1
|
Menon AM, Chandran GR, Bommuraj V, Ramaswamy BR, Ramasamy T. Behavioural, Teratogenic and Genotoxic Effects of Antibacterial Compounds, Triclocarban and Triclosan, in Hydra vulgaris. J Appl Toxicol 2025; 45:551-562. [PMID: 39578987 DOI: 10.1002/jat.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) are antibacterial compounds used in household, veterinary, industrial and personal care products, which are known to be environmental pollutants and also toxic to organisms. The toxicological effects of these antibacterial chemicals on higher organisms have been studied in detail. But in lower invertebrates like hydra, it is still rare and yet to be explored. In this study, the toxicological effects of these two antibacterial compounds in Hydra vulgaris was performed to clearly understand the organismal, developmental, molecular and behavioural changes. Both TCC and TCS are toxic with respective LC50 values of 0.09 and 0.25 mg/L, whereas TCC is comparatively more toxic than TCS. The structural damage of battery cell complexes (BCCs) on the tentacles was observed and ultimately made prey capturing difficult. It was evident that TCC and TCS exposure caused developmental toxicity by affecting reproduction and regeneration in H. vulgaris at higher sublethal doses (0.045 and 0.125 mg/L, respectively). TCC and TCS also caused DNA damage resulting in apoptosis. This study further reveals that these two antibacterial compounds are teratogenic and genotoxic in the organisms.
Collapse
Affiliation(s)
- Aditya Mohan Menon
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Gayathri R Chandran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vijayakumar Bommuraj
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Babu Rajendran Ramaswamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Thirumurugan Ramasamy
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- National Centre for Alternatives in Animal Experiment (NCAAE), Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Hoyberghs J, Ball J, Trznadel M, Beekhuijzen M, Burbank M, Wilhelmi P, Muriana A, Powles-Glover N, Letamendia A, Van Cruchten S. Biological variability hampers the use of skeletal staining methods in zebrafish embryo developmental toxicity assays. Reprod Toxicol 2024; 127:108615. [PMID: 38815770 DOI: 10.1016/j.reprotox.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Zebrafish embryo assays are used by pharmaceutical and chemical companies as new approach methodologies (NAMs) in developmental toxicity screening. Despite an overall high concordance of zebrafish embryo assays with in vivo mammalian studies, false negative and false positive results have been reported. False negative results in risk assessment models are of particular concern for human safety, as developmental anomalies may be missed. Interestingly, for several chemicals and drugs that were reported to be false negative in zebrafish, skeletal findings were noted in the in vivo studies. As the number of skeletal endpoints assessed in zebrafish is very limited compared to the in vivo mammalian studies, the aim of this study was to investigate whether the sensitivity could be increased by including a skeletal staining method. Three staining methods were tested on zebrafish embryos that were exposed to four teratogens that caused skeletal anomalies in rats and/or rabbits and were false negative in zebrafish embryo assays. These methods included a fixed alizarin red-alcian blue staining, a calcein staining, and a live alizarin red staining. The results showed a high variability in staining intensity of larvae exposed to mammalian skeletal teratogens, as well as variability between control larvae originating from the same clutch of zebrafish. Hence, biological variability in (onset of) bone development in zebrafish hampers the detection of (subtle) treatment-related bone effects that are not picked-up by gross morphology. In conclusion, the used skeletal staining methods did not increase the sensitivity of zebrafish embryo developmental toxicity assays.
