1
|
Ani OG, Medayedupin OA, Azeez AA, Gyebi GA, Boateng ID, Adebayo JO. Toxicity assessment of 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl]-17β-marsdenin isolated from Gongronema latifolium leaf on selected brain and kidney function indices in mice. Toxicon 2024; 247:107830. [PMID: 38936671 DOI: 10.1016/j.toxicon.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The safety of bioactive compounds, especially those isolated from medicinal plants, is a major concern for health authorities, pharmaceutical industries, and the public. Of recent, anti-tumor pregnane glycosides were isolated from Gongronema latifolium leaf, of which the toxicity of one, 3-O-[6-deoxy-3-O-methyl-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranosyl]-17β-marsdenin (3DMAOM), has not been evaluated. This study, therefore, evaluated the effects of 3DMAOM on selected brain and kidney function indices in mice. Female Swiss albino mice were randomly administered 5% dimethyl sulphoxide and different doses of 3DMAOM (0.5, 1, 2, and 4 mg/kg body weight) for fourteen (14) days, and their blood, brains, and kidneys were collected for biochemical analysis. There was no significant alteration in the activities of alkaline phosphatase (ALP), acetylcholinesterase, creatine kinase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the brain of the treated groups compared to control. Also, no significant changes in the activities of ALP, gamma-glutamyltransferase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and Mg2+-ATPase in the kidney of the treated groups compared to control. The plasma concentrations of Na+, K+, Cl-, PO43-, creatinine, and urea of mice were not significantly altered at all doses of the 3DMAOM compared to controls. However, the plasma concentration of Ca2+ was significantly reduced (p < 0.05) at all doses of the 3DMAOM, and the plasma concentration of uric acid was significantly reduced (p < 0.05) at 2 mg/kg body weight of the 3DMAOM compared to controls. These findings suggest that 3DMAOM isolated from Gongronema latifolium leaf may not adversely affect brain function but may affect calcium ion homeostasis in subjects.
Collapse
Affiliation(s)
- Onyedika Gabriel Ani
- Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, MO, 65211, USA; Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | | | - Aminat Abike Azeez
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, New Karu, 961105, Nasarawa, Nigeria.
| | | | | |
Collapse
|
2
|
Asthana S, Pandey SK, Gautam AS, Singh RK. MK2 inhibitor PF-3644022 shows protective effect in mouse microglial N9 cell line induced with cigarette smoke extract. Chem Biol Drug Des 2024; 104:e14592. [PMID: 39013758 DOI: 10.1111/cbdd.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Neuroinflammation is suggested as one of the potential links between CS-induced neuronal dysfunction. Cigarette smoke (CS) is one of the significant contributors of neuroinflammation, consequently leading to cognitive impairment and neurodegeneration. Microglia are the key resident macrophage cells in the brain with cell surface TLR4 receptor for responding to various stress signals. The CS constituents promote inflammation and oxidative stress in microglia leading to cytotoxicity through the TLR4-MK2 axis. However, the role of MK2 kinase in CS-induced microglial inflammation is not yet clearly understood. Therefore, we have used an MK2 inhibitor, PF-3644022 to study modulation of CS-extract induced oxidative and inflammatory signaling in a mouse microglial cell line, Furthermore, we also evaluated the enzymatic activity of acetylcholinesterase (AChE) on a direct exposure of enzyme with CS. CS exposure led to microglial cytotoxicity and enhanced the level of oxidative stress and proinflammatory cytokine release by microglial cells. The microglial cells pretreated with MK2 inhibitor, PF-3644022 significantly reduced the levels of oxidative stress markers, proinflammatory markers, and improved the level of antioxidant proteins in these cells. In addition, direct exposure of CS showed reduction in the enzymatic activity of AChE.
Collapse
Affiliation(s)
- Shikha Asthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Lucknow, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Lucknow, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang H, Zhou H, Guo X, Zhang G, Xiao M, Wu S, Jin C, Yang J, Lu X. Cigarette smoke triggers calcium overload in mouse hippocampal neurons via the ΔFOSB-CACNA2D1 axis to impair cognitive performance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114996. [PMID: 37167740 DOI: 10.1016/j.ecoenv.2023.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
A growing body of evidence shows that cigarette smoking impairs cognitive performance. The 'Calcium Hypothesis' theory of neuronopathies reveals a critical role of aberrant calcium signaling in compromised cognitive functions. However, the underlying implications of abnormalities in calcium signaling in the neurotoxicity induced by cigarette smoke (CS) have not yet been identified. CACNA2D1, an important auxiliary subunit involved in the composition of voltage-gated calcium channels (VGCCs), was reported to affect the calcium signaling in neurons by facilitating VGCCs-mediated Ca2+ influx. ΔFOSB, an alternatively-spliced product of the Fosb gene, is an activity-dependent transcription factor induced robustly in the brain in response to environmental stimuli such as CS. Interestingly, our preliminary bioinformatics analysis revealed a significant co-expression between ΔFOSB and CACNA2D1 in brain tissues of patients with neurodegenerative diseases characterized by progressive cognitive decline. Therefore, we hypothesized that the activation of the ΔFOSB-CACNA2D1 axis in response to CS exposure might cause dysregulation of calcium homeostasis in hippocampal neurons via VGCCs-mediated Ca2+ influx, thereby contributing to cognitive deficits. To this end, the present study established a CS-induced mouse model of hippocampus-dependent cognitive impairment, in which the activation of the ΔFOSB-CACNA2D1 axis accompanied by severe calcium overload was observed in the mouse hippocampal tissues. More importantly, ΔFOSB knockdown-/overexpression-mediated inactivation/activation of the ΔFOSB-CACNA2D1 axis interdicted/mimicked CS-induced dysregulation of calcium homeostasis followed by severe cellular damage in HT22 mouse hippocampal neurons. Mechanistically speaking, a further ChIP-qPCR assay confirmed the physical interaction between transcription factor ΔFOSB and the Cacna2d1 gene promoter, suggesting a direct transcriptional regulation of the Cacna2d1 gene by ΔFOSB. Overall, our current work aims to deliver a unique insight into the neurotoxic mechanisms induced by CS to explore potential targets for intervention.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Huabin Zhou
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xianhe Guo
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
4
|
Berezutsky MA, Durnova NA, Sigareva LE, Belonogova YV. [Bacosides: a study of neurobiological activity, prospects for application]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:54-59. [PMID: 37966440 DOI: 10.17116/jnevro202312310154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacosides are the main biologically active components derived from the plant bacopa monnieri (Bacopa monnieri (L.) Wettst.), which has been used as a nootropic in Indian medicine for many centuries. In recent years, these compounds have attracted attention because of their wide range of neurobiological effects. The neuroprotective effects of bacosides on brain neurons under the influence of various damaging factors (neurotoxins, oxidative stress, beta-amyloid deposition, cigarette smoke, etc.) have been established. It was shown that these substances reduce the levels of inflammatory cytokines and inhibit the processes of demyelination of neurons. The anticonvulsant effect of bacosides has been established. These compounds also improve cognitive functions, including memory and learning abilities. The effects associated with the influence on the dopaminergic and serotonergic systems of the striatum are of interest for the therapy of morphine addiction. The theoretical justifications for the future use of bacosides as a multipurpose means of complex therapy of individual diseases in neurological and psychiatric practice are presented.
