1
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
2
|
Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants (Basel) 2020; 9:antiox9121188. [PMID: 33260826 PMCID: PMC7759788 DOI: 10.3390/antiox9121188] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.
Collapse
|
3
|
Natural compounds for pediatric cancer treatment. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:131-49. [DOI: 10.1007/s00210-015-1191-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
|
4
|
Hu X, Liu Y, Qin C, Pan Z, Luo J, Yu A, Cheng Z. Up-regulated isocitrate dehydrogenase 1 suppresses proliferation, migration and invasion in osteosarcoma: in vitro and in vivo. Cancer Lett 2013; 346:114-21. [PMID: 24368190 DOI: 10.1016/j.canlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Very few studies have been reported the function of wild type IDH1 in tumor progress. Previously, we reported that IDH1 correlated with pathological grade and metastatic potential inversely in human osteosarcoma. Here, IDH1 was found lower expressed in osteosarcoma tissues than that of adjacent normal bone tissues. In addition, we observed in vitro anti-proliferation and pro-apoptosis effects of up-regulated IDH1 on osteosarcoma cell lines. The migration and invasion activity was also markedly reduced by IDH1 up-regulation. Unexpectedly, IDH1 up-regulation also suppressed tumor growth and metastasis in vivo. Therefore, IDH1 may represent a potential novel treatment and preventive strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Yang Liu
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Chunxia Qin
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Giang AH, Raymond T, Brookes P, de Mesy Bentley K, Schwarz E, O'Keefe R, Eliseev R. Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the Warburg effect. J Biol Chem 2013; 288:33303-11. [PMID: 24100035 DOI: 10.1074/jbc.m113.507129] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead to development of new approaches to reverse metabolic reprogramming. We have evaluated mitochondrial function and morphology in poorly respiring LM7 and 143B osteosarcoma (OS) cell lines showing the Warburg effect in comparison with actively respiring Saos2 and HOS OS cells and noncancerous osteoblastic hFOB cells. In LM7 and 143B cells, we detected markers of the mitochondrial permeability transition (MPT), such as mitochondrial swelling, depolarization, and membrane permeabilization. In addition, we detected mitochondrial swelling in human OS xenografts in mice and archival human OS specimens using electron microscopy. The MPT inhibitor sanglifehrin A reversed MPT markers and increased respiration in LM7 and 143B cells. Our data suggest that the MPT may play a role in suppression of mitochondrial function, contributing to the Warburg effect in cancer.
Collapse
Affiliation(s)
- An-Hoa Giang
- From the Center for Musculoskeletal Research and
| | | | | | | | | | | | | |
Collapse
|
6
|
How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol 2013; 9:e1003210. [PMID: 24009496 PMCID: PMC3757060 DOI: 10.1371/journal.pcbi.1003210] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/19/2013] [Indexed: 12/25/2022] Open
Abstract
Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/co_networks.html).
Collapse
|
7
|
Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, Ji Z, Zhao J, Zhao H, Guo M, Ma Q, Xiao C, Fan Q, Ma B. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One 2013; 8:e53906. [PMID: 23372675 PMCID: PMC3553141 DOI: 10.1371/journal.pone.0053906] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of miR-221 on osteosarcoma and the possible mechanism by which miR-221 affected the survival, apoptosis, and cisplatin resistance of osteosarcoma were investigated. Methodology/Principal Findings Real-time quantitative PCR analysis revealed miR-221 was significantly upregulated in osteosarcoma cell lines than in osteoblasts. Both human osteosarcoma cell lines SOSP-9607 and MG63 were transfected with miR-221 mimic or inhibitor to regulate miR-221 expression. The effects of miR-221 were then assessed by cell viability, cell cycle analysis, apoptosis assay, and cisplatin resistance assay. In both cells, upregulation of miR-221 induced cell survival and cisplatin resistance and reduced cell apoptosis. In addition, knockdown of miR-221 inhibited cell growth and cisplatin resistance and induced cell apoptosis. Potential target genes of miR-221 were predicted using bioinformatics. Moreover, luciferase reporter assay and western blot confirmed that PTEN was a direct target of miR-221. Furthermore, introduction of PTEN cDNA lacking 3′-UTR or PI3K inhibitor LY294002 abrogated miR-221-induced cisplatin resistance. Finally, both miR-221 and PTEN expression levels in osteosarcoma samples were examined by using real-time quantitative PCR and immunohistochemistry. High miR-221 expression level and inverse correlation between miR-221 and PTEN levels were revealed in osteosarcoma tissues. Conclusions/Significance These results for the first time demonstrate that upregulation of miR-221 induces the malignant phenotype of human osteosarcoma whereas knockdown of miR-221 reverses this phenotype, suggesting that miR-221 could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Guangyi Zhao