Collapse
|
4
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
5
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
6
|
Lucon-Xiccato T, Savaşçı BB, Merola C, Benedetti E, Caioni G, Aliko V, Bertolucci C, Perugini M. Environmentally relevant concentrations of triclocarban affect behaviour, learning, and brain gene expression in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166717. [PMID: 37657536 DOI: 10.1016/j.scitotenv.2023.166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Many chemicals spilled in aquatic ecosystems can interfere with cognitive abilities and brain functions that control fitness-related behaviour. Hence, their harmful potential may be substantially underestimated. Triclocarban (TCC), one of the most common aquatic contaminants, is known to disrupt hormonal activity, but the consequences of this action on behaviour and its underlying cognitive mechanisms are unclear. We tried to fill this knowledge gap by analysing behaviour, cognitive abilities, and brain gene expression in zebrafish larvae exposed to TCC sublethal concentrations. TCC exposure substantially decreased exploratory behaviour and response to stimulation, while it increased sociability. Additionally, TCC reduced the cognitive performance of zebrafish in a habituation learning task. In the brain of TCC-exposed zebrafish, we found upregulation of c-fos, a gene involved in neural activity, and downregulation of bdnf, a gene that influences behavioural and cognitive traits such as activity, learning, and memory. Overall, our experiments highlight consistent effects of non-lethal TCC concentrations on behaviour, cognitive abilities, and brain functioning in a teleost fish, suggesting critical fitness consequences of these compounds in aquatic ecosystems as well as the potential to affect human health.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
7
|
Qin M, Lei H, Song Y, Wu M, Chen C, Cao Z, Zhang C, Du R, Zhang C, Wang X, Zhang L. Triclocarban exposure aggravates dextran sulfate sodium-induced colitis by deteriorating the gut barrier function and microbial community in mice. Food Chem Toxicol 2023; 178:113908. [PMID: 37385329 DOI: 10.1016/j.fct.2023.113908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Triclocarban (TCC) is an antibacterial component widely used in personal care products with potential toxicity possessing public health issues. Unfortunately, enterotoxicity mechanisms of TCC exposure remain largely unknown. Using a combination of 16S rRNA gene sequencing, metabolomics, histopathological and biological examinations, this study systematically explored the deteriorating effects of TCC exposure on a dextran sulfate sodium (DSS)-induced colitis mouse model. We found that TCC exposure at different doses significantly aggravated colitis phenotypes including shortened colon length and altered colonic histopathology. Mechanically, TCC exposure further disrupted intestinal barrier function, manifested by significant downregulation of the number of goblet cells, mucus layer thickness and expression of junction proteins (MUC-2, ZO-1, E-cadherin and Occludin). The gut microbiota composition and its metabolites such as short-chain fatty acids (SCFAs) and tryptophan metabolites were also markedly altered in DSS-induced colitis mice. Consequently, TCC exposure markedly exacerbated colonic inflammatory status of DSS-treated mice by activating NF-κB pathway. These findings provided new evidence that TCC could be an environmental hazards for development of IBD or even colon cancer.
Collapse
Affiliation(s)
- Mengyu Qin
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Wang H, Li X, Wang W, Xu J, Ai W, Huang H, Wang X. Immunotoxicity induced by triclocarban exposure in zebrafish triggering the risk of pancreatic cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121458. [PMID: 36934961 DOI: 10.1016/j.envpol.2023.121458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Owing to frequent application as a broad-spectrum bactericide, triclocarban (TCC) exposure has raised great concern for aquatic organisms and human health. Herein, based on transcriptome sequencing data analysis of zebrafish, we confirmed that TCC induced oxidative stress and dysimmunity through transcriptional regulation of the related genes. With aid of the Cancer Genome Atlas (TCGA) assembler database, 52 common differentially expressed genes, whose functions were related to immunity, were screened out by virtue of the meta-analysis of pancreatic cancer sample data and differential transcription profiles from TCC-exposed larvae. Acute TCC exposure affected formation of the innate immune cells, delayed mature thymic T-cell development, reduced immunoglobulin M (IgM) levels and promoted excessive release of the pro-inflammatory factors (IL-6, IL-1β and tnfα). Under TCC exposure, the expressions of the genes associated with immune cell abundance in pancreatic cancer were significantly down-regulated, while the levels of ROS were prominently increased in concomitant with suppressed antioxidant activity. Moreover, a series of marker genes (pi3k, nrf2, keap1, ho-1 and nqo1) in the PI3K/Nrf2 antioxidant-stress pathway were abnormally expressed under TCC exposure. Interestingly, vitamin C decreased the malformation and increased the survival rate of 120-hpf larvae and effectively alleviated TCC-induced oxidative stress and immune responses. Overall, TCC exposure induced immunotoxicity and increased the risk of pancreatic cancer by inhibiting the antioxidant capacity of the PI3K/Nrf2 signal pathway. These observations enrich our in-depth understanding of the effects of TCC on early embryonic-larval development and immune damage in zebrafish.