Collapse
Affiliation(s)
- M A Berezutsky
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - N A Durnova
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Sigareva
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu V Belonogova
- Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
5
|
Al-Mshari A, AlSheikh MH, Latif R, Mumtaz S, Albaker W, Al-Hariri M. Impact of smoking intensities on sleep quality in young Saudi males: a comparative study. J Med Life 2022; 15:1392-1396. [PMID: 36567837 PMCID: PMC9762367 DOI: 10.25122/jml-2022-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to compare various components of sleep quality between cigarette smokers of various intensities and non-smokers in young Saudi males. In total, 73 healthy male participants (31 smokers and 42 non-smokers) aged 17-33 years were recruited over three months (August 2018 to October 2018). All participants completed the Pittsburgh Sleep Quality Index (PSQI) questionnaire. The smokers were then divided into three groups, according to their Smoking Index* (SI) (Cigarettes Per Day (CPD) X Years of Tobacco Use), into mild, moderate, and heavy smokers. The PSQI was significantly higher in heavy smokers than in mild smokers (P=0.022) or non-smokers (p=0.013). A significant positive correlation was observed between the PSQI and the smoking index (p=0.005). Sleep duration was significantly longer in heavy smokers compared to mild (p=0.032) and nonsmokers (p=0.047). Sleep disturbance was significantly higher in moderate than nonsmokers (p=0.035) and moderate than mild smokers (p=0.028). Sleep latency was significantly longer in heavy than nonsmokers (p=0.011). Daytime dysfunction was significantly higher in moderate than mild smokers (p=0.041). Habitual sleep efficiency was significantly greater in moderate than in either mild (p=0.013) or nonsmokers (p=0.021). The use of sleep medication was significantly higher in moderate than nonsmokers (p=0.041). The findings suggest that poorer sleep quality is positively associated with smoking intensity among young Saudi males. Considering the importance of sleep quality for well-being and health, these results suggest exploring how improving sleep quality could inform future smoking cessation interventions.
Collapse
Affiliation(s)
- Arwa Al-Mshari
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Mona Hmoud AlSheikh
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabia Latif
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadaf Mumtaz
- Physiology Department, Dental College, HITEC-Institute of Medical Sciences, Taxila, Pakistan
| | - Waleed Albaker
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal, Dammam, Saudi Arabi
| | - Mohammed Al-Hariri
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Al-Hariri, Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
6
|
Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence Based Neuroprotective Potential of Bacopa Monnieri Against Parkinson's Disease. Curr Drug Targets 2022; 23:889-901. [PMID: 35297345 DOI: 10.2174/1389450123666220316091734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's diseaseis a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantianigra pars compacta characterized by the motor symptoms such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations arethe hallmarks of Parkinson's disease. The bioactive components of Brahmi such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, aggregation inhibition of α-synuclein, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress, neuroinflammation and enhance the dopamine level. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - S Gopika
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Abhishek Kumar
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
7
|
Banerjee S, Anand U, Ghosh S, Ray D, Ray P, Nandy S, Deshmukh GD, Tripathi V, Dey A. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders. Phytother Res 2021; 35:5668-5679. [PMID: 34254371 DOI: 10.1002/ptr.7203] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
From ancient history, complementary and alternative medicines have played a significant role as holistic therapeutic treatments of various human diseases including cancer, diabetes, neurological diseases, and skin problems. One Indian medicinal plant (herb), Bacopa monnieri has been used in many parts of the world as such medicine, particularly for the treatment of various neurological disorders. It is well known as a potent "tonic for the human brain," which serves as a memory enhancer. Multiple studies proved that this herb contains a plethora of potential bioactive, phytochemical compounds with synergistic properties. The main purpose of the present review is to shed light on the use of Bacopa monnieri and its active principles (bacosides) in the management of neurological disorders. Furthermore, the signaling pathways modulated by bacosides have been critically discussed in this review. Moreover, we have critically summarized the present knowledge of this perennial creeping herb based upon the literature mining from different scientific engines.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchhanda Ghosh
- Department of Botany, Shri Shikshayatan College, Kolkata, India
| | - Durga Ray
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Ganpat Dewaji Deshmukh
- Department of Zoology, Rashtrapita Mahatma Gandhi Arts & Science College, Nagbhid, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
8
|
Neuroprotection with Bacopa monnieri-A review of experimental evidence. Mol Biol Rep 2021; 48:2653-2668. [PMID: 33675463 DOI: 10.1007/s11033-021-06236-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/12/2021] [Indexed: 01/17/2023]
Abstract
Brahmi or aindri is a popular herb in the vast and rich compendium of herbs of Ayurveda and is botanically identified as Bacopa monnieri Linn. (BM). It is extensively used in Ayurveda and other traditional systems of medicine in the management of neurological psychiatric disorders. BM possess active principles belonging to alkaloids, glycosides, flavonoids, saponins categories. Numerous research have been undertaken across the globe to evaluate the neuroprotective potential of this herb. This review collates and summarises current (as on May 2020) published literature on Brahmi as a neuroprotective in neurological and psychiatric disorders. English language articles from databases PubMed, Scopus and Google scholar were searched using appropriate free keywords and MeSH terms related to the topic. The review demonstrates the neuroprotective potential of the Ayurveda herb Brahmi in several disorders including Alzheimer's disease, epilepsy, Parkinson's disease, Huntington's disease, cerebral ischemia and infarct and neoplasms.
Collapse
|
9
|
Bist R, Chaudhary B, Bhatt DK. Defensive proclivity of bacoside A and bromelain against oxidative stress and AChE gene expression induced by dichlorvos in the brain of Mus musculus. Sci Rep 2021; 11:3668. [PMID: 33574433 PMCID: PMC7878736 DOI: 10.1038/s41598-021-83289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/25/2021] [Indexed: 01/22/2023] Open
Abstract
The objective of current study was to evaluate the neuroprotective effects of bacoside A and bromelain against dichlorvos induced toxicity. The healthy, 6-8 weeks old male Swiss mice were administered in separate groups subacute doses of dichlorvos (40 mg/kg bw), bacoside A (5 mg/kg bw) and bromelain (70 mg/kg bw). In order to determination of oxidative stress in different groups, thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) were studied in the present investigation. Moreover, for toxic manifestation at molecular level the site-specific gene amplification of acetylcholinesterase (AChE) gene was studied in the brain. Nonetheless, the protective effects of bacoside A and bromelain were also evaluated on the TBARS, PCC and AChE gene. The exposure of dichlorvos leads to significant increase in TBARS level (p < 0.01, p < 0.001) and PCC. Besides, the decline in DNA yield, expression of amplified products of AChE gene was observed in the brain of dichlorvos treated group. The bacoside A and bromelain treatments significantly decreased the level of TBARS (p < 0.05, (p < 0.01) and PCC whereas, increase in the DNA yield and expression of amplified AChE gene products were observed in the brain compared to only dichlorvos treated mice. The overall picture which emerged after critical evaluation of results indicated that the dichlorvos induced oxidative stress and alteration in AChE gene expression showed significant improvement owing to the treatments of bacoside A and bromelain. Thus, bacoside A and bromelain are very effective in alleviating neurotoxicity induced by dichlorvos.
Collapse
Affiliation(s)
- Renu Bist
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, 302004, India.
| | - Bharti Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - D K Bhatt
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
10
|
Kangiser MM, Thomas AM, Kaiver CM, Lisdahl KM. Nicotine Effects on White Matter Microstructure in Young Adults. Arch Clin Neuropsychol 2020; 35:10-21. [PMID: 31009035 DOI: 10.1093/arclin/acy101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/11/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. METHODS Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18-25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. RESULTS Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus-temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. CONCLUSIONS Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.
Collapse
Affiliation(s)
- Megan M Kangiser
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Alicia M Thomas
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Christine M Kaiver
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Krista M Lisdahl
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
11
|
Bhandari P, Sendri N, Devidas SB. Dammarane triterpenoid glycosides in Bacopa monnieri: A review on chemical diversity and bioactivity. PHYTOCHEMISTRY 2020; 172:112276. [PMID: 32058865 DOI: 10.1016/j.phytochem.2020.112276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bacopa monnieri (L.) is a reputed medicinal herb in traditional system of medicine of India, where it is used as nervine tonic to sharpen intellect and memory. This review discusses chemical characterization of dammarane triterpenoid glycosides which are well accepted for improvement in memory and for potential pharmacological activities. In addition, this review provides information on the chemical composition of specialized metabolites of B. monnieri and in the formulations by different analytical techniques. This comprehensive review covers literature up to 2019 with an emphasis on structural characterization of dammarane triterpenoid glycosides by spectroscopic techniques, chemical composition by analytical methods and pharmacological activities.