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zuch D, Giang AH, Shapovalov Y, Schwarz E, Rosier R, O'Keefe R, Eliseev RA. Targeting radioresistant osteosarcoma cells with parthenolide. J Cell Biochem 2012; 113:1282-91. [PMID: 22109788 DOI: 10.1002/jcb.24002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is a devastating tumor of bone, primarily affecting adolescents. Osteosarcoma tumors are notoriously radioresistant. Radioresistant cancers, including osteosarcoma, typically exhibit a considerable potential for relapse and development of metastases following treatment. Relapse and metastatic potential can, in part, be due to a specific radioresistant subpopulation of cells with stem-like characteristics, cancer stem cells, which maintain the capacity to regenerate entire tumors. In the current study, we have investigated whether in vitro treatments with parthenolide, a naturally occurring small molecule that interferes with NF-κB signaling and has various other effects, will re-sensitize cancer stem cells and the entire cell population to radiotherapy in osteosarcoma. Our results indicate that parthenolide and ionizing radiation synergistically induce cell death in LM7 osteosarcoma cells. Importantly, the combination treatment results in a significant reduction in the viability of both the overall population of osteosarcoma cells and the cancer stem cell subpopulation. This effect is dependent on the ability of parthenolide to induce oxidative stress. Therefore, as a supplement to current multimodal therapy, parthenolide may sensitize osteosarcoma tumors to radiation and greatly reduce the prevalence of relapse and metastatic progression.
Collapse
Affiliation(s)
- Daniel Zuch
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 575 Elmwood Ave., Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, Yin JQ, Liu DW, Liang Y, Zhao ZQ, Yong BC, Zhang RH, Feng QS, Deng WG, Zhu XF, Zhou BP, Zeng YX, Shen JN, Kang T. Glycogen synthase kinase-3β, NF-κB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst 2012; 104:749-63. [PMID: 22534782 PMCID: PMC3352834 DOI: 10.1093/jnci/djs210] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent. Methods We used cell viability assays, colony formation assays, and apoptosis assays to analyze the effects of altered GSK-3β expression in U2OS, MG63, SAOS2, U2OS/MTX300, and ZOS osteosarcoma cell lines. Nude mice (n = 5–8 mice per group) were injected with U2OS/MTX300, and ZOS cells to assess the role of GSK-3β in osteosarcoma growth in vivo and to evaluate the effects of inhibitors and/or anticancer drugs on tumor growth. We used an antibody array, polymerase chain reaction, western blotting, and a luciferase reporter assay to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Immunochemistry was performed on primary tumor specimens from osteosarcoma patients (n = 74) to determine the relationship of GSK-3β activity with overall survival. Results Osteosarcoma cells with low levels of inactive p-Ser9-GSK-3β formed colonies in vitro and tumors in vivo more readily than cells with higher levels and cells in which GSK-3β had been silenced formed fewer colonies and smaller tumors than parental cells. Silencing or pharmacological inhibition of GSK-3β resulted in apoptosis of osteosarcoma cells. Inhibition of GSK-3β resulted in inhibition of the NF-κB pathway and reduction of NF-κB-mediated transcription. Combination treatments with GSK-3β inhibitors, NF-κB inhibitors, and chemotherapy drugs increased the effectiveness of chemotherapy drugs in vitro and in vivo. Patients whose osteosarcoma specimens had hyperactive GSK-3β, and nuclear NF-κB had a shorter median overall survival time (49.2 months) compared with patients whose tumors had inactive GSK-3β and NF-κB (109.2 months). Conclusion GSK-3β activity may promote osteosarcoma tumor growth, and therapeutic targeting of the GSK-3β and/or NF-κB pathways may be an effective way to enhance the therapeutic activity of anticancer drugs against osteosarcoma.