Collapse
Affiliation(s)
- Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiwei Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaqi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Weiming Ai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Zhang Y, He L, Yang Y, Cao J, Su Z, Zhang B, Guo H, Wang Z, Zhang P, Xie J, Li J, Ye J, Zha Z, Yu H, Hong A, Chen X. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130747. [PMID: 36680903 DOI: 10.1016/j.jhazmat.2023.130747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiqi Yang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Huiying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieruo Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhengang Zha
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| |
Collapse
|
10
|
Ding ZM, Wang SK, Zhang SX, Chen YW, Wang YS, Yang SJ, Cao YX, Miao YL, Huo LJ. Acute exposure of triclocarban affects early embryo development in mouse through disrupting maternal-to-zygotic transition and epigenetic modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114572. [PMID: 36706524 DOI: 10.1016/j.ecoenv.2023.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Triclocarban (TCC) is a broad-spectrum antibacterial agent used globally, and high concentrations of this harmful chemical exist in the environment. The human body is directly exposed to TCC through skin contact. Moreover, TCC is also absorbed through diet and inhaled through breathing, which results in its accumulation in the body. The safety profile of TCC and its potential impact on human health are still not completely clear; therefore, it becomes imperative to evaluate the reproductive toxicity of TCC. Here, we explored the effect of TCC on the early embryonic development of mice and its associated mechanisms. We found that acute exposure of TCC affected the early embryonic development of mice in a dose-dependent manner. Approximately 7600 differentially expressed genes (DEGs) were obtained by sequencing the transcriptome of 2-cell mouse embryos; of these, 3157 genes were upregulated and 4443 genes were downregulated in the TCC-treated embryos. GO and KEGG analysis revealed that the enriched genes were mainly involved in redox processes, RNA synthesis, DNA damage, apoptosis, mitochondria, endoplasmic reticulum, Golgi apparatus, cytoskeleton, peroxisome, RNA polymerase, and other components or processes. Moreover, the Venn analysis showed that the zygotic genome activation (ZGA) was affected and the degradation of maternal effector genes was inhibited. TCC induced changes in the epigenetic modification of 2-cell embryos. The level of DNA methylation increased significantly. Further, the levels of H3K27ac, H3K9ac, and H3K27me3 histone modifications decreased significantly, whereas those of H3K4me3 and H3K9me3 modifications increased significantly. Additionally, TCC induced oxidative stress and DNA damage in the 2-cell embryos. In conclusion, acute exposure of TCC affected early embryo development, destroyed early embryo gene expression, interfered with ZGA and maternal gene degradation, induced changes in epigenetic modification of early embryos, and led to oxidative stress and DNA damage in mouse early embryos.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Shang-Ke Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Medical Laboratory Animal Center, Weifang Medical University, Weifang 261000, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; Biochip Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China.
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; . Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China.
| |
Collapse
|
11
|
Caioni G, d'Angelo M, Panella G, Merola C, Cimini A, Amorena M, Benedetti E, Perugini M. Environmentally relevant concentrations of triclocarban affect morphological traits and melanogenesis in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105842. [PMID: 33964520 DOI: 10.1016/j.aquatox.2021.105842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Human activity is responsible for producing several chemical compounds, which contaminate the aquatic environment and adversely influence the survival of aquatic species and indirectly human health. Triclocarban (TCC) belongs to the category of emerging pollutants and its presence in aquatic environment is justified by its wide use as antimicrobial agent in personal care products. The concern about this chemical is due to the risk of persistence in water and soils and bioaccumulation, which contributes to human exposition through the contaminated food consumption. The present study evaluated the developmental toxicity of TCC in zebrafish early-life stages starting with the assessment of acute toxicity and then focusing on the integrative analyses of the observed phenotype on zebrafish development. For this purpose, lethal and sublethal alterations of zebrafish embryos were investigated by the Fish Embryo Acute Toxicity Tests (FET tests). Subsequently, two concentrations of TCC were used to investigate the morphometric features and defects in larvae developmental pigmentation: an environmentally relevant (5μg/L) and toxicological (50μg/L), derived from the No Observed Effect Concentration (NOEC) value concentration. Furthermore, the expression levels of a key transcription factor for melanocyte differentiation and melanin syntheses, such as mitfa (microphthalmia-associated transcription factor) and tyr (tyrosinase) and its activity, were evaluated.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
12
|