Collapse
Affiliation(s)
- Pamita Bhandari
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | - Nitisha Sendri
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shinde Bhagatsing Devidas
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
12
|
Komali E, Venkataramaiah C, Rajendra W. Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. J Tradit Complement Med 2020; 11:137-143. [PMID: 33728274 PMCID: PMC7936099 DOI: 10.1016/j.jtcme.2020.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/12/2019] [Accepted: 02/27/2020] [Indexed: 01/29/2023] Open
Abstract
Epilepsy is a chronic central nervous system disorder that occurs not only with the imbalance of glutamatergic neurons and inhibitory gamma-aminobutyric acid (γ-GABA) neurons, but also with abnormal Central cholinergic neuronal regulation. Since long term usage of antiepileptic drugs cause high incidence of pharmacoresistance and untoward side effects, attention has been paid in recent years to screen bioactive compounds from natural medicinal plants for the treatment of several neurological disorders including Epilepsy. Keeping in view of relative importance of natural medicinal plants, the present study is mainly focused to characterize the anti-convulsant effect of Bacopa monnieri (BM), an Indian herb which is being extensively used in Ayurvedic treatments related to neurological complications. The present study is designed to assess the neurotoxicity of Pentylene tetrazole (PTZ), an epileptic compound with particular reference to Cholinergic system and ATPases in different brain regions of rat to explore the possible antiepileptic effect of different extracts of BM in comparison with Diazepam (DZ) (Reference control). The activity levels of Acetyl cholinesterase (AChE) and ATPases were decreased in different regions of brain during PTZ induced epilepsy which were increased in epileptic rats pretreated with different extracts of Bacopa monnieri except EAE and AE. In addition Acetylcholine (ACh), levels were increased during PTZ induced epilepsy when compared with normal control and levels were reversed on pretreatment with different extracts of BM. Recoveries of these parameters suggest that the bioactive factors present in the extracts offer neuroprotection by interrupting the pathological cascade that occurs during epileptogenesis.
Collapse
Affiliation(s)
| | | | - W. Rajendra
- Corresponding author. Former Vice-Chancellor & BSR- Faculty fellow Department of Zoology Sri Venkateswara University, Tirupati, 517502, AP, India.
| |
Collapse
|
13
|
Venkataramaiah C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of "3-(3, 4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one": an in vivo and in silico studies. J Recept Signal Transduct Res 2020; 40:148-156. [PMID: 32009493 DOI: 10.1080/10799893.2020.1720242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Schizophrenia is a devastating illness and displays a wide range of psychotic symptoms. Accumulating evidence indicate impairment of bioenergetic pathways including energy storage and usage in the pathogenesis of schizophrenia. Although well-established synthetic drugs are being used for the management of schizophrenia, most of them have several adverse effects. Hence, natural products derived from medicinal plants represent a continuous major source for ethnomedicine-derived pharmaceuticals for different neurological disorders including schizophrenia. In the present study, we have investigated the neuroprotective effect of the novel bioactive compound i.e. "3-(3,4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one" of Celastrus paniculata against ketamine-induced schizophrenia with particular reference to the activities of ATPase using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant reduction in the activities of all three ATPases (Na+/K+, Ca2+ and Mg2+) in different regions of brain which reflects the decreased turnover of ATP, presumably due to the inhibition of oxidoreductase system and uncoupling of the same from the electron transport system. On par with the reference compound, clozapine, the activity levels of all three ATPases were restored to normal after pretreatment with the compound suggesting recovery of energy loss that was occurred during ketamine-induced schizophrenia. Besides, the compound has shown strong interaction and exhibited highest binding energies against all the three ATPases with a lowest inhibition constant value than the clozapine. The results of the present study clearly imply that the compound exhibit significant neuroprotective and antischizophrenic effect by modulating bioenergietic pathways that were altered during induced schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
14
|
Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. PROTOPLASMA 2019; 256:1463-1486. [PMID: 31297656 DOI: 10.1007/s00709-019-01411-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 05/26/2023]
Abstract
The saponins are a diverse class of natural products, with a broad scale distribution across different plant species. Chemically characterized as triterpenoid glycosides, they posses a 30C oxidosqualene precursor-based aglycone moiety (sapogenin), to which glycosyl residues are subsequently attached to yield the corresponding saponin. Based on the chemically distinct aglycone moieties, broadly, they are divided into triterpenoid saponins (dammaranes, ursanes, oleananes, lupanes, hopanes, etc.) and the sterol glycosides. This review aims to present in detail the biosynthesis patterns of the different aglycones from a common precursor and their glycosylation patterns to yield the functionally active glycoside. The review also presents recent advances in the pharmacological activities of these saponins, particularly as potent anti-neoplastic pharmacophores, antioxidants, or anti-viral/antibacterial agents. Since alternate production pedestals for these pharmacologically important triterpenes via cell and tissue cultures are an attractive option for their sustainable production, recent trends in the variety and scale of in vitro production of plant triterpenoids have also been discussed.
Collapse
Affiliation(s)
- Tanya Biswas
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
- Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
15
|
Ben Anes A, Ben Nasr H, Garrouch A, Bennour S, Bchir S, Hachana M, Benzarti M, Tabka Z, Chahed K. Alterations in acetylcholinesterase and butyrylcholinesterase activities in chronic obstructive pulmonary disease: relationships with oxidative and inflammatory markers. Mol Cell Biochem 2017; 445:1-11. [DOI: 10.1007/s11010-017-3246-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
|
16
|
Kaur N, Kishore L, Singh R. Chromane isolated from leaves of Dillenia indica improves the neuronal dysfunction in STZ-induced diabetic neuropathy. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:19-30. [PMID: 28506898 DOI: 10.1016/j.jep.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Indian traditional medicine, Dillenia indica L. has shown therapeutic efficacy in various diseases. Fruits and leaves of the plant possess anti-oxidant and anti-inflammatory properties. Reactive oxygen species, formation of advanced glycation end products (AGEs) and apoptosis are implicated in the pathogenesis of diabetic neuropathy. AIM OF THE STUDY The aim of the present study was to explore the effect of D. indica and its isolate, chromane (CR), on thermal and mechanical hyperalgesia, allodynia, MNCV and oxidative-nitrosative stress in streptozotocin-induced experimental diabetes. MATERIAL AND METHODS Diabetes was induced by intraperitoneal administration of Streptozotocin (STZ; 65mg/kg) for the development of diabetic neuropathy. Chronic treatment with DAE (100, 200 and 400mg/kg, p.o.) and CR (5 and 10mg/kg, p.o.) for 30 days was started from the 60th day of STZ administration. Development of neuropathy was evident from a marked hyperalgesia and allodynia; reduced MNCV associated with increased formation of AGEs and reactive oxygen species. RESULTS significantly attenuated behavioral and biochemical changes associated with diabetic neuropathy. Present study suggested that DAE and CR ameliorated hyperglycemia and diabetic neuropathic pain via modulation of oxidative-nitrosative stress and reduction in AGEs formation in the diabetic rats. CONCLUSION Thus D. indica might be beneficial in chronic diabetics, ameliorate the progression of diabetic neuropathy and may also find application in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Navpreet Kaur
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India
| | - Lalit Kishore
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
17
|
Kishore L, Kaur N, Singh R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Ramos P, Santos A, Pinto E, Pinto NR, Mendes R, Magalhães T, Almeida A. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes. J Trace Elem Med Biol 2016; 38:174-182. [PMID: 27150910 DOI: 10.1016/j.jtemb.2016.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
Abstract
The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus).