Collapse
Affiliation(s)
- Qing-Lian Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shapovalov Y, Hoffman D, Zuch D, de Mesy Bentley KL, Eliseev RA. Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication. J Biol Chem 2011; 286:22331-8. [PMID: 21536680 DOI: 10.1074/jbc.m111.250092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Warburg effect is a hallmark of cancer manifested by continuous prevalence of glycolysis and dysregulation of oxidative metabolism. Glycolysis provides survival advantage to cancer cells. To investigate molecular mechanisms underlying the Warburg effect, we first compared oxygen consumption among hFOB osteoblasts, benign osteosarcoma cells, Saos2, and aggressive osteosarcoma cells, 143B. We demonstrate that, as both proliferation and invasiveness increase in osteosarcoma, cells utilize significantly less oxygen. We proceeded to evaluate mitochondrial morphology and function. Electron microscopy showed that in 143B cells, mitochondria are enlarged and increase in number. Quantitative PCR revealed an increase in mtDNA in 143B cells when compared with hFOB and Saos2 cells. Gene expression studies showed that mitochondrial single-strand DNA-binding protein (mtSSB), a key catalyst of mitochondrial replication, was significantly up-regulated in 143B cells. In addition, increased levels of the mitochondrial respiratory complexes were accompanied by significant reduction of their activities. These changes indicate hyperactive mitochondrial replication in 143B cells. Forced overexpression of mtSSB in Saos2 cells caused an increase in mtDNA and a decrease in oxygen consumption. In contrast, knockdown of mtSSB in 143B cells was accompanied by a decrease in mtDNA, increase in oxygen consumption, and retardation of cell growth in vitro and in vivo. In summary, we have found that mitochondrial dysfunction in cancer cells correlates with abnormally increased mitochondrial replication, which according to our gain- and loss-of-function experiments, may be due to overexpression of mtSSB. Our study provides insight into mechanisms of mitochondrial dysfunction in cancer and may offer potential therapeutic targets.
Collapse
Affiliation(s)
- Yuriy Shapovalov
- The Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
11
|
Sugiyasu K, Nanno K, Tamai N, Hashimoto N, Kishida Y, Yoshikawa H, Myoui A. Radio-sensitization of the murine osteosarcoma cell line LM8 with parthenolide, a natural inhibitor of NF-κB. Oncol Lett 2011; 2:407-412. [PMID: 22866095 DOI: 10.3892/ol.2011.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/24/2011] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor (NF)-κB has been shown to be associated with cancer resistance to radiotherapy (RT), and is constitutively active in the murine osteosarcoma cell line, LM8. Parthenolide has been reported to show antitumor activity through inhibition of the NF-κB pathway. In this study, we investigated the radio-sensitizing activity of parthenolide. We established Luc-LM8, a stable transfectant reporter construct of NF-κB transcriptional activity into LM8. Luc-LM8 maintained the malignancy observed with LM8. In vitro, Luc-LM8 cells were cultured with or without parthenolide treatment, irradiated, and subjected to cell viability and apoptosis assays. In vivo, to investigate whether parthenolide enhances radio-sensitivity of tumors, a tumor growth assay was conducted. Parthenolide enhanced the growth inhibitory effect of RT and induced the apoptosis of Luc-LM8 cells with RT in vitro. The in vivo tumor growth was significantly suppressed in the mice treated with parthenolide and RT. The present study suggests that parthenolide sensitizes Luc-LM8 cells to irradiation. Thus, parthenolide is a potential candidate for use as a potent radio-sensitizing drug for use in cancer RT.
Collapse
Affiliation(s)
- Kenjiro Sugiyasu
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G. Carbon-ion-induced activation of the NF-κB pathway. Radiat Res 2011; 175:424-31. [PMID: 21222514 DOI: 10.1667/rr2423.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carbon-ion cancer therapy offers several physical and radiobiological advantages over conventional photon cancer therapy. The molecular mechanisms that determine cellular outcome, including the activation of transcription factors and the alteration of gene expression profiles, after carbon-ion exposure are still under investigation. We have previously shown that argon ions (LET 272 keV/µm) had a much higher potential to activate the transcription factor nuclear factor κB (NF-κB) than X rays. NF-κB is involved in the regulation of cellular survival, mostly by antiapoptosis and cell cycle-regulating target genes, which are important in the resistance of cancer cells to radiotherapy. Therefore, activation of the NF-κB pathway by accelerated carbon ions (LET 33 and 73 keV/µm) was examined. For comparison, cells were exposed to 150 kV X rays and to accelerated carbon ions. NF-κB-dependent gene induction after exposure was detected in stably transfected human 293 reporter cells. Carbon ions and X rays had a comparable potential to activate NF-κB in human cells, indicating a comparable usefulness of pharmacological NF-κB inhibition during photon and carbon-ion radiotherapy.