Hu Z, He L, Wei J, Su Y, Wang W, Fan Z, Xu J, Zhang Y, Wang Y, Peng M, Zhao K, Zhang H, Liu C. tmbim4 protects against triclocarban-induced embryonic toxicity in zebrafish by regulating autophagy and apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116873. [PMID: 33714789 DOI: 10.1016/j.envpol.2021.116873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Triclocarban (TCC), an antibacterial agent widely used in personal care products, can affect embryonic development. However, the specific molecular mechanism of TCC-induced embryonic developmental damage remains unclear. In this study, TCC exposure was found to increase the expression of tmbim4 gene in zebrafish embryos. The tmbim4 mutant embryos are more susceptible to TCC exposure than wild-type (WT) embryos, with tmbim4 overexpression reducing TCC-induced embryonic death in the former. Exposure of tmbim4 mutant larvae to 400 μg/L TCC substantially increased apoptosis in the hindbrain and eyes. RNA-sequencing of WT and tmbim4 mutant larvae indicated that knockout of the tmbim4 gene in zebrafish affects the autophagy pathway. Abnormalities in autophagy can increase apoptosis and TCC exposure caused abnormal accumulation of autophagosomes in the hindbrain of tmbim4 mutant zebrafish embryos. Pretreatment of TCC-exposed tmbim4 mutant zebrafish embryos with autophagosome formation inhibitors, substantially reduced the mortality of embryos and apoptosis levels. These results indicate that defects in the tmbim4 gene can reduce zebrafish embryo resistance to TCC. Additionally, apoptosis induced by abnormal accumulation of autophagosomes is involved in this process.
Collapse
Affiliation(s)
- Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jiajing Wei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
13
|
Evaluation of the potential environmental risk from the destination of medicines: an epidemiological and toxicological study. ACTA ACUST UNITED AC 2021; 29:61-71. [PMID: 33469801 DOI: 10.1007/s40199-020-00383-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high consumption of medicines by the population and their storage at home might cause an increase in the number of pharmaceutical substances that may be inappropriately discarded in the sanitary sewage, reaching an environmental aquatic. Thus, the effects of these emerging contaminants need more studies. OBJECTIVES To identify the profile of most medicines that are discarded by users of community pharmacy and evaluate the toxicity of the most disposed drugs. METHODS This was a translational study. A descriptive observational study was carried out for convenience of community pharmacy users using a standardized questionnaire. Subsequently, the lethal concentration 50 (LC50) for medicine that is most frequently discarded was determined. After LC50, the embryos (n = 144) were exposed to sublethal concentrations for most discarded drug at 24, 48, and 72 h. Mortality, heartbeat, and embryo deformities were used as parameters of toxicity. RESULTS Most respondents (96%) had a "home pharmacy." The primary forms of disposal were in the common household waste, kitchen sink, and/or bathroom. The medicines that were most incorrectly discarded by the interviewees were nimesulide (17.1%), dipyrone (10.7%), and paracetamol (5.2%). LC50 of nimesulide was calculated (0.92 μgmL-1). The toxicological test revealed that embryos exposed to nimesulide showed several abnormalities, such as defects in the spinal cord, tail, yolk sac, as well as pericardial edema. Furthermore, the heartbeat decreased by 30% at a concentration of 0.4 μgmL-1 as compared with control group. The yolk sac and pericardial areas increased to >100% in all treatment groups when compared with the control group. CONCLUSION Respondents disposed medicines in an inappropriate manner primarily in household waste and in the toilet. Nimesulide was the most discarded drug according to study population. Moreover, teratogenic effects such as spinal cord defects, decreasing heartbeats, and increasing pericardial and yolk sac area in embryos were observed after exposure to nimesulide. These results show that nimesulide may promote risk to aquatic organisms and to human health if it is discarded in an unsafe manner.
Collapse
|
14
|
Sztanke M, Rzymowska J, Sztanke K. Anticancer active trifluoromethylated fused triazinones are safe for early-life stages of zebrafish ( Danio rerio) and reveal a proapoptotic action. J Enzyme Inhib Med Chem 2021; 36:336-344. [PMID: 33390035 PMCID: PMC7782186 DOI: 10.1080/14756366.2020.1865944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The main purpose of this investigation was to evaluate the effect of anticancer active compounds (I–VIII) on zebrafish development in order to select the safest molecules. Larval mortality, embryo hatchability and malformations were end-points used to assess the acute toxicity among embryos and larvae from compounds-/pemetrexed-treated and control groups. LC50 and MNLC (maximal non-lethal concentration) were determined. Lipophilicity-dependent structure–toxicity relationships were established. The results clearly indicated that the majority of test molecules are safe for zebrafish individuals and simultaneously are less toxic than an anticancer agent – pemetrexed. The subsequent aim of this study was to elucidate the molecular mechanism of antiproliferative activity of the most selective compounds. Substantially increased activation of caspase-6 and -8 in cancerous cell lines confirmed the proapoptotic action of molecules examined. Considering the safety for zebrafish individuals, the title compounds as inducers of apoptosis are promising drug candidates in the preclinical phase of drug development.