Collapse
Affiliation(s)
- Patrícia Ramos
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences - North Branch, Jardim Carrilho Videira, 4050-167 Porto, Portugal; CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; School of Health Sciences, Minho University, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CISA, Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal
| | - Nair Rosas Pinto
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal
| | - Ricardo Mendes
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal
| | - Teresa Magalhães
- CENCIFOR - Forensic Science Center, Largo da Sé Nova, s/n, 3000-213 Coimbra, Portugal; Faculty of Medicine, Porto University, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, R. Central da Gandra 1317, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
19
|
Bacoside A and bromelain relieve dichlorvos induced changes in oxidative responses in mice serum. Chem Biol Interact 2016; 254:173-8. [PMID: 27180203 DOI: 10.1016/j.cbi.2016.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/17/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) may be involved in the pathogenesis of serum induced by dichlorvos. Therefore, the rationale of present research was to evaluate the ameliorative efficacy of bacoside A and bromelain on oxidative stress biomarkers in serum of dichlorvos intoxicated mice. Also the level of serum antioxidants viz. catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) were measured. For experiments, mice were allocated into six groups. First group received saline as a vehicle; second group was administered with dichlorvos (40 mg/kg b.w.); third group was administered with bromelain (70 mg/kg b.w.), fourth group received dose of bacoside A (5 mg/kg b.w.), fifth group was given concomitant exposure of bacoside A and bromelain both and mice of sixth group were exposed to bacoside A, bromelain and dichlorvos for 21 days consecutively. Oxidative stress biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) and antioxidants (CAT, SOD, GPx and GSH) level of serum was determined to elucidate the protective potential of bacoside A and bromelain against dichlorvos intoxication. Significantly increased TBARS and PCC level in second group suggests that dichlorvos enhances the production of free radicals in serum of mice (p < 0.05). Antioxidants treatment significantly decreased the levels of TBARS and PCC (p < 0.05). Dichlorvos administration causes a significant reduction in the level of CAT, SOD, GPx and GSH (p < 0.05) which was restored significantly by co-administration of bromelain and bacoside A in dichlorvos exposed mice (p < 0.05). The bacoside A and bromelain are attributed with antioxidant properties. Finding of research conclude that concomitant exposure of bacoside A and bromelain was much effective in combating oxidative stress induced by dichlorvos.
Collapse
|
20
|
Bacoside A: Role in Cigarette Smoking Induced Changes in Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:286137. [PMID: 26413118 PMCID: PMC4564636 DOI: 10.1155/2015/286137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/11/2015] [Accepted: 02/26/2015] [Indexed: 12/29/2022]
Abstract
Cigarette smoking (CS) is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA) on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke.
Collapse
|
21
|
Ramesh T, Sureka C, Bhuvana S, Begum VH. Brain oxidative damage restored by Sesbania grandiflora in cigarette smoke-exposed rats. Metab Brain Dis 2015; 30:959-68. [PMID: 25620659 DOI: 10.1007/s11011-015-9654-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Cigarette smoking has been associated with high risk of neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, etc., The present study was designed to evaluate the restorative effects of Sesbania grandiflora (S. grandiflora) on oxidative damage induced by cigarette smoke exposure in the brain of rats. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1000 mg/kg body weight per day by oral gavage) for a period of 3 weeks. The levels of protein carbonyl, nitric oxide, and activities of cytochrome P450, NADPH oxidase and xanthine oxidase were significantly increased, whereas the levels of total thiol, protein thiol, non-protein thiol, nucleic acids, tissue protein and the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were significantly diminished in the brain of rats exposed to cigarette smoke as compared with control rats. Also cigarette smoke exposure resulted in a significant alteration in brain total lipid, total cholesterol, triglycerides and phospholipids content. Treatment of SGAS is regressed these alterations induced by cigarette smoke. The results of our study suggest that S. grandiflora restores the brain from cigarette smoke induced oxidative damage. S. grandiflora could have rendered protection to the brain by stabilizing their cell membranes and prevented the protein oxidation, probably through its free radical scavenging and anti-peroxidative effect.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Biochemistry, College of Medicine, Salman Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia,
| | | | | | | |
Collapse
|
22
|
Ramesh T, Sureka C, Bhuvana S, Begum VH. Oxidative stress in the brain of cigarette smoke-induced noxiousness: neuroprotective role of Sesbania grandiflora. Metab Brain Dis 2015; 30:573-82. [PMID: 25217401 DOI: 10.1007/s11011-014-9614-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is concerned as a major risk factor in the development of various neurological disorders. Oxidative stress is suggested as a possible contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Therefore, the present study was intended to evaluate the neuroprotective role of Sesbania grandiflora (S. grandiflora) against chronic cigarette smoke induced oxidative damage in rat brain. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1,000 mg/kg body weight per day by oral gavage) for a period of 3 weeks. Lipid peroxidation and antioxidants status were analyzed in the brain. Rats exposed to cigarette smoke showed significant increase in conjugated diens (CD), hydroperoxides (HP) and malendialdehyde (MDA) levels with concomitant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) activities and the levels of reduced glutathione (GSH), vitamin C and vitamin E. Also cigarette smoke-exposure resulted in a marked increase in copper and decrease in zinc, manganese and selenium levels in brain. Administration of SGAS attenuates lipid peroxidation, enhanced the antioxidant status, restored the levels of micronutrients and retained the brain histology. The results of our study indicate that chronic cigarette smoke-exposure accelerates oxidative stress, thereby disquieting the brain defensive mechanism and S. grandiflora protects the brain from the oxidative damage through its biopotency.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Biochemistry, College of Medicine, Salman Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia,
| | | | | | | |
Collapse
|
23
|
Durazzo TC, Mattsson N, Weiner MW, Korecka M, Trojanowski JQ, Shaw LM. History of cigarette smoking in cognitively-normal elders is associated with elevated cerebrospinal fluid biomarkers of oxidative stress. Drug Alcohol Depend 2014; 142:262-8. [PMID: 25037769 PMCID: PMC4144023 DOI: 10.1016/j.drugalcdep.2014.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/22/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cigarette smoking in adults is associated with abnormalities in brain neurobiology. Smoking-induced central nervous system oxidative stress (OxS) is a potential mechanism associated with these abnormalities. The goal of this study was to compare cognitively-normal elders on cerebrospinal fluid (CSF) levels of F2-isoprostane biomarkers of OxS. METHODS Elders with a lifetime history of smoking (smokers; n=50; 75±5 years of age; 34±28 pack-years; approximately 12% were actively smoking at the time of study) were compared to never-smokers (n=61; 76±6 years of age) on CSF iPF2α-III and 8,12, iso-iPF2α-VI F2-isoprostanes levels. F2-isoprostanes levels were quantitated with HPLC-atmospheric pressure chemical ionization-tandem mass spectrometry. Associations between F2-isoprostanes levels, hippocampal volumes, and cigarette exposure measures were also evaluated. RESULTS Smokers showed higher iPF2α-III level than never-smokers. An age×smoking status interaction was observed for 8,12, iso-iPF2α-VI, where smokers demonstrate a significantly greater concentration with increasing age than never-smokers. In smokers only, higher 8,12, iso-iPF2α-VI concentration was associated with smaller hippocampal volume, and greater iPF2α-III level was related to greater pack years. CONCLUSIONS This is the first study to demonstrate that a history of cigarette smoking in cognitively-normal elders was associated with significantly elevated CSF F2-isoprostane levels and greater age-related increases in F2-isoprostanes, and that higher F2-isoprostane levels in smokers were related to smaller hippocampal volume. These findings provide additional novel evidence that a history of chronic smoking during adulthood is associated with adverse effects on the human brain that are potentially enduring even with extended smoking cessation.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Niklas Mattsson
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Departments of Psychiatry, Medicine, and Neurology, University of California, San Francisco Psychiatry, University of California, San Francisco, CA, USA
| | - Magdalena Korecka
- Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Diseases Research, Perelman School of Medicine, University of Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Diseases Research, Perelman School of Medicine, University of Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Diseases Research, Perelman School of Medicine, University of Pennsylvania, USA
| |
Collapse
|
24
|
Hussain SA, Panjagari NR, Singh RRB, Patil GR. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components. Crit Rev Food Sci Nutr 2014; 55:94-122. [DOI: 10.1080/10408398.2011.649148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10:S122-45. [PMID: 24924665 PMCID: PMC4098701 DOI: 10.1016/j.jalz.2014.04.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cigarette smoking has been linked with both increased and decreased risk for Alzheimer's disease (AD). This is relevant for the US military because the prevalence of smoking in the military is approximately 11% higher than in civilians. METHODS A systematic review of published studies on the association between smoking and increased risk for AD and preclinical and human literature on the relationships between smoking, nicotine exposure, and AD-related neuropathology was conducted. Original data from comparisons of smoking and never-smoking cognitively normal elders on in vivo amyloid imaging are also presented. RESULTS Overall, literature indicates that former/active smoking is related to a significantly increased risk for AD. Cigarette smoke/smoking is associated with AD neuropathology in preclinical models and humans. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. CONCLUSIONS A reduction in the incidence of smoking will likely reduce the future prevalence of AD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Niklas Mattsson
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O'Neil A, Hayley AC, Pasco JA, Anderson G, Jacka FN, Maes M. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 2014; 45:46-62. [PMID: 24858007 DOI: 10.1016/j.neubiorev.2014.05.007] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022]
Abstract
Many studies support a crucial role for oxidative & nitrosative stress (O&NS) in the pathophysiology of unipolar and bipolar depression. These disorders are characterized inter alia by lowered antioxidant defenses, including: lower levels of zinc, coenzyme Q10, vitamin E and glutathione; increased lipid peroxidation; damage to proteins, DNA and mitochondria; secondary autoimmune responses directed against redox modified nitrosylated proteins and oxidative specific epitopes. This review examines and details a model through which a complex series of environmental factors and biological pathways contribute to increased redox signaling and consequently increased O&NS in mood disorders. This multi-step process highlights the potential for future interventions that encompass a diverse range of environmental and molecular targets in the treatment of depression.