Collapse
Affiliation(s)
- Christine E Hellweg
- German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li X, Xue Y, He D, Chen X, Zhang L. Shock wave induces chronic renal lesion through activation of the nuclear factor kappa B signaling pathway. World J Urol 2010; 28:657-62. [PMID: 20186420 DOI: 10.1007/s00345-010-0515-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 02/03/2010] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The mechanisms responsible for the pathogenesis of long-term renal damage induced by extracorporeal shock wave lithotripsy (ESWL) are not clear. The present study was designed to investigate the role of nuclear factor κB (NFκB) signal pathway in the pathogenesis of chronic shock wave-induced renal damage in rat model. MATERIALS AND METHODS Adult male Sprague-Dawley rats were exposed to ESWL under the guidance of X-rays. On days 1, 3, 7, 35, and 105 postexposures to shock wave, the animals were killed to examine the changes in renal histology and functions, and NFκB activity. The expression of NFκB-dependent fibrogenic genes was also analyzed. Pyrrolidine dithiocarbamate (PDTC), a specific NFκB inhibitor, was used to further investigate the involvement of NFκB. RESULTS The applied shock wave caused a transient decline in renal function and induced chronic morphological changes such as tubular injury and interstitial fibrosis. NFκB was significantly activated in renal cortex. PDTC had little or no effects on the shock-wave-induced transient renal damage, but attenuated the long-term renal lesions associated with NFκB activation. In addition, the shock wave exposure also up-regulated the expression of transforming growth factor-β1 (TGF-β1), which was also blocked by PDTC. CONCLUSION NFκB plays an important role in the progression of shock-wave- induced long-term renal damage in rat model.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, First Affiliated hospital, Medical College, Xi'an Jiaotong University, Xi'an, No.277 Yanta West Road, Xi'an, Shaanxi Province 710061, China
| | | | | | | | | |
Collapse
|
14
|
Lowe JM, Cha H, Yang Q, Fornace AJ. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 2009; 285:5249-57. [PMID: 20007970 DOI: 10.1074/jbc.m109.034579] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors plays a key role in inflammation and augments the initiation, promotion, and progression of cancer. NF-kappaB activation generally leads to transcriptional enhancement of genes important in cell survival and cell growth, which is exploited in cancer cells. In this study, we identify an additional oncogene, PPM1D, which encodes for Wip1, as a transcriptional target of NF-kappaB in breast cancer cells. Inhibition of NF-kappaB or activation of NF-kappaB resulted in decreased or increased Wip1 expression, respectively, at both the mRNA and protein levels. PPM1D promoter activity was positively regulated by NF-kappaB, and this regulation was dependent on the presence of the conserved kappaB site in the PPM1D promoter region. Chromatin immunoprecipitation analysis showed basal binding of the p65 NF-kappaB subunit to the PPM1D promoter region encompassing the kappaB site, which is enhanced after NF-kappaB activation by tumor necrosis factor-alpha. Finally, we show that Wip1 expression is induced in lipopolysaccharide-stimulated mouse splenic B-cells and is required for maximum proliferation. Taken together, these data suggest an additional mechanism by which NF-kappaB may promote tumorigenesis, support the selective use of NF-kappaB inhibitors as chemotherapeutic agents for the treatment of human cancers, and further define a function for Wip1 in inflammation.