Collapse
Affiliation(s)
| | - Jolanta Rzymowska
- Department of Biology and Genetics, Medical University, Lublin, Poland
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Department of Medical Chemistry, Medical University, Lublin, Poland
| |
Collapse
|
15
|
Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, Yin P, Li Y, Zhang X, Liu K. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. ENVIRONMENT INTERNATIONAL 2021; 146:106179. [PMID: 33099061 DOI: 10.1016/j.envint.2020.106179] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
With the increasing applications in various fields, the release and accumulation of zinc oxide (ZnO) nanomaterials ultimately lead to unexpected consequences to environment and human health. Therefore, toxicity comparison among ZnO nanomaterials with different shape/size and their adverse effects need better characterization. Here, we utilized zebrafish larvae and human neuroblastoma cells SH-SY5Y to compare the toxic effects of ZnO nanoparticles (ZnO NPs), short ZnO nanorods (s-ZnO NRs), and long ZnO NRs (l-ZnO NRs). We found their developmental- and neuro-toxicity levels were similar, where the smaller sizes showed slightly higher toxicity than the larger sizes. The developmental neurotoxicity of l-ZnO NRs (0.1, 1, 10, 50, and 100 μg/mL) was further investigated since they had the lowest toxicity. Our results indicated that l-ZnO NRs induced developmental neurotoxicity with hallmarks linked to Parkinson's disease (PD)-like symptoms at relatively high doses, including the disruption of locomotor activity as well as neurodevelopmental and PD responsive genes expression, and the induction of dopaminergic neuronal loss and apoptosis in zebrafish brain. l-ZnO NRs activated reactive oxygen species production, whose excessive accumulation triggered mitochondrial damage and mitochondrial apoptosis, eventually leading to PD-like symptoms. Collectively, the developmental- and neuro-toxicity of ZnO nanomaterials was identified, in which l-ZnO NRs harbors a remarkably potential risk for the onset and development of PD at relatively high doses, stressing the discretion of safe range in view of nano-ZnO exposure to ecosystem and human beings.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China.
| |
Collapse
|
16
|
Alva PP, Suresh S, Nanjappa DP, James JP, Kaverikana R, Chakraborty A, Sarojini BK, Premanath R. Isolation and identification of quorum sensing antagonist from Cinnamomum verum leaves against Pseudomonas aeruginosa. Life Sci 2020; 267:118878. [PMID: 33358909 DOI: 10.1016/j.lfs.2020.118878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The study aimed at isolating and identifying potential anti-quorum sensing (QS) compounds from Cinnamomum verum leaves against Pseudomonas aeruginosa. METHODOLOGY Isolation of anti-QS compounds from C. verum leaf ethanol extract was carried out by column chromatography. The bioactive fraction was analysed by UV, IR, and GCMS spectroscopy. Various virulence assays were performed to assess the QS quenching ability of the purified compounds. In vivo toxicity of the purified compounds was examined in zebrafish model. The expression of the virulence genes was evaluated by qPCR analysis and in silico assessment was accomplished to check the binding ability of the compounds with the autoinducer molecule. KEY FINDINGS The QS inhibitors isolated and identified showed a remarkable ability in reducing the production of elastase, pyocyanin, swarming motility and biofilm formation in P. aeruginosa. In the presence of the characterized compounds, the expression of virulence genes of P. aeruginosa was significantly reduced. Toxicity studies in zebrafish model indicated no effects on development and organogenesis at a concentration below 100 mg/l. Further, in silico analysis demonstrated the binding efficiency of the anti-QS compounds to AHL molecules, thus proving the QS quenching ability of the isolated compounds. SIGNIFICANCE To the best of our knowledge this is the first report of isolation of anti-QS compounds from C. verum leaves against P. aeruginosa. The identified compounds qualify as potential QS antagonists. Further studies on these compounds can pave way for an effective and attractive anti-pathogenic therapy, to overcome the emergence of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Prathiksha Prabhakara Alva
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Sarika Suresh
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Jainey Puthenveetil James
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Rajesh Kaverikana
- NITTE (Deemed to be University), Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anirban Chakraborty
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Balladka K Sarojini
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | - Ramya Premanath
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer campus, Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
17
|
Ding ZM, Ahmad MJ, Meng F, Chen F, Wang YS, Zhao XZ, Zhang SX, Miao YL, Xiong JJ, Huo LJ. Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114271. [PMID: 32135433 DOI: 10.1016/j.envpol.2020.114271] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Shang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Zhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China.
| |
Collapse
|
18
|
Sun D, Zhao T, Wang T, Wu M, Zhang Z. Genotoxicity assessment of triclocarban by comet and micronucleus assays and Ames test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7430-7438. [PMID: 31884548 DOI: 10.1007/s11356-019-07351-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The widespread usage and ubiquitous distribution of triclocarban (3,4,4'-trichlorocarbanilide, TCC) have raised public concerns about its health effects. At present, there is little information about the genotoxicity of TCC. In this study, we used a battery of genotoxicity testing methods including salmonella reverse mutation test (Ames test), comet assay and micronucleus assay to detect the effects of TCC on gene mutation, DNA breakage, and chromosome damage. The results of Ames test showed that TCC at 0.1-1000 μg/plate did not significantly increase the number of revertant colonies in the four standard Salmonella typhimurium strains, i.e., TA97, TA98, TA100, and TA102, when compared to the vehicle control. The results from comet assay demonstrated that exposure to 5, 10, or 15 μM TCC for 24 h did not significantly increase the percentage of comet cells, tail length (TL), DNA in tail (T DNA%), or olive tail moment (OTM) in keratinocyte HaCaT and hepatic L02 cells. Moreover, TCC did not markedly enhance the frequency of micronucleated cells or micronuclei in HaCaT and L02 cells in the micronucleus assay. Taken together, the results indicated that TCC did not exhibit any genotoxic effects. Our study provides additional information for the safety profile of TCC.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Wang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Kajta M, Rzemieniec J, Wnuk A, Lasoń W. Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134818. [PMID: 31706213 DOI: 10.1016/j.scitotenv.2019.134818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Although an increasing body of evidence suggests that triclocarban, a phenyl ether classified as a contaminant of emerging concern, presents a risk to development, there is limited data available on the potential interplay of triclocarban with the developing mammalian nervous system. This study was aimed to investigate the impact of environmentally pervasive chemical triclocarban on autophagy and estrogen receptor-mediated signaling pathways in mouse neurons. The study showed that triclocarban impaired autophagy and disrupted estrogen receptor signaling in mouse embryonic neurons in primary culture. Triclocarban used at environmentally relevant concentrations inhibited the mRNA and protein expression of ESR1 and GPER1 but not ESR2. The triclocarban-induced decrease in the expression of estrogen receptors was supported by the colocalization of the receptors in mouse neurons and corresponded to hypermethylation of the Esr1 and Gper1 genes. Selective antagonists increased the effects of triclocarban, which suggests that the neurotoxic effects of triclocarban, in addition to decreasing estrogen receptor expression, are mediated via inhibition of the neuroprotective capacity of the receptors. Furthermore, Becn1 and Atg7 siRNAs potentiated the caspase-3-dependent effect of triclocarban, which points to triclocarban-induced impairment of autophagy. Indeed, triclocarban dysregulated the expression of autophagy-related genes, and caused a time-dependent inhibition of the mRNA expression of Becn1, Map1lc3a, Map1lc3b, Nup62, and Atg7, which was correlated with a decrease in the protein levels of MAP1LC3B, BECN1 and autophagosomes, but not NUP62 protein level which was increased. Intriguingly, the Esr1 and Gper1 siRNAs did not affect the level of autophagosomes, suggesting that the triclocarban-induced impairment of autophagy is independent of the triclocarban-induced disruption of estrogen receptor signaling in mammalian neurons. Because our data provided evidence that triclocarban has the capacity to impair autophagy and disrupt estrogen receptor signaling in brain neurons at an early developmental stage, we postulate to categorize the compound as a neurodevelopmental risk factor.
Collapse
Affiliation(s)
- M Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - J Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - A Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - W Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| |
Collapse
|