Collapse
Affiliation(s)
- Steven Moylan
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Barwon Health, Geelong, Victoria, Australia.
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Florey Institute for Neuroscience and Mental Health University of Melbourne, Parkville, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Prahran, Victoria, Australia; University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville 3052, Australia; Barwon Health, Geelong, Victoria, Australia; Orygen Youth Health Research Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia M Dean
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Florey Institute for Neuroscience and Mental Health University of Melbourne, Parkville, Victoria, Australia; University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville 3052, Australia
| | - Yuval Samuni
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville 3052, Australia
| | - Adrienne O'Neil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Prahran, Victoria, Australia
| | - Amie C Hayley
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Julie A Pasco
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Northwest Academic Centre, University of Melbourne, St. Albans, Victoria, Australia
| | | | - Felice N Jacka
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, State University of Londrina, Londrina, Brazil
| |
Collapse
|
27
|
Durazzo TC, Meyerhoff DJ, Nixon SJ. Interactive effects of chronic cigarette smoking and age on hippocampal volumes. Drug Alcohol Depend 2013; 133:704-11. [PMID: 24051060 PMCID: PMC3870586 DOI: 10.1016/j.drugalcdep.2013.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous cross-sectional MRI studies with healthy, young-to-middle-aged adults reported no significant differences between smokers and non-smokers on total hippocampal volume. However, these studies did not specifically test for greater age-related volume loss in the total hippocampus or hippocampal subregions in smokers, and did they did not examine relationships between hippocampal and subfield volumes and episodic learning and memory performance. METHODS Healthy, young-to-middle-aged (45 ± 12 years of age) smokers (n=39) and non-smokers (n=43) were compared on total hippocampal and subfield volumes derived from high-resolution 4 Tesla MRI, emphasizing testing for greater age-related volume losses in smokers. Associations between hippocampal volumes and measures of episodic learning and memory were examined. RESULTS Smokers showed significantly smaller volumes, as well as greater volume loss with increasing age than non-smokers in the bilateral total hippocampus and multiple subfields. In smokers, greater pack-years were associated with smaller volumes of the total hippocampus, presubiculum, and subiculum. In the entire cohort, performance on measures of learning and memory was related to larger total hippocampal and several subfield volumes, predominately in the left hemisphere. CONCLUSIONS Chronic cigarette smoking in this young-to-middle aged cohort was associated with smaller total hippocampal and subfield volumes, which were exacerbated by advancing age. Findings also indicated an adverse smoking dose/duration response (i.e., pack-years) with total hippocampal and select subfield volumes. These hippocampal volume abnormalities in smokers may be related to the deficiencies in episodic learning and memory in young-to-middle-aged smokers reported in previous studies.
Collapse
Affiliation(s)
- Timothy C. Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA,Please send correspondence to: Timothy C. Durazzo, Center for Imaging of Neurodegenerative Diseases (114M), San Francisco VA Medical Center, 4150 Clement Street (114M), San Francisco, CA 94121, USA, Office: 415-221-4810 x4157, Fax: 415-668-2864,
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sara Jo Nixon
- Departments of Psychiatry and Psychology, University of Florida, Gainesville. FL
| |
Collapse
|
28
|
Pandareesh MD, Anand T. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS. Neurotoxicology 2013; 40:33-42. [PMID: 24257033 DOI: 10.1016/j.neuro.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
Abstract
Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity.
Collapse
Affiliation(s)
- M D Pandareesh
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India
| | - T Anand
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India.
| |
Collapse
|
29
|
Berk M, Williams LJ, Jacka FN, O'Neil A, Pasco JA, Moylan S, Allen NB, Stuart AL, Hayley AC, Byrne ML, Maes M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013; 11:200. [PMID: 24228900 PMCID: PMC3846682 DOI: 10.1186/1741-7015-11-200] [Citation(s) in RCA: 960] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/31/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is 'what is the source of this chronic low-grade inflammation?' DISCUSSION This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. SUMMARY The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16:313-26. [PMID: 23772955 PMCID: PMC3746283 DOI: 10.1089/rej.2013.1431] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/13/2022] Open
Abstract
This review synthesizes behavioral research with neuromolecular mechanisms putatively involved with the low-toxicity cognitive enhancing action of Bacopa monnieri (BM), a medicinal Ayurvedic herb. BM is traditionally used for various ailments, but is best known as a neural tonic and memory enhancer. Numerous animal and in vitro studies have been conducted, with many evidencing potential medicinal properties. Several randomized, double-blind, placebo-controlled trials have substantiated BM's nootropic utility in humans. There is also evidence for potential attenuation of dementia, Parkinson's disease, and epilepsy. Current evidence suggests BM acts via the following mechanisms-anti-oxidant neuroprotection (via redox and enzyme induction), acetylcholinesterase inhibition and/or choline acetyltransferase activation, β-amyloid reduction, increased cerebral blood flow, and neurotransmitter modulation (acetylcholine [ACh], 5-hydroxytryptamine [5-HT], dopamine [DA]). BM appears to exhibit low toxicity in model organisms and humans; however, long-term studies of toxicity in humans have yet to be conducted. This review will integrate molecular neuroscience with behavioral research.
Collapse
Affiliation(s)
- Sebastian Aguiar
- Department of Neuroscience, Pitzer College, Claremont, California 91711, USA.
| | | |
Collapse
|
31
|
Benson S, Downey LA, Stough C, Wetherell M, Zangara A, Scholey A. An acute, double-blind, placebo-controlled cross-over study of 320 mg and 640 mg doses of Bacopa monnieri (CDRI 08) on multitasking stress reactivity and mood. Phytother Res 2013; 28:551-9. [PMID: 23788517 DOI: 10.1002/ptr.5029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/11/2022]
Abstract
Little research exists in humans concerning the anxiolytic, antidepressant, sedative, and adaptogenic actions the traditional Ayurvedic medicine Bacopa monnieri (BM) possesses in addition to its documented cognitive-enhancing effects. Preclinical work has identified a number of acute anxiolytic, nootropic, and adaptogenic effects of BM that may also co-occur in humans. The current double-blind, placebo-controlled cross-over study assessed the acute effects of a specific extract of BM (KeenMind® - CDRI 08) in normal healthy participants during completion of a multitasking framework (MTF). Seventeen healthy volunteers completed the MTF, at baseline, then 1 h and 2 h after consuming a placebo, 320 mg BM and 640 mg of BM. Treatments were separated by a 7-day washout with order determined by Latin Square. Outcome measures included cognitive outcomes from the MTF, with mood and salivary cortisol measured before and after each completion of the MTF. Change from baseline scores indicated positive cognitive effects, notably at both 1 h post and 2 h post BM consumption on the Letter Search and Stroop tasks, suggesting an earlier nootropic effect of BM than previously investigated. There were also some positive mood effects and reduction in cortisol levels, pointing to a physiological mechanism for stress reduction associated with BM consumption. It was concluded that acute BM supplementation produced some adaptogenic and nootropic effects that need to be replicated in a larger sample and in isolation from stressful cognitive tests in order to quantify the magnitude of these effects. The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12612000834853).
Collapse
Affiliation(s)
- Sarah Benson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav 2013; 3:302-26. [PMID: 23785661 PMCID: PMC3683289 DOI: 10.1002/brb3.137] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022] Open
Abstract
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.
Collapse
Affiliation(s)
- Steven Moylan
- Deakin University School of Medicine Barwon Health, Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Jaques JADS, Doleski PH, Castilhos LG, da Rosa MM, Souza VDCG, Carvalho FB, Marisco P, Thorstenberg MLP, Rezer JFP, Ruchel JB, Coradini K, Beck RCR, Rubin MA, Schetinger MRC, Leal DBR. Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiol Learn Mem 2013; 100:98-107. [PMID: 23261855 DOI: 10.1016/j.nlm.2012.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
Abstract
Cigarette smoke-exposure promotes neurobiological changes associated with neurocognitive abnormalities. Curcumin, a natural polyphenol, have shown to be able to prevent cigarette smoke-induced cognitive impairment. Here, we investigated possible mechanisms involved in curcumin protection against cigarette smoke-induced cognitive impairment and, due to its poor bioavailability, we investigated the potential of using curcumin-loaded lipid-core nanocapsules (C-LNC) suspension. Rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. Animals were divided into ten groups: I, control (vehicle/corn oil); II, curcumin 12.5mg/kg; III, curcumin 25mg/kg; IV, curcumin 50mg/kg; V, C-LNC 4 mg/kg; VI, tobacco exposed; VII, curcumin 12.5mg/kg along with tobacco exposure; VIII, curcumin 25mg/kg along with tobacco exposure; IX, curcumin 50mg/kg along with tobacco exposure; X, C-LNC 4 mg/kg along with tobacco exposure. Cigarette smoke-exposure impaired object recognition memory (P<0.001), indicated by the low recognition index, increased biomarkers of oxidative/nitrosative stress such as TBARS (P<0.05) and NOx (P<0.01), decreased antioxidant defenses such as NPSH content (P<0.01) and SOD activity (P<0.01) and inhibited the activities of enzymes involved in ion homeostasis such as Na(+),K(+)-ATPase and Ca(2+)-ATPase. Both curcumin formulations (free and nanoencapsulated) prevented the memory impairment, the redox imbalance and the alterations observed in the ATPases activities. Maintenance of ion homeostasis and redox balance is involved in the protective mechanism of curcumin against tobacco-induced cognitive impairment. Our results suggest that curcumin is a potential therapeutic agent for neurocognition and that C-LNC may be an alternative to its poor bioavailability.
Collapse
Affiliation(s)
- Jeandre Augusto dos Santos Jaques
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Prédio 20, Sala 4229, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Balaji B, Kumar EP, Kumar A. Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice. Toxicol Ind Health 2012; 31:18-30. [DOI: 10.1177/0748233712468018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Effect of standardized Bacopa monniera (BM; family: Scrophulariaceae) extract (100 and 300 mg/kg) against sodium fluoride (NaF; 100 and 200 ppm)-induced behavioural, biochemical, and neuropathological alterations in mice was evaluated. Akinesia, rotarod (motor coordination), forced swim test (depression), open field test (anxiety), transfer latency (memory), cholinesterase (ChE), and oxidative stress (superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation) were determined in mice treated with NaF for 30 days alone and in combination with BM. NaF induced motor incoordination, depression, and memory impairment, and these were prevented by coadministration of BM in mice. However, NaF did not alter the weight gain, feed/water consumption, and anxiety profile. Suppression of ChE levels and increased oxidative stress were observed in mice treated with NaF. Coadministration of BM significantly improved the memory, ChE levels, and antioxidant enzymes but failed to alter the fluoride levels in NaF-treated mice. Histopathological studies revealed that BM protected the neuropathological alterations induced by NaF.
Collapse
Affiliation(s)
- Bhaskar Balaji
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, Tamil Nadu, India
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Ekambaram Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, Tamil Nadu, India
- Department of Pharmacology, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Anil Kumar
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, Tamil Nadu, India
- Research and Analytics, Knowledge Center, WNS, Gurgoan, Haryana, India
| |
Collapse
|
35
|
Jaques JADS, Rezer JFP, Carvalho FB, da Rosa MM, Gutierres JM, Gonçalves JF, Schmatz R, de Bairros AV, Mazzanti CM, Rubin MA, Schetinger MRC, Leal DBR. Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiol Behav 2012; 106:664-9. [PMID: 22579739 DOI: 10.1016/j.physbeh.2012.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 01/24/2023]
Abstract
Cigarette smoke, a widely spread habit, is associated with a decline in cognitive function and studies have demonstrated that curcumin (Cur), an Indian spice, possesses a strong neuroprotective potential. Considering the relevance of investigating dietary compounds this study aimed to investigate the effect of Cur on memory and acetylcholinesterase (AChE) activity in brain structures and blood of cigarette smoke-exposed rats. Male Wistar rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. The experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: Vehicle (corn oil), Cur 12.5 mg/kg, Cur 25 mg/kg and Cur 50 mg/kg. In the second, the animals were divided into 5 groups: Vehicle (corn oil), Smoke, Smoke plus Cur 12.5 mg/kg, Smoke plus Cur 25 mg/kg and Smoke plus Cur 50 mg/kg. Treatment with Cur significantly prevented the decreased latency and cholinergic alterations in cigarette smoke-exposed rats. These AChE alterations could suggest a role in the memory impairment promoted by cigarette smoke-exposure and point toward the potential of Cur to modulate cholinergic neurotransmission and, consequently, improve cognition deficits induced by smoke. This study suggests that the dietary compound Cur may be involved in cholinergic system modulation and as a consequence exert an effect on learning and memory.
Collapse
Affiliation(s)
- Jeandre Augusto dos Santos Jaques
- Centro de Ciências Naturais e Exatas, Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica, Laboratório de Enzimologia Toxicológica, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Prédio 18, Sala 2208, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shinomol GK, Bharath MMS, Muralidhara. Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain. Can J Physiol Pharmacol 2012; 90:595-606. [PMID: 22472017 DOI: 10.1139/y2012-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present investigation was designed to determine the efficacy of Bacopa monnieri (Brahmi; BM) to offset 3-nitropropionic acid (3-NPA) induced oxidative stress and mitochondrial dysfunction in dopaminergic (N27) cells and prepubertal mouse brain. Pretreatment of N27 cells with BM ethanolic extract (BME) significantly attenuated 3-NPA-induced cytotoxicity. Further, we determined the degree of oxidative stress induction, redox status, enzymic antioxidants, and protein oxidation in the striatal mitochondria of mice given BME prophylaxis followed by 3-NPA challenge. While 3-NPA-induced marked oxidative stress in the mitochondria of the striatum, BME prophylaxis markedly prevented 3-NPA-induced oxidative dysfunctions and depletion of reduced glutathione and thiol levels. The activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, thioredoxin reductase), Na(+),K(+)-ATPase, and citric acid cycle enzymes in the striatum discernible among 3-NPA mice were significantly restored with BME prophylaxis. Interestingly, BME offered protection against 3-NPA-induced mitochondrial dysfunctions as evidenced by the restoration of the activities of ETC enzymes (NADH:ubiquinone oxidoreductase, NADH:cytochrome c reductase, succinate-ubiquinone oxidoreductase, and cytochrome c oxidase) and mitochondrial viability. We hypothesize that the neuroprotective effects of BME may be wholly or in part related to its propensity to scavenge free radicals, maintain redox status, and upregulate antioxidant machinery in striatal mitochondria.
Collapse
Affiliation(s)
- George K Shinomol
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | | |
Collapse
|
37
|
Anand T, Phani Kumar G, Pandareesh MD, Swamy MSL, Khanum F, Bawa AS. Effect of Bacoside Extract from Bacopa monniera on Physical Fatigue Induced by Forced Swimming. Phytother Res 2011; 26:587-93. [DOI: 10.1002/ptr.3611] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/09/2022]
Affiliation(s)
- T. Anand
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| | - G. Phani Kumar
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| | - M. D. Pandareesh
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| | - M. S. L. Swamy
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| | - Farhath Khanum
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| | - A. S. Bawa
- Biochemistry and Nutrition Discipline; Defence Food Research Laboratory; Siddarthanagar; Mysore; 570011; India
| |
Collapse
|
38
|
Thomé GR, Spanevello RM, Mazzanti A, Fiorenza AM, Duarte MMMF, da Luz SCA, Pereira ME, Morsch VM, Schetinger MRC, Mazzanti CM. Vitamin E decreased the activity of acetylcholinesterase and level of lipid peroxidation in brain of rats exposed to aged and diluted sidestream smoke. Nicotine Tob Res 2011; 13:1210-9. [PMID: 21896885 DOI: 10.1093/ntr/ntr154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The biological systems of both smoker and passive smoking suffer changes caused by toxic compounds from cigarette smoke such as inflammation, lipid peroxidation, and deficiency of vitamin E. The aim of the present study was to evaluate the effect of vitamin E on acetylcholinesterase (AChE) activity and the lipid peroxidation level in the brain of rats in the model of exposure to aged and diluted sidestream smoke (ADSS). METHODS Adult male Wistar rats (200-300 g) were exposed to ADSS for 4 weeks and treated with vitamin E (50 mg/kg/day) loaded by gavage. In the first, second, third, and fourth weeks, animals were concomitantly exposed to the smoke of 1, 2, 3, and 4 cigarettes/day, respectively. The duration of each exposure was 15 min, daily. RESULTS For rats exposed to ADSS, the AChE activity and lipid peroxidation level increased in the striatum, cerebral cortex, and cerebellum. In contrast, the activity of AChE and the level of lipid peroxidation decreased in the smoke group treated with vitamin E. CONCLUSIONS The results suggest that the rats exposed to ADSS and treated with vitamin E significantly reduced the raised activity of AChE and level lipid peroxidation from the brain structures studied. The study, therefore, concludes that vitamin E could be considered as a therapeutic agent in this type of exposure.
Collapse
Affiliation(s)
- Gustavo Roberto Thomé
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria-RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shinomol GK. Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:317-326. [PMID: 20850955 DOI: 10.1016/j.phymed.2010.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 07/10/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Bacopa monnieri (BM) an herb, found throughout the Indian subcontinent in wet, damp and marshy areas is used in Ayurvedic system of medicine for improving intellect/memory, treatment of anxiety and neuropharmacological disorders. Although extensively given to children as a memory enhancer, no data exists on its ability to modulate neuronal oxidative stress in prepubertal animal models. Hence in this study, we examined if dietary intake of BM leaf powder has the propensity to modulate endogenous markers of oxidative stress, redox status (reduced GSH, thiol status), response of antioxidant defenses (enzymic), protein oxidation and cholinergic function in various brain regions of prepubertal (PP) mice. PP mice maintained on a BM-enriched diet (0.5 and 1%) for 4 weeks showed a significant diminution of basal oxidative markers (malondialdehyde levels, reactive species generation, hydroperoxide levels and protein carbonyls) in both cytoplasm and mitochondria of all brain regions. This was accompanied with enhanced reduced glutathione, thiol levels and elevated activities of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase). Significant reduction in the activity of acetyl cholinesterase enzyme in all brain regions suggested the potential of BM leaf powder to modulate cholinergic function. Further evidence that dietary intake of BM leaf powder confers the prepubertal brain with additional capacity to cope up with neurotoxic prooxidants was obtained by exposing cortical/cerebellar synaptosomes of normal and BM fed mice to 3-nitropropionic acid (3-NPA). While synaptosomes from control mice exhibited a concentration related lipid peroxidation and ROS generation, synaptosomes obtained from BM fed mice showed only a marginal induction at the highest concentration clearly suggesting their increased resistance to 3-NPA-induced oxidative stress. Collectively these data clearly indicate the potential of Bacopa monnieri to modulate endogenous markers of oxidative stress in brain tissue of PP mice. Based on these results, it is hypothesized that dietary intake of BM leaf powder confers neuroprotective advantage and is likely to be effective as a prophylactic/therapeutic agent for neurodegenerative disorders involving oxidative stress.
Collapse
Affiliation(s)
- George K Shinomol
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (Council of Scientific and Industrial Research), Mysore 570020, Karnataka, India
| |
Collapse
|
40
|
Chronic cigarette smoking: implications for neurocognition and brain neurobiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3760-91. [PMID: 21139859 PMCID: PMC2996190 DOI: 10.3390/ijerph7103760] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/29/2010] [Accepted: 10/09/2010] [Indexed: 12/02/2022]
Abstract
Compared to the substantial volume of research on the general health consequences associated with chronic smoking, little research has been specifically devoted to the investigation of its effects on human neurobiology and neurocognition. This review summarizes the peer-reviewed literature on the neurocognitive and neurobiological implications of chronic cigarette smoking in cohorts that were not seeking treatment for substance use or psychiatric disorders. Studies that specifically assessed the neurocognitive or neurobiological (with emphasis on computed tomography and magnetic resonance-based neuroimaging studies) consequences of chronic smoking are highlighted. Chronic cigarette smoking appears to be associated with deficiencies in executive functions, cognitive flexibility, general intellectual abilities, learning and/or memory processing speed, and working memory. Chronic smoking is related to global brain atrophy and to structural and biochemical abnormalities in anterior frontal regions, subcortical nuclei and commissural white matter. Chronic smoking may also be associated with an increased risk for various forms of neurodegenerative diseases. The existing literature is limited by inconsistent accounting for potentially confounding biomedical and psychiatric conditions, focus on cross-sectional studies with middle aged and older adults and the absence of studies concurrently assessing neurocognitive, neurobiological and genetic factors in the same cohort. Consequently, the mechanisms promoting the neurocognitive and neurobiological abnormalities reported in chronic smokers are unclear. Longitudinal studies are needed to determine if the smoking-related neurobiological and neurocognitive abnormalities increase over time and/or show recovery with sustained smoking cessation.
Collapse
|
41
|
Antiamnesic Effect of B. monniera on L-NNA Induced Amnesia Involves Calmodulin. Neurochem Res 2010; 35:1172-81. [DOI: 10.1007/s11064-010-0171-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
42
|
G. V, K. SP, V. L, Rajendra W. The antiepileptic effect of Centella asiatica on the activities of Na/K, Mg and Ca-ATPases in rat brain during pentylenetetrazol-induced epilepsy. Indian J Pharmacol 2010; 42:82-6. [PMID: 20711371 PMCID: PMC2907020 DOI: 10.4103/0253-7613.64504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 01/28/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To study the anticonvulsant effect of different extracts of Centella asiatica (CA) in male albino rats with reference to Na(+)/K(+), Mg(2+) and Ca(2+)-ATPase activities. MATERIALS AND METHODS Male Wistar rats (150+/-25 g b.w.) were divided into seven groups of six each i.e. (a) control rats treated with saline, (b) pentylenetetrazol (PTZ)-induced epileptic group (60 mg/kg, i.p.), (c) epileptic group pretreated with n-hexane extract (n-HE), (d) epileptic group pretreated with chloroform extract (CE), (e) epileptic group pretreated with ethyl acetate extract (EAE), (f) epileptic group pretreated with n-butanol extract (n-BE), and (g) epileptic group pretreated with aqueous extract (AE). RESULTS The activities of three ATPases were decreased in different regions of brain during PTZ-induced epilepsy and were increased in epileptic rats pretreated with different extracts of CA except AE. CONCLUSION The extracts of C. asiatica, except AE, possess anticonvulsant and neuroprotective activity and thus can be used for effective management in treatment of epileptic seizures.
Collapse
Affiliation(s)
- Visweswari G.
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Siva Prasad K.
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Lokanatha V.
- Department of Biotechnology, Dravidian University, Kuppam, Andhra Pradesh, India
| | - W. Rajendra
- Department of Zoology, Division of Molecular Biology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
43
|
Hosamani R, Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 2009; 30:977-85. [PMID: 19744517 DOI: 10.1016/j.neuro.2009.08.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 12/21/2022]
Abstract
Bacopa monnieri, Linn. (Brahmi, BM), traditionally used to improve mental health in Indian ayurvedic system of medicine is known to possess various neuropharmacolgical properties. In the recent past, Drosophila has been widely used as a model to study various neurodegenerative diseases. Environmental toxins like rotenone, a specific inhibitor of complex I is employed to increase oxidative stress mediated neuropathology and sporadic Parkinson's disease. In this study, we examined the neuroprotective properties of BM against rotenone induced oxidative damage and neurotoxicity. Flies (Oregon K strain, adult males) exposed to a standardized BM powder for 7 days in the diet exhibited significant diminution in the levels of endogenous oxidative markers viz., malondialdehyde, hydroperoxide and protein carbonyl content. Further, BM offered complete protection against rotenone (500 microM) induced oxidative stress and markedly inhibited dopamine depletion (head region, 33%; body region, 44%) in flies. Flies exposed to rotenone+BM exhibited a lower incidence of mortality (40-66% protection) and performed better in a negative geotaxis assay (45-65%) both suggesting the neuroprotective potential of BM. Interestingly, BM also conferred significant resistance (43-54% protection) in a paraquat oxidative stress bioassay. The neuroprotective effects of BM were highly comparable to those of a commercially available Brahmi preparation. Although the precise mechanism/s underlying the neuroprotective efficacy of BM are not clear, it is hypothesized that it is wholly or in part related to its ability to mitigate rotenone induced oxidative stress. Further, our approach confirms the utility of the Drosophila model in screening putative neuroprotective phytomedicines prior to their use in mammalian models.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore-570020, India
| | | |
Collapse
|
44
|
Saraf M, Prabhakar S, Anand A. Bacopa monniera alleviates Nω-nitro-l-arginine-induced but not MK-801-induced amnesia: A mouse Morris water maze study. Neuroscience 2009; 160:149-55. [DOI: 10.1016/j.neuroscience.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/28/2022]
|
45
|
Saraphanchotiwitthaya A, Ingkaninan K, Sripalakit P. Effect ofBacopa monnieraLinn. extract on murine immune responsein vitro. Phytother Res 2008; 22:1330-5. [DOI: 10.1002/ptr.2491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Abstract
Although very few drugs are currently approved by regulatory authorities for treating multi-factorial ailments and disorders of cognition such as Alzheimer's disease, certain plant-derived agents, including, for example, galantamine and rivastigmine (a semi-synthetic derivative of physostigmine) are finding an application in modern medicine. However, in Ayurveda, the Indian traditional system of medicine which is more than 5000 years old, selected plants have long been classified as 'medhya rasayanas', from the Sanskrit words 'medhya', meaning intellect or cognition, and 'rasayana', meaning 'rejuvenation'. These plants are used both in herbal and conventional medicine and offer benefits that pharmaceutical drugs lack. In the present article, an attempt has been made to review the most important medicinal plants, including Ginkgo biloba, St John's wort, Kava-kava, Valerian, Bacopa monniera and Convolvulus pluricaulis, which are widely used for their reputed effectiveness in CNS disorders.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, Texas Tech University, Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, USA.
| |
Collapse
|
47
|
Durazzo TC, Rothlind JC, Cardenas VA, Studholme C, Weiner MW, Meyerhoff DJ. Chronic cigarette smoking and heavy drinking in human immunodeficiency virus: consequences for neurocognition and brain morphology. Alcohol 2007; 41:489-501. [PMID: 17923369 PMCID: PMC2443733 DOI: 10.1016/j.alcohol.2007.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUD) and chronic cigarette smoking are common among individuals with human immunodeficiency virus infection (HIV). Concurrent AUD in HIV is related to greater abnormalities in brain morphology and neurocognition than either condition alone. However, the potential influence of chronic smoking on brain morphology and neurocognition in those concurrently afflicted with AUD and HIV has not been examined. The goal of this retrospective analysis was to determine if chronic smoking affected neurocognition and brain morphology in a subsample of HIV-positive non-treatment-seeking heavy drinking participants (HD+) from our earlier work. Regional volumetric and neurocognitive comparisons were made among age-equivalent smoking HD+(n=17), nonsmoking HD+ (n=27), and nonsmoking HIV-negative light drinking controls (n=27) obtained from our original larger sample. Comprehensive neuropsychological assessment evaluated multiple neurocognitive domains of functioning and for potential psychiatric comorbidities. Quantitative volumetric measures of neocortical gray matter (GM), white matter (WM), subcortical structures, and sulcal and ventricular cerebral spinal fluid (CSF) were derived from high-resolution magnetic resonance images. The main findings were (1) smoking HD+ performed significantly worse than nonsmoking HD+ on measures of auditory-verbal (AV) learning, AV memory, and cognitive efficiency; (2) relative to controls, smoking HD+ demonstrated significantly lower neocortical GM volumes in all lobes except the occipital lobe, while nonsmoking HD+ showed only lower frontal GM volume compared with controls; (3) in the HD+ group, regional brain volumes and neurocognition were not influenced by viremia, highly active antiretroviral treatment, or Center for Disease Control symptom status, and no interactions were apparent with these variables or smoking status. Overall, the findings suggested that the direct and/or indirect effects of chronic cigarette smoking created an additional burden on the integrity of brain neurobiology and neurocognition in this cohort of HIV-positive heavy drinkers.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Neuroimaging of Neurodegenerative Diseases, San Francisco Veterans Administration Medical Center, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Ramesh T, . RM, . VHB. Effect of Sesbania grandiflora on Membrane-bound ATPases in Cigarette Smoke Exposed Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jpt.2007.559.566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Abstract
Serotonin is involved in many of the same processes affected by cannabinoids; therefore, we investigated in vitro and in vivo effects of these drugs on the function of serotonin transporter. The effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), endocannabinoid anandamide and synthetic cannabinoid receptor agonist WIN 55,212-2 on platelet serotonin uptake and membrane microviscosity was examined in 19 marijuana smokers and 20 controls. (1) Serotonin uptake was inhibited at higher doses of Delta(9)-THC (IC(50) = 139 micromol/l), anandamide (IC(50) = 201 micromol/l) or WIN 55,212-2 (IC(50) = 17.4 micromol/l); the inhibition was found non-competitive. Delta(9)-THC, anandamide and WIN 55,212-2 produced different effects on the membrane microviscosity. (2) Maximal velocity of platelet serotonin uptake was significantly increased in a group of chronic marijuana smokers suffering impairment of cognitive functions when compared with controls. Opposite effect of marijuana smoking on the serotonin uptake efficiency was observed in males beside females. In summary, this study provides evidence that (1) Activity of serotonin transporter is acutely affected by cannabinoids at relatively high drug concentrations; this effect is indirect and can be partially accounted for the changes in the membrane microviscosity. (2) Increase of maximal velocity of the serotonin uptake could be understood as adaptation change in the serotonergic system induced by chronic cannabis use. A hypothesis was supported that lowered serotonin uptake may reflect a gender-related differences in effects of psychoactive cannabinoids.
Collapse
Affiliation(s)
- Marie Velenovská
- Department of Psychiatry, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
50
|
Ahmad S, Yousuf S, Ishrat T, Khan MB, Bhatia K, Fazli IS, Khan JS, Ansari NH, Islam F. Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sci 2006; 79:1921-8. [PMID: 16822528 DOI: 10.1016/j.lfs.2006.06.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/10/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
Oxidative stress may be regarded as an imbalance between free radical production and opposing antioxidant defenses. Free radical oxidative stress is implicated in rat cerebral ischemia and naturaceutical antioxidants are dietary supplements that have been reported to have neuroprotective activity. Many studies have reported dietary sesame oil (SO) as an effective antioxidant. In the present study the neuroprotective effect of dietary SO was evaluated against middle cerebral artery occlusion (MCAO)-induced cerebral ischemia injury in rats. Rats were fed on diet (20% SO) for 15 days. The middle cerebral artery of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. The antioxidant properties of brain were measured as levels of reduced glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS). A decrease in the activity of all the enzymatic and non-enzymatic antioxidants was observed along with an increase in lipid peroxidation (LPO) in MCAO group. The neurobehavioral activity of rats was also observed by using videopath analyzer. Dietary SO improved the antioxidant status in MCAO+SO group when compared with MCAO group. The results of neurobehavioral activity also support our biochemical data. The results obtained suggest protective effect of SO against cerebral ischemia in rat brain through their antioxidant properties.
Collapse
Affiliation(s)
- Saif Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| | | | | | | | | | | | | | | | | |
Collapse
|