Collapse
Affiliation(s)
- Julie M Lowe
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
15
|
Zand H, Rahimipour A, Salimi S, Shafiee SM. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-kappaB suppression. Mol Cell Biochem 2008; 317:113-20. [PMID: 18566752 DOI: 10.1007/s11010-008-9838-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/05/2008] [Indexed: 01/18/2023]
Abstract
Gamma-irradiation (Gamma-IR) resistance is a character of many malignant cells that decreases the efficacy of radiotherapy. Although ionizing radiation activates multiple cellular factors that vary depending on dose and tissue specificity, the activation of nuclear factor-kappa B appears to be a well-conserved response in tumor cells exposed to Gamma-IR which can lead to the inhibition of radiation-induced apoptosis. Thus, inhibition of NF-kappaB activation is an important strategy to abolish radioresistance. Recently, we have demonstrated that docosahexaenoic acid (DHA; 22:6 n-3 polyunsaturated fatty acids)-induced apoptosis may occur via ligand-dependent transcription factor, peroxisome proliferator-activated receptors-gamma. Moreover, many reports described that activation of PPAR-gamma can lead to the induction of apoptosis through NF-kappaB inhibition. Therefore, we addressed the mechanism that NF-kappaB is a downstream target of DHA and may be involved in the process of radiosensitization. Ramos cells are a highly radiation-resistant and p53-deficient Burkitt's lymphoma cell line. The results of present study showed that cotreatment of Ramos cells with low doses of DHA and Gamma-IR leads to marked phosphorylation of IkappaB and translocation of p65/NF-kappaB to nucleus in parallel with increase in apoptosis. Preincubation of the cells with GW9662, a selective antagonist for PPAR-gamma, significantly prevented NF-kappaB activation profile. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Hamid Zand
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University M. C., Tehran, Iran.
| | | | | | | |
Collapse
|
16
|
Abbas S, Bhoumik A, Dahl R, Vasile S, Krajewski S, Cosford NDP, Ronai ZA. Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin Cancer Res 2007; 13:6769-78. [PMID: 18006779 PMCID: PMC2874065 DOI: 10.1158/1078-0432.ccr-07-1536] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Sensitize melanomas to apoptosis and inhibit their growth and metastatic potential by compounds that mimic the activities of activating transcription factor 2 (ATF2)-driven peptides. EXPERIMENTAL DESIGN Small-molecule chemical library consisting of 3,280 compounds was screened to identify compounds that elicit properties identified for ATF2 peptide, including (a) sensitization of melanoma cells to apoptosis, (b) inhibition of ATF2 transcriptional activity, (c) activation of c-Jun NH(2)-terminal kinase (JNK) and c-Jun transcriptional activity, and (d) inhibition of melanoma growth and metastasis in mouse models. RESULTS Two compounds, celastrol (CSL) and acetyl isogambogic acid, could, within a low micromolar range, efficiently elicit cell death in melanoma cells. Both compounds efficiently inhibit ATF2 transcriptional activities, activate JNK, and increase c-Jun transcriptional activities. Similar to the ATF2 peptide, both compounds require JNK activity for their ability to inhibit melanoma cell viability. Derivatives of CSL were identified as potent inducers of cell death in mouse and human melanomas. CSL and a derivative (CA19) could also efficiently inhibit growth of human and mouse melanoma tumors and reduce the number of lung metastases in syngeneic and xenograft mouse models. CONCLUSIONS These studies show for the first time the effect of CSL and acetyl isogambogic acid on melanoma. These compounds elicit activities that resemble the well-characterized ATF2 peptide and may therefore offer new approaches for the treatment of this tumor type.
Collapse
Affiliation(s)
- Sabiha Abbas
- Signal Transduction Program, Cancer Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Eliseev RA, Filippov G, Velos J, VanWinkle B, Goldman A, Rosier RN, Gunter TE. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol Aging 2007; 28:1532-42. [PMID: 16876914 DOI: 10.1016/j.neurobiolaging.2006.06.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/12/2006] [Accepted: 06/23/2006] [Indexed: 11/26/2022]
Abstract
The mitochondrial permeability transition (MPT) is involved in both necrosis and apoptosis. Cyclophilin D (CypD) is an important component of the MPT. Brain mitochondria are more resistant to the MPT when compared to heart or liver mitochondria. We found that this increased resistance correlates with low expression of CypD in brain when compared to heart or liver. In newborn rats, sensitivity of brain mitochondria to the MPT and CypD expression are significantly higher than in mature animals. In an in vitro model of neuronal development, mitochondria in differentiated neuronal-like cells exert a higher calcium threshold toward MPT induction and express significantly less CypD when compared to undifferentiated precursor cells. Gain and loss of function experiments confirm the role of CypD in sensitivity to the MPT. Together our data indicate that the increased calcium threshold of brain mitochondria to the MPT correlates with low expression of CypD in brain; and that neuronal cells lose CypD during differentiation and become less sensitive to the MPT induction. This may be a protection mechanism that raises the threshold of brain tissue against injuries.
Collapse
Affiliation(s)
- Roman A Eliseev
- Musculoskeletal Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States. roman
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim CS, Kim JM, Nam SY, Yang KH, Jeong M, Kim HS, Lim YK, Kim CS, Jin YW, Kim J. Low-dose of ionizing radiation enhances cell proliferation via transient ERK1/2 and p38 activation in normal human lung fibroblasts. JOURNAL OF RADIATION RESEARCH 2007; 48:407-15. [PMID: 17660698 DOI: 10.1269/jrr.07032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study shows the human cellular responses and the mechanism of low-dose ionizing radiation in CCD 18 Lu cells, which are derived from normal human lung fibroblasts. Cell proliferation and viability assay were measured for the cells following gamma-irradiation using trypan blue, BrdU incorporation, and Wst-1 assay. We also examined genotoxicity using a micronuclei formation assay. The activation of the MAPKs pathway was determined by Western blot analysis, and the siRNA system was used to inhibit the expression of ERK1/2 and p38. We found that 0.05 Gy of ionizing radiation stimulated cell proliferation and did not change Micronuclei frequencies. In addition, 0.05 Gy of ionizing radiation activated ERK1/2 and p38, but did not activate JNK1/2 in cells. A specific ERK1/2 inhibitor, U0126, decreased the phosphorylation of ERK1/2 proteins induced by 0.05 Gy of ionizing radiation, and a similar suppressive effect was observed with a p38 inhibitor, PD169316. Suppression of ERK1/2 and p38 phosphorylation with these inhibitors decreased cell proliferation, which was stimulated by 0.05 Gy of ionizing radiation. Furthermore, downregulation of ERK1/2 and p38 expression using siRNA blocked the cell proliferation that had been increased by 0.05 Gy of ionizing radiation. These results suggest that 0.05 Gy of ionizing radiation enhances cell proliferation through the activation of ERK1/2 and p38 in normal human lung fibroblasts.
Collapse
Affiliation(s)
- Cha Soon Kim
- Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu ZH, Miyamoto S. Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med (Berl) 2007; 85:1187-202. [PMID: 17607554 DOI: 10.1007/s00109-007-0227-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/20/2007] [Accepted: 05/22/2007] [Indexed: 12/22/2022]
Abstract
The nuclear factor-kappaB (NF-kappaB) family of dimeric transcription factors plays pivotal roles in physiologic and pathologic processes, including immune and inflammatory responses and development and progression of various human cancers. Inactive NF-kappaB dimers normally exist in the cytoplasm in association with inhibitor proteins belonging to the inhibitor of NF-kappaB (IkappaB) family of related proteins. Activation of NF-kappaB involves its release from IkappaB and subsequent nuclear translocation to induce expression of target genes. Intense research effort has revealed many distinct signaling pathways and mechanisms of NF-kappaB activation induced by immune and inflammatory stimuli. These aspects of NF-kappaB biology have been amply reviewed in the literature. However, those that involve DNA-damaging agents are less well understood, and multiple conflicting pathways and mechanisms have been described in the literature. In this review, we summarize the proposed mechanisms of NF-kappaB activation by various DNA-damaging agents, discuss the significance of such activation in the context of cancer treatment, and highlight some of the critical questions that remain to be addressed in future studies.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Li X, He D, Zhang L, Xue Y, Cheng X, Luo Y. Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation. ACTA ACUST UNITED AC 2007; 35:193-9. [PMID: 17562036 DOI: 10.1007/s00240-007-0105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/17/2007] [Indexed: 01/12/2023]
Abstract
Shock wave lithotripsy (SWL)-induced renal damage appears to be multifactorial. Recent data indicated that the mechanism of renal tissue damage secondary to SWL is similar to that of ischemia reperfusion injury. Nuclear factor-kappa B (NFkappaB) and its target genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), have been demonstrated to play a very important role in a variety of cells or tissues ischemia reperfusion injuries. Thus in the present study, using an in vitro model MDCK cells, we investigated the role of NFkappaB and its target cytotoxic enzyme in shock wave-induced renal cellular damage. We also examined whether inhibition this pathway by pyrrolidine dithiocarbamate (PDTC) is contributed to alleviate SWL-caused cell damage. Suspensions of MDCK cells were placed in containers for shock wave exposure. Three groups of six containers each were examined: control group, no shock wave treatment and SWL group, which received 100 shocks at 18 kV; 3 SWL + PDTC group. PDTC were added to the suspensions before shock wave exposure. After shock wave 0, 2, 4, 6 and 8 h, respectively, the cell supernatants were detected for the level of MDA and release of LDH. At post-shock wave 8 h, cells were harvested to detect the nuclear translocation of NFkappaBp65 by immunofluorescence staining. Degradation of IkappaB-a (an inhibitor protein of NFkappaB) and expression of iNOS and COX-2 were also examined by western blotting. Our results indicated that shock wave initiated the apparent activation of NFkappaB, which in turn induced high expression of iNOS and COX-2. Blocking degradation of IkappaB-a by PDTC was contributed to decrease the expression of iNOS. And the level of MDA and the release of LDH were also significantly reduced by using PDTC. However, the degree of COX-2 expression does not differ significantly between SWL and SWL + PDTC groups. Activation of NFkappaB and subsequent expression of its target cytotoxic enzyme have been demonstrated to be a potential and crucial mechanism in SWL-induced renal cell damage. Blocking this pathway by PDTC is contributed to protect against cellular damage from shock wave.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, No. 1 Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | | | | | | | | | | |
Collapse
|
21
|
Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9:49-89. [PMID: 17115887 DOI: 10.1089/ars.2007.9.49] [Citation(s) in RCA: 913] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen or nitrogen species (ROS/RNS) generated endogenously or in response to environmental stress have long been implicated in tissue injury in the context of a variety of disease states. ROS/RNS can cause cell death by nonphysiological (necrotic) or regulated pathways (apoptotic). The mechanisms by which ROS/RNS cause or regulate apoptosis typically include receptor activation, caspase activation, Bcl-2 family proteins, and mitochondrial dysfunction. Various protein kinase activities, including mitogen-activated protein kinases, protein kinases-B/C, inhibitor-of-I-kappaB kinases, and their corresponding phosphatases modulate the apoptotic program depending on cellular context. Recently, lipid-derived mediators have emerged as potential intermediates in the apoptosis pathway triggered by oxidants. Cell death mechanisms have been studied across a broad spectrum of models of oxidative stress, including H2O2, nitric oxide and derivatives, endotoxin-induced inflammation, photodynamic therapy, ultraviolet-A and ionizing radiations, and cigarette smoke. Additionally ROS generated in the lung and other organs as the result of high oxygen therapy or ischemia/reperfusion can stimulate cell death pathways associated with tissue damage. Cells have evolved numerous survival pathways to counter proapoptotic stimuli, which include activation of stress-related protein responses. Among these, the heme oxygenase-1/carbon monoxide system has emerged as a major intracellular antiapoptotic mechanism.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Allen CE, Richards J, Muthusamy N, Auer H, Liu Y, Robinson ML, Barnard JA, Wu LC. Disruption of ZAS3 in mice alters NF-kappaB and AP-1 DNA binding and T-cell development. Gene Expr 2007; 14:83-100. [PMID: 18257392 PMCID: PMC6042042 DOI: 10.3727/105221607783417574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The large zinc finger proteins, ZAS, regulate the transcription of a variety of genes involved in cell growth, development, and metastasis. They also function in the signal transduction of the TGF-beta and TNF-alpha pathways. However, the endogenous protein of a representative member, ZAS3, is rapidly degraded in primary lymphocytes, which limits the determination of its physiological function in vitro. Therefore, we have generated mice with targeted disruption of ZAS3. Oligonucleotide-based microarray analyses revealed subtle but consistent differences in the expression of genes, many of which are associated with receptor or signal transduction activities between ZAS3+/+ and ZAS3-/- thymi. Gel mobility shift assays showed altered DNA binding activities of NF-kappaB and AP-1 proteins in ZAS3-deficient tissues, including the thymus. Lymphocyte analysis suggested a subtle but broad function of ZAS3 in regulating T-cell development and activation. In CD3+ ZAS3-/- thymocytes, the CD4/ CD8 ratio was decreased and CD69 expression was decreased. In peripheral CD4+ ZAS3-/- lymphocytes we observed an increased number of memory T cells.
Collapse
Affiliation(s)
- Carl E. Allen
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
- †Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - John Richards
- ‡Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Natarajan Muthusamy
- §Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Herbert Auer
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - Yang Liu
- ‡Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael L. Robinson
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - John A. Barnard
- *Department of Pediatrics and Center for Cell and Developmental Biology, Columbus Children’s Research Institute, Columbus, OH 43205, USA
| | - Lai-Chu Wu
- †Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
- §Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- ¶Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Zou H, Adachi M, Imai K, Hareyama M, Yoshioka K, Zhao S, Shinomura Y. 2-Methoxyestradiol, an Endogenous Mammalian Metabolite, Radiosensitizes Colon Carcinoma Cells through c-Jun NH2-Terminal Kinase Activation. Clin Cancer Res 2006; 12:6532-9. [PMID: 17085668 DOI: 10.1158/1078-0432.ccr-06-0678] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE 2-Methoxyestradiol (2ME), an estrogen metabolite, induces apoptosis in various cell types. We investigated whether 2ME pretreatment can radiosensitize colon adenocarcinoma cells. EXPERIMENTAL DESIGN Radiosensitizing effects of 2ME were evaluated by cell death, clonogenic assay, nuclear fragmentation, and tumor progression of xenografts. Ionizing radiation-induced DNA damage was evaluated by histone H2AX phosphorylation and its foci. The c-Jun NH2-terminal kinase (JNK) activation was evaluated by anti-phosphorylated JNK antibody and inhibited by the JNK-specific inhibitor SP600125 or dominant-negative SEK1 expression. RESULTS Clonogenic assays revealed that 2ME, but not estradiol, radiosensitized three colon carcinoma cells, DLD-1, HCT-8, and HCT-15, and strongly suppressed tumor progression of DLD-1 xenografts. Gene transfer-mediated Bcl-xL overexpression largely abolished both augmented apoptosis and reduced survival fractions. Pretreatment with 2ME enhanced H2AX phosphorylation, its foci, and phosphorylation of ATM kinase and delayed re-entry of cell cycle progression after ionizing radiation. Augmentation of both radiosensitivity and H2AX phosphorylation was substantially reduced by SP600125 or overexpression of a dominant-negative mutant SEK1. CONCLUSION 2ME radiosensitized colon carcinoma cells through enhanced DNA damage via JNK activation, thereby representing a novel radiosensitizing therapy against colon cancer.
Collapse
Affiliation(s)
- HuiChao Zou
- Division of Molecular Oncology and Molecular Diagnosis, Graduate School of Medicine, First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Shanmugam R, Jayaprakasan V, Gokmen-Polar Y, Kelich S, Miller KD, Yip-Schneider M, Cheng L, Bhat-Nakshatri P, Sledge GW, Nakshatri H, Zheng QH, Miller MA, DeGrado T, Hutchins GD, Sweeney CJ. Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate 2006; 66:1498-1511. [PMID: 16921510 DOI: 10.1002/pros.20482] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Nuclear Factor kappa B (NFkappaB) is a eukaryotic transcription factor that is constitutively active in human cancers and can be inhibited by the naturally occurring sesquiterpene lactone, parthenolide (P). METHODS The in vitro effects of P were assessed using the androgen independent cell line, CWR22Rv1, and human umbilical endothelial cells (HUVECs). The in vivo activity of P as a single agent and its ability to augment the efficacy of docetaxel and the anti-androgen, bicalutamide, were determined using the CWR22Rv1 xenograft model. RESULTS Parthenolide at low micromolar concentration inhibited proliferation of CWR22Rv1 and HUVEC cells, promoted apoptosis and abrogated NFkappaB-DNA binding. Parthenolide downregulated anti-apoptotic genes under NFkappaB control, TRAF 1 and 2, and promoted sustained activation of c-jun-NH2 kinase (JNK). Parthenolide also augmented the in vivo efficacy of docetaxel and restored sensitivity to anti-androgen therapy. CONCLUSION These studies demonstrate parthenolide's anti-tumor and anti-angiogenic activity, and its potential to augment the efficacy of chemotherapy and hormonal therapy.
Collapse
|