1
|
Dalal D, Singh L, Singh A. Calycosin and kidney health: a molecular perspective on its protective mechanisms. Pharmacol Rep 2025:10.1007/s43440-025-00728-3. [PMID: 40249500 DOI: 10.1007/s43440-025-00728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Kidney diseases encompass a diverse group of pathological conditions characterized by the progressive loss of renal function, leading to systemic complications and increased morbidity. Their global prevalence increasing, posing a substantial public health challenge. The underlying pathophysiology involves complex molecular interactions that drive inflammation, fibrosis, and tissue injury. Notably, the AGE/RAGE axis activates NF-κB, a pivotal transcription factor responsible for pro-inflammatory cytokine production. This response is further intensified by NLRP3-inflammasome activation, which detects cellular stress and promotes IL-1β release. Additionally, TGF-β signaling through SMADs and MAPK pathways induces ECM accumulation, contributing to tissue fibrosis. Besides this, oxidative stress-induced ferroptosis and apoptosis also play critical roles in disease progression. Given the multifactorial nature of kidney diseases, agents with multi-targeted actions are promising for effective renoprotection. Significant research interest has emerged in exploring calycosin's protective effects against kidney-related pathologies, owing to its diverse pharmacological properties, including anti-inflammatory, antioxidant, anti-apoptotic, and anti-fibrotic effects. Calycosin is a naturally occurring isoflavone primarily found in Astragalus membranaceus, a well-known medicinal herb in traditional Chinese medicine. Several studies have demonstrated that calycosin exerts its renoprotective effects by modulating key molecular mediators, including RAGE, NF-κB, TGF-β, MAPKs, NLRP3-inflammasome, Nrf-2, PPARγ, and Sirtuin-3, among others, thereby providing a multitargeted defense against kidney diseases. Considering the potential of calycosin in modulating these mediators, the present study was conceptualized to study the mechanistic interplay underlying its renoprotective effects. By investigating these interconnected pathways, this study will provide foundational insights that will enable future researchers to address existing gaps and further elucidate calycosin's potential in renal disorders.
Collapse
Affiliation(s)
- Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations, and clinical observations to provide a comprehensive view of the mechanisms by which these pathways cause pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis. We aim to delineate approaches towards effectively treating fibrosis in SSc by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128 Trieste, Italy; Public Health Department, University Health Agency Giuliano-Isontina (ASUGI), 34148 Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Chaudhary R, Weiskirchen R, Ehrlich M, Henis YI. Dual signaling pathways of TGF-β superfamily cytokines in hepatocytes: balancing liver homeostasis and disease progression. Front Pharmacol 2025; 16:1580500. [PMID: 40260391 PMCID: PMC12009898 DOI: 10.3389/fphar.2025.1580500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily (TGF-β-SF) comprises over 30 cytokines, including TGF-β, activins/inhibins, bone morphogenetic proteins (BMPs), and growth differentiation factors (GDFs). These cytokines play critical roles in liver function and disease progression. Here, we discuss Smad-dependent (canonical) and non-Smad pathways activated by these cytokines in a hepatocellular context. We highlight the connection between the deregulation of these pathways or the balance between them and key hepatocellular processes (e.g., proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)). We further discuss their contribution to various chronic liver conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and hepatocellular carcinoma (HCC). In MASLD and MASH, TGF-β signaling contributes to hepatocyte lipid accumulation, cell death and fibrosis progression through both Smad and non-Smad pathways. In HCC, TGF-β and other TGF-β-SF cytokines have a dual role, acting as tumor suppressors or promoters in early vs. advanced stages of tumor progression, respectively. Additionally, we review the involvement of non-Smad pathways in modulating hepatocyte responses to TGF-β-SF cytokines, particularly in the context of chronic liver diseases, as well as the interdependence with other key pathways (cholesterol metabolism, insulin resistance, oxidative stress and lipotoxicity) in MASLD/MASH pathogenesis. The perspectives and insights detailed in this review may assist in determining future research directions and therapeutic targets in liver conditions, including chronic liver diseases and cancer.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoav I. Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Wang T, Ji M, Yang P, Zhang J, Peng X, Miao Y, Liu W, Sun J. Cyclooxygenase 2 overexpression suppresses Smad3 and augments ERK1/2 signaling activated by TGFβ1 in endometrial stromal cells: A novel insight into endometriosis pathogenesis. Mol Cell Endocrinol 2025; 599:112470. [PMID: 39864487 DOI: 10.1016/j.mce.2025.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
RESEARCH QUESTION To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells. DESIGN Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling. RESULTS This study demonstrated that TGFβ1 inhibited the proliferation of CESCs and HESCs while significantly promoting the proliferation of EESCs. In both CESCs and HESCs, TGFβ1-induced growth arrest was primarily mediated by cell cycle arrest rather than apoptosis. Mechanistically, TGFβ1 activated both Smad3 and ERK1/2 signaling pathways, with Smad3 acting to inhibit proliferation and ERK1/2 to promote it. Notably, overexpression of COX-2 in HESCs abolished the cytostatic effect of TGFβ1 by enhancing ERK1/2 signaling and decreasing Smad3 protein levels and its nuclear translocation. Similar effects were observed following prostaglandin E2 (PGE2) treatment. In contrast, inhibition of COX-2 activity in EESCs resulted in increased Smad3 expression, reduced ERK1/2 activation, and a restoration of the cytostatic effect of TGFβ1. CONCLUSION COX-2 modulates the effects of TGFβ1 on endometrial stromal cells by altering the balance between the Smad3 and ERK1/2 signaling pathways, thereby converting TGFβ1 from a growth inhibitor to a proliferation stimulator.
Collapse
Affiliation(s)
- Tao Wang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Mei Ji
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pusheng Yang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiaxin Zhang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaotong Peng
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yaxin Miao
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenwen Liu
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Sun
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2025; 480:1935-1949. [PMID: 38811433 PMCID: PMC11961475 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
6
|
Czajkowski M, Wierzbicki PM, Dolny M, Matuszewski M, Hakenberg OW. Inflammation in Penile Squamous Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2025; 26:2785. [PMID: 40141426 PMCID: PMC11943298 DOI: 10.3390/ijms26062785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammation appears to play a crucial role in the development and progression of penile cancer (PeCa). Two molecular pathways of PeCa are currently described: HPV-dependent and HPV-independent. The tumor immune microenvironment (TIME) of PeCa is characterized by the presence of tumor-associated macrophages, cancer-associated fibroblasts, and tumor-infiltrating lymphocytes. The components of the TIME produce pro-inflammatory cytokines and chemokines, which have been found to be overexpressed in PeCa tissues and are associated with tumor progression and unfavorable prognoses. Additionally, the nuclear factor kappa B (NF-κB) pathway and secreted phosphoprotein 1 (SPP1) have been implicated in PeCa pathogenesis. Elevated C-reactive protein (CRP) levels and the neutrophil-to-lymphocyte ratio (NLR) have been identified as potential prognostic biomarkers in PeCa. This overview presents the complex contribution of the inflammatory process and collates projects aimed at modulating TIME in PeCa.
Collapse
Affiliation(s)
- Mateusz Czajkowski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Piotr M. Wierzbicki
- Department of Histology, Medical University of Gdańsk, Dębinki, 80-211 Gdansk, Poland;
| | - Maciej Dolny
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Marcin Matuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Oliver W. Hakenberg
- Department of Urology, University Medical Center Rostock, 18055 Rostock, Germany;
- Department of Urology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
7
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
9
|
Choi E, Lee J, Kim H, Kim YJ, Kim SH. TGF-β superfamily-induced transcriptional activation pathways establish the RAD52-dependent ALT machinery during malignant transformation of MPNSTs. Sci Rep 2024; 14:26475. [PMID: 39488637 PMCID: PMC11531527 DOI: 10.1038/s41598-024-76732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
To study telomere maintenance mechanism (TMM) activation during malignant transformation, we compared neurofibroma (NF) and malignant peripheral nerve sheath tumor (MPNST) in the same patient with type-1 neurofibromatosis (NF1), a total of 20 NF-MPNST pairs in 20 NF1 patients. These comparisons minimized genetic bias and contrasted only changes associated with malignant transformation, while subtracting changes that developed upon the transformation of normal cells to the benign tumor. TGF-β superfamily genes were found to activate the PAX and SOX transcription factors, leading to TMM activation. BMPER activates PAX6 through BMP2 and PAX7 through BMP4; BMP15 activates SOX14; and INHBC activates PAX9 and SOX14. The activated PAX and SOX genes sequentially establish the core architecture of the RAD52-dependent alternative lengthening of telomeres (ALT). Specifically, PAX7 activates the recombinase (RAD52) and a negative regulator (SLX4IP). PAX6 and SOX14 activate positive regulators (BLM and BRCA2, respectively). PAX9 and SOX14 activate RAD9B and FEN1, which are responsible for the stability of homologous recombination intermediates and increase, together with RAD52, the telomere length. Telomere elongation achieved by the activation of PAX7 and PAX9 is associated with a poor prognosis. We demonstrated that TGF-β superfamily-induced transcriptional activation pathways activated the RAD52-dependent ALT during malignant transformation of MPNSTs.
Collapse
Affiliation(s)
- Eunji Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - HyoJu Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Kraik K, Tota M, Laska J, Łacwik J, Paździerz Ł, Sędek Ł, Gomułka K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024; 13:1271. [PMID: 39120302 PMCID: PMC11311642 DOI: 10.3390/cells13151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) represent chronic inflammatory respiratory disorders that, despite having distinct pathophysiological underpinnings, both feature airflow obstruction and respiratory symptoms. A critical component in the pathogenesis of each condition is the transforming growth factor-β (TGF-β), a multifunctional cytokine that exerts varying influences across these diseases. In asthma, TGF-β is significantly involved in airway remodeling, a key aspect marked by subepithelial fibrosis, hypertrophy of the smooth muscle, enhanced mucus production, and suppression of emphysema development. The cytokine facilitates collagen deposition and the proliferation of fibroblasts, which are crucial in the structural modifications within the airways. In contrast, the role of TGF-β in COPD is more ambiguous. It initially acts as a protective agent, fostering tissue repair and curbing inflammation. However, prolonged exposure to environmental factors such as cigarette smoke causes TGF-β signaling malfunction. Such dysregulation leads to abnormal tissue remodeling, marked by excessive collagen deposition, enlargement of airspaces, and, thus, accelerated development of emphysema. Additionally, TGF-β facilitates the epithelial-to-mesenchymal transition (EMT), a process contributing to the phenotypic alterations observed in COPD. A thorough comprehension of the multifaceted role of TGF-β in asthma and COPD is imperative for elaborating precise therapeutic interventions. We review several promising approaches that alter TGF-β signaling. Nevertheless, additional studies are essential to delineate further the specific mechanisms of TGF-β dysregulation and its potential therapeutic impacts in these chronic respiratory diseases.
Collapse
Affiliation(s)
- Krzysztof Kraik
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Maciej Tota
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Paździerz
- Student Scientific Group of Internal Medicine and Allergology, Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Allergology and Internal Diseases, Institute of Internal Diseases, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
12
|
Pang Y, Xu Y, Chen Q, Cheng K, Ling Y, Jang J, Ge J, Zhu W. FLRT3 and TGF-β/SMAD4 signalling: Impacts on apoptosis, autophagy and ion channels in supraventricular tachycardia. J Cell Mol Med 2024; 28:e18237. [PMID: 38509727 PMCID: PMC10955158 DOI: 10.1111/jcmm.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
To explore the underlying molecular mechanisms of supraventricular tachycardia (SVT), this study aimed to analyse the complex relationship between FLRT3 and TGF-β/SMAD4 signalling pathway, which affects Na+ and K+ channels in cardiomyocytes. Bioinformatics analysis was performed on 85 SVT samples and 15 healthy controls to screen overlapping genes from the key module and differentially expressed genes (DEGs). Expression profiling of overlapping genes, coupled with Receiver Operating Characteristic (ROC) curve analyses, identified FLRT3 as a hub gene. In vitro studies utilizing Ang II-stimulated H9C2 cardiomyocytes were undertaken to elucidate the consequences of FLRT3 silencing on cardiomyocyte apoptosis and autophagic processes. Utilizing a combination of techniques such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting (WB), flow cytometry, dual-luciferase reporter assays and chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR) assays were conducted to decipher the intricate interactions between FLRT3, the TGF-β/SMAD4 signalling cascade and ion channel gene expression. Six genes (AADAC, DSC3, FLRT3, SYT4, PRR9 and SERTM1) demonstrated reduced expression in SVT samples, each possessing significant clinical diagnostic potential. In H9C2 cardiomyocytes, FLRT3 silencing mitigated Ang II-induced apoptosis and modulated autophagy. With increasing TGF-β concentration, there was a dose-responsive decline in FLRT3 and SCN5A expression, while both KCNIP2 and KCND2 expressions were augmented. Moreover, a direct interaction between FLRT3 and SMAD4 was observed, and inhibition of SMAD4 expression resulted in increased FLRT3 expression. Our results demonstrated that the TGF-β/SMAD4 signalling pathway plays a critical role by regulating FLRT3 expression, with potential implications for ion channel function in SVT.
Collapse
Affiliation(s)
- Yang Pang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ye Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Qingxing Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Kuan Cheng
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunlong Ling
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jun Jang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life ScienceFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenqing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
14
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
15
|
Bea-Mascato B, Gómez-Castañeda E, Sánchez-Corrales YE, Castellano S, Valverde D. Loss of the centrosomal protein ALMS1 alters lipid metabolism and the regulation of extracellular matrix-related processes. Biol Direct 2023; 18:84. [PMID: 38062477 PMCID: PMC10704752 DOI: 10.1186/s13062-023-00441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Alström syndrome (ALMS) is a rare autosomal recessive disease that is associated with mutations in ALMS1 gene. The main clinical manifestations of ALMS are retinal dystrophy, obesity, type 2 diabetes mellitus, dilated cardiomyopathy and multi-organ fibrosis, characteristic in kidneys and liver. Depletion of the protein encoded by ALMS1 has been associated with the alteration of different processes regulated via the primary cilium, such as the NOTCH or TGF-β signalling pathways. However, the cellular impact of these deregulated pathways in the absence of ALMS1 remains unknown. METHODS In this study, we integrated RNA-seq and proteomic analysis to determine the gene expression profile of hTERT-BJ-5ta ALMS1 knockout fibroblasts after TGF-β stimulation. In addition, we studied alterations in cross-signalling between the TGF-β pathway and the AKT pathway in this cell line. RESULTS We found that ALMS1 depletion affects the TGF-β pathway and its cross-signalling with other pathways such as PI3K/AKT, EGFR1 or p53. In addition, alterations associated with ALMS1 depletion clustered around the processes of extracellular matrix regulation and lipid metabolism in both the transcriptome and proteome. By studying the enriched pathways of common genes differentially expressed in the transcriptome and proteome, collagen fibril organisation, β-oxidation of fatty acids and eicosanoid metabolism emerged as key processes altered by the absence of ALMS1. Finally, an overactivation of the AKT pathway was determined in the absence of ALMS1 that could be explained by a decrease in PTEN gene expression. CONCLUSION ALMS1 deficiency disrupts cross-signalling between the TGF-β pathway and other dependent pathways in hTERT-BJ-5ta cells. Furthermore, altered cross-signalling impacts the regulation of extracellular matrix-related processes and fatty acid metabolism, and leads to over-activation of the AKT pathway.
Collapse
Affiliation(s)
- Brais Bea-Mascato
- CINBIO Facultad de Biología, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, Vigo, 36310, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Eduardo Gómez-Castañeda
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Yara E Sánchez-Corrales
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Zayed Centre for Research into Rare Disease in Children, UCL Genomics, University College London, London, UK
| | - Diana Valverde
- CINBIO Facultad de Biología, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, Vigo, 36310, Spain.
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
16
|
Özdemir S, Aydın Ş, Laçin BB, Arslan H. Identification and characterization of long non-coding RNA (lncRNA) in cypermethrin and chlorpyrifos exposed zebrafish (Danio rerio) brain. CHEMOSPHERE 2023; 344:140324. [PMID: 37778644 DOI: 10.1016/j.chemosphere.2023.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Pesticides, such as cypermethrin (CYP) and chlorpyrifos (CPF), are widely used around the world and are known to cause toxicological effects in the brains of fish and other non-target organisms. Long non-coding RNAs (LncRNAs) are a new class of non-coding RNAs that are highly expressed in the brain and play crucial roles in brain function by regulating gene expression. Many studies have investigated the toxic effects of CYP and CPF on the brain. However, no study has been conducted on the relationship between LncRNAs and the toxicity caused by these chemicals. Therefore, this study aimed to determine changes in the lncRNA expression profile in the brains of fish exposed to CYP and CPF. Out of a total of 482 lncRNAs that were differentially expressed between control and CPF groups, 53 were found to be up-regulated, and 429 were down-regulated. Similarly, among the 200 lncRNAs differentially expressed between the control and CYP groups, 71 were up-regulated, and 129 were down-regulated. Additionally, 268 differentially expressed lncRNAs were identified between CYP and CPF groups, with 240 being up-regulated and the rest being down-regulated. In addition, LncRNAs expressed from fish brains exposed to CYP and CPF were found to regulate multiple signaling pathways, including MAPK, FoxO, PPAR, TGF-β, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Batuhan Laçin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Harun Arslan
- Atatürk University, Faculty of Fisheries, Department of Basic Science, Erzurum, Turkey
| |
Collapse
|
17
|
Franco-Valls H, Tusquets-Uxó E, Sala L, Val M, Peña R, Iaconcig A, Villarino Á, Jiménez-Arriola M, Massó P, Trincado JL, Eyras E, Muro AF, Otero J, García de Herreros A, Baulida J. Formation of an invasion-permissive matrix requires TGFβ/SNAIL1-regulated alternative splicing of fibronectin. Breast Cancer Res 2023; 25:143. [PMID: 37964360 PMCID: PMC10647173 DOI: 10.1186/s13058-023-01736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFβ, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFβ target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFβ-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix that does not sustain TGFβ-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.
Collapse
Affiliation(s)
- Héctor Franco-Valls
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Elsa Tusquets-Uxó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
| | - Laura Sala
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- National Institutes of Health: Intramural Research Program, Bethesda, MD, USA
| | - Maria Val
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Vall Hebron Institute of Research, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Álvaro Villarino
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Martín Jiménez-Arriola
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Pere Massó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Juan L Trincado
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Eduardo Eyras
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Baulida
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
19
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
20
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Rodriguez Calleja L, Lavaud M, Tesfaye R, Brounais-Le-Royer B, Baud’huin M, Georges S, Lamoureux F, Verrecchia F, Ory B. The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway. Cancers (Basel) 2022; 14:cancers14235948. [PMID: 36497429 PMCID: PMC9741383 DOI: 10.3390/cancers14235948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73's pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy.
Collapse
|
22
|
dos Santos Bronel BA, Anauate AC, Maquigussa E, Boim MA, da Silva Novaes A. Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β. Sci Rep 2022; 12:15626. [PMID: 36115882 PMCID: PMC9482652 DOI: 10.1038/s41598-022-19548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard technique for gene expression analysis, but the choice of quantitative reference genes (housekeeping genes, HKG) remains challenging. Identify the best HKG is essential for estimating the expression level of target genes. Therefore, the aim of this study was to determine the best HKG for an in vitro model with mouse mesangial cells (MMCs) stimulated with 5 ng/mL of TGF-β. Five candidates HKG were selected: Actb, Hprt, Gapdh, 18S and Ppia. After quantitative expression, the best combination of these genes was analyzed in silico using six software programs. To validate the results, the best genes were used to normalize the expression levels of fibronectin, vimentin and α-SMA. In silico analysis revealed that Ppia, Gapdh and 18S were the most stable genes between the groups. GenEX software and Spearman's correlation determined Ppia and Gapdh as the best HKG pair, and validation of the HKG by normalizing fibronectin, vimentin and α-SMA were consistent with results from the literature. Our results established the combination of Ppia and Gapdh as the best HKG pair for gene expression analysis by RT-PCR in this in vitro model using MMCs treated with TGF-β.
Collapse
|
23
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
24
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
TGF-β/SMAD Pathway Is Modulated by miR-26b-5p: Another Piece in the Puzzle of Chronic Lymphocytic Leukemia Progression. Cancers (Basel) 2022; 14:cancers14071676. [PMID: 35406446 PMCID: PMC8997107 DOI: 10.3390/cancers14071676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TGF-β is a key immunoregulatory pathway that can limit the proliferation of B-lymphocytes. Chronic lymphocytic leukemia (CLL) has been historically conceptualized as a neoplasm characterized by accumulation of mature B cells escaping programmed cell death and undergoing cell-cycle arrest in the G0/G1 phase. However, new evidence indicates that tumor expansion is in fact a dynamic process in which cell proliferation also plays an important role. In general, cancers progress by the emergence of subclones with genomic aberrations distinct from the initial tumor. Often, these subclones are selected for advantages in cell survival and/or growth. Here, we provide novel evidence to explain, at least in part, the origins of CLL progression in a subgroup of patients with a poor clinical outcome. In this cohort, the immunoregulatory pathway TGF-β/SMAD is modulated by miR-26b-5p and the impairment of this axis bypasses cell cycle arrest in CLL cells facilitating disease progression. Abstract Clinical and molecular heterogeneity are hallmarks of chronic lymphocytic leukemia (CLL), a neoplasm characterized by accumulation of mature and clonal long-lived CD5 + B-lymphocytes. Mutational status of the IgHV gene of leukemic clones is a powerful prognostic tool in CLL, and it is well established that unmutated CLLs (U-CLLs) have worse evolution than mutated cases. Nevertheless, progression and treatment requirement of patients can evolve independently from the mutational status. Microenvironment signaling or epigenetic changes partially explain this different behavior. Thus, we think that detailed characterization of the miRNAs landscape from patients with different clinical evolution could facilitate the understanding of this heterogeneity. Since miRNAs are key players in leukemia pathogenesis and evolution, we aim to better characterize different CLL behaviors by comparing the miRNome of clinically progressive U-CLLs vs. stable U-CLLs. Our data show up-regulation of miR-26b-5p, miR-106b-5p, and miR-142-5p in progressive cases and indicate a key role for miR-26b-5p during CLL progression. Specifically, up-regulation of miR-26b-5p in CLL cells blocks TGF-β/SMAD pathway by down-modulation of SMAD-4, resulting in lower expression of p21−Cip1 kinase inhibitor and higher expression of c-Myc oncogene. This work describes a new molecular mechanism linking CