K inhibitor was not effective in reducing MAPKs phosphorylation by ATP. ATP and UTP stimulated MCF-7 cell proliferation, effect that was inhibited by PI3K, PLC, PKC, Src and MAPKs inhibitors. These findings suggest that ATP modulation of P2Y(2/4) receptors increases MCF-7 cell proliferation by activation of the PI3K/Akt signaling pathway through PLC/IP(3)/Ca(2+), PKC and Src.
Collapse
Affiliation(s)
- Paola Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (B8000ICN) Bahía Blanca, Argentina
| | | | | |
Collapse
|
15
|
ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys 2009; 494:7-14. [PMID: 19900397 DOI: 10.1016/j.abb.2009.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 02/04/2023]
Abstract
In this work, we studied the involvement of PKC and Src in the phosphorylation of ERK1/2, p38 and JNK1 MAPKs and in the modulation of ATF-1, c-Fos, c-Jun and Jun D transcription factors by ATP in MCF-7 breast cancer cells. RT-PCR studies and nucleotide sequence analysis confirmed first the expression of P2Y(2)- and P2Y(4)-receptor subtypes. The use of specific inhibitors and Src antisense oligonucleotides showed that PKC, but not Src, plays a role in the phosphorylation of MAPKs by ATP. ATP stimulated the expression of c-Fos and the phosphorylation c-Jun, Jun D and ATF-1. PKC and Src only participated in c-Fos induction and in ATF-1 phosphorylation. Pharmacological inhibition of MAPKs demonstrated that c-Fos induction and phosphorylation of c-Jun and Jun D, but not of ATF-1, depend on MAPK activation. These results suggest that stimulation of P2Y(2) and P2Y(4) receptors by ATP modulates transcription factors through PKC/MAPKs and PKC/Src pathways in MCF-7 cells.
Collapse
|
16
|
Howd RA. Considering changes in exposure and sensitivity in an early life cumulative risk assessment. Int J Toxicol 2009; 29:71-7. [PMID: 19710296 DOI: 10.1177/1091581809344436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A cumulative risk assessment is generally intended to address concurrent exposure by all exposure routes to a group of chemicals that share a common mechanism of toxicity. However, the contribution of different exposure routes will change over time. This is most critical when estimating risks to infants and children because their exposure sources change rapidly during the first few years of life because of dietary and behavioral changes. In addition, there may be changes in sensitivity to toxicants during this time period, associated with various developmental stages. Traditional risk assessments do not address this progression. Examples of how these factors might be incorporated into an early life risk assessment are provided for lead, dioxins and furans, and organophosphate pesticides. The same concepts may apply to other potentially susceptible subpopulations, such as the elderly.
Collapse
Affiliation(s)
- Robert A Howd
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA.
| |
Collapse
|
17
|
Matsumura F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem Pharmacol 2009; 77:608-26. [DOI: 10.1016/j.bcp.2008.10.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/26/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
18
|
Li W, Matsumura F. Significance of the nongenomic, inflammatory pathway in mediating the toxic action of TCDD to induce rapid and long-term cellular responses in 3T3-L1 adipocytes. Biochemistry 2009; 47:13997-4008. [PMID: 19063610 DOI: 10.1021/bi801913w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TCDD (dioxin) induces a rapid inflammatory response from 3T3-L1 adipocytes as judged by prominent induction of the mRNA expression of prostaglandin-endperoxide synthase 2 (Cox-2) along with other inflammation markers within 1 h. This action of TCDD is clearly antagonized by cell pretreatment with AACOCF3 (an inhibitor of cPLA2), nifedipine (a Ca(2+) channel blocker), or 3'-methyl-4'-nitroflavone (MNF), an antagonist of the Ah receptor (AhR), suggesting the possible involvement of the nongenomic pathway of action of TCDD as shown previously in MCF10A cells [Dong, B., and Matsumura, F. (2008) Mol. Pharmacol. 74 (1), 255-263]. This early inflammatory action of TCDD is clearly different from that mediated by its classical action pathway in that the former is mediated by protein kinases such as PKC, PKA, and tyrosine kinases, but not by ARNT. Furthermore, the former is not blocked by two "DRE-decoy" treatments. Such an inflammatory effect of TCDD on 3T3-L1 adipocyes persists at least for 5 days, when the affected adipocytes exhibit significant reduction in their adipocyte characteristics. To assess the cause for the long-lasting influence of this nongenomic action of TCDD, we tested the effects of AACOCF3, exogenous arachidonic acid (AA), and H89 (an inhibitor of PKA) on the 5 day action of TCDD. These agents clearly antagonized all the long-term actions of TCDD except that on CYP1A1 induction, indicating that the influence of the nongenomic action of TCDD lasts a long time in this cell material. One of the major factors mediating its long-lasting effects has been identified to be PKA.
Collapse
Affiliation(s)
- Wen Li
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
19
|
Dong B, Matsumura F. The conversion of rapid TCCD nongenomic signals to persistent inflammatory effects via select protein kinases in MCF10A cells. Mol Endocrinol 2009; 23:549-58. [PMID: 19147701 DOI: 10.1210/me.2008-0317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously we found that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces rapid inflammatory cellular responses in MCF10A mammary epithelial cells through a distinct nongenomic pathway by activating cytosolic phospholipase A2 and Src kinase within 30 min. In the current study we investigated how such an initial, seemingly transient signaling induced by TCDD is subsequently converted into more stable long-term messages. We found that TCDD causes prolonged activation of the binding activity of nuclear proteins to the oligonucleotide probes representing consensus activator protein 1 and CCAAT enhancer binding protein response element sequences, followed by later induction of some diagnostic marker including cyclooxgenase-2, matrix metalloproteinase-2, colony stimulating factor-1, and cytochrome P450 19 (or aromatase). Blocking the early steps of the nongenomic pathway inhibits this action of TCDD. It was also found that Src kinase is mainly responsible for the increase of binding activity to the activator protein 1 probe, and another kinase, protein kinase A (PKA), is accountable for most of the increase of binding activity to the CCAAT enhancer binding protein probe. The induction of those diagnostic markers is also affected by 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (a Src kinase inhibitor) or H89 (a PKA inhibitor). These results indicate that Src kinase and PKA act as the second messengers in propagating the initial nongenomic signaling of TCDD.
Collapse
Affiliation(s)
- Bin Dong
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
20
|
Hahn ME, Allan LL, Sherr DH. Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochem Pharmacol 2008; 77:485-97. [PMID: 18848529 DOI: 10.1016/j.bcp.2008.09.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/13/2023]
Abstract
The AHR is well known for regulating responses to an array of environmental chemicals. A growing body of evidence supports the hypothesis that the AHR also plays perhaps an even more important role in modulating critical aspects of cell function including cell growth, death, and migration. As these and other important AHR activities continue to be elucidated, it becomes apparent that attention now must be directed towards the mechanisms through which the AHR itself is regulated. Here, we review what is known of and what biological outcomes have been attributed to the AHR repressor (AHRR), an evolutionarily conserved bHLH-PAS protein that inhibits both xenobiotic-induced and constitutively active AHR transcriptional activity in multiple species. We discuss the structure and evolution of the AHRR and the dominant paradigm of a xenobiotic-inducible negative feedback loop comprised of AHR-mediated transcriptional up-regulation of AHRR and the subsequent AHRR-mediated suppression of AHR activity. We highlight the role of the AHRR in limiting AHR activity in the absence of xenobiotic AHR ligands and the important contribution of constitutively repressive AHRR to cancer biology. In this context, we also suggest a new hypothesis proposing that, under some circumstances, constitutively active AHR may repress AHRR transcription, resulting in unbridled AHR activity. We also review the predominant hypotheses on the molecular mechanisms through which AHRR inhibits AHR as well as novel mechanisms through which the AHRR may exert AHR-independent effects. Collectively, this discussion emphasizes the importance of this understudied bHLH-PAS protein in tissue development, normal cell biology, xenobiotic responsiveness, and AHR-regulated malignancy.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | |
Collapse
|
21
|
Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 2008; 77:508-20. [PMID: 18848820 DOI: 10.1016/j.bcp.2008.09.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 01/02/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant, which causes a variety of severe health effects, e.g. immunosuppression, hepatotoxicity, and carcinogenesis. The main mediator of TCDD toxicity is the arylhydrocarbon receptor (AhR), which, upon activation, translocates into the nucleus and enforces gene expression. Since most of the pleiotropic effects caused by TCDD are associated with alterations in cell growth and differentiation, the analysis of the interference of the AhR with factors controlling these cellular functions seems to be a promising target regarding the prevention and treatment of chemical-provoked diseases. Cell growth and differentiation are regulated by numerous growth factors and cytokines. These multifunctional peptides promote or inhibit cell growth and regulate differentiation and other cellular processes, depending on cell-type and developmental stage. They are involved in the regulation of a broad range of physiological processes, including immune response, hematopoiesis, neurogenesis, and tissue remodeling. The complex network of growth factors and cytokines is accurately regulated and disturbances of this system are associated with adverse health effects. The molecular mechanisms by which the AhR interferes with this signaling network are multifaceted and the physiological consequences of this cross-talk are quite enigmatic. The investigation of this complex interaction is an exciting task, especially with respect to the recently described non-genomic and/or ligand-independent activities of AhR. Therefore, we summarize the current knowledge about the interaction of the AhR with three cytokine-/growth factor-related signal transducers -- the epidermal growth factor (EGF) family, tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta (TGF-beta) -- with regard to pathophysiological findings.
Collapse
|
22
|
Dong B, Matsumura F. Roles of cytosolic phospholipase A2 and Src kinase in the early action of 2,3,7,8-tetrachlorodibenzo-p-dioxin through a nongenomic pathway in MCF10A cells. Mol Pharmacol 2008; 74:255-63. [PMID: 18388244 DOI: 10.1124/mol.107.044669] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, or dioxin) is known to induce rapid inflammatory cellular responses through the mechanism that has not yet been fully elucidated. In this report, we show that in MCF10A cells, an immortalized, normal mammary epithelial cell line, TCDD rapidly activates the enzymatic activity of cytosolic phospholipase A2 (cPLA2) as at-tested to by arachidonic acid release within 15 min, followed by activation of Src kinase and induction of several inflammation markers. Such an action of TCDD is clearly blocked by methylarachidonyl fluorophosphonate, a specific inhibitor of cPLA2, short interfering RNA against cPLA2, and several calcium signaling blockers, indicating that this action of TCDD is mediated by calcium-triggered activation of cPLA2. This action of TCDD is quite different from the classic action of TCDD to induce cytochrome P450 1A1 (CYP1A1) because blocking this newly identified pathway did not affect the induction of CYP1A1. Moreover, this newly identified pathway was found to depend only on aryl hydrocarbon receptor but not on aryl hydrocarbon receptor nuclear translocator. Together, these findings support the model that the early action of TCDD to induce rapid inflammatory responses is carried out through a characteristic "nongenomic" pathway, which is clearly different from the conventional model of action of TCDD through the "genomic" pathway.
Collapse
Affiliation(s)
- Bin Dong
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
23
|
Lajous M, Boutron-Ruault MC, Fabre A, Clavel-Chapelon F, Romieu I. Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr 2008; 87:1384-91. [PMID: 18469262 DOI: 10.1093/ajcn/87.5.1384] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diets high in carbohydrates may result in chronically elevated insulin concentrations and may affect breast cancer risk by stimulation of insulin receptors or through insulin-like growth factor I (IGF-I)-mediated mitogenesis. Insulin response to carbohydrate intake is increased in insulin-resistant states such as obesity. OBJECTIVE We sought to evaluate carbohydrate intake, glycemic index (GI), and glycemic load (GL) and subsequent overall and hormone-receptor-defined breast cancer risk among postmenopausal women. DESIGN A prospective cohort analysis of dietary carbohydrate and fiber intakes was conducted among 62 739 postmenopausal women from the E3N French study who had completed a validated dietary history questionnaire in 1993. During a 9-y period, 1812 cases of pathology-confirmed breast cancer were documented through follow-up questionnaires. Nutrients were categorized into quartiles and energy-adjusted with the regression-residual method. Cox model-derived relative risks (RRs) were adjusted for known determinants in breast cancer. RESULTS Dietary carbohydrate and fiber intakes were not associated with overall breast cancer risk. Among overweight women, we observed an association between GI and breast cancer (RR(Q1-Q4): 1.35; 95% CI: 1.00, 1.82; P for trend = 0.04). For women in the highest category of waist circumference, the RR(Q1-Q4) was 1.28 (95% CI: 0.98, 1.67; P for trend = 0.10) for carbohydrates, 1.35 (95% CI: 1.04, 1.75; P for trend = 0.01) for GI, and 1.37 (95% CI: 1.05, 1.77; P for trend = 0.003) for GL. We also observed a direct association between carbohydrate intake, GL, and estrogen receptor-negative breast cancer risk. CONCLUSIONS Rapidly absorbed carbohydrates are associated with postmenopausal breast cancer risk among overweight women and women with large waist circumference. Carbohydrate intake may also be associated with estrogen receptor-negative breast cancer.
Collapse
Affiliation(s)
- Martin Lajous
- INSERM, ERI 20, EA 4045, and Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
24
|
Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, Sherr DH. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem 2008; 387:1175-87. [PMID: 16972784 DOI: 10.1515/bc.2006.145] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily conserved transcription factor bound and activated by ubiquitous environmental pollutants. Historically, the AhR has been studied for its transcriptional regulation of genes encoding cytochrome P450 enzymes, which metabolize many of these chemicals into mutagenic and toxic intermediates. However, recent studies demonstrate that the AhR plays an important role in the biology of several cell types in the absence of environmental chemicals. Here, this paradigm shift is discussed in the context of a putative role for the AhR in mammary gland tumorigenesis. Data demonstrating high levels of constitutively active AhR in mammary tumors are summarized. Particular focus is placed on the likelihood that the AhR contributes to ongoing mammary tumor cell growth and on the possibility that the AhR inhibits apoptosis while promoting transition to an invasive, metastatic phenotype. A working model is proposed that may help explain the sometimes contradictory outcomes observed after AhR manipulation and that serves as a blueprint for the design of therapeutics which target the AhR in breast cancer. The theme that malignant cells reveal the functions for which the AhR has been evolutionarily conserved is presented throughout this discussion.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Keyser J, Lorger M, Pavlovic J, Radziwill G, Moelling K. Role of AF6 protein in cell-to-cell spread of Herpes simplex virus 1. FEBS Lett 2007; 581:5349-54. [PMID: 17967423 DOI: 10.1016/j.febslet.2007.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/11/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.
Collapse
Affiliation(s)
- Johanna Keyser
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | | | | | | | | |
Collapse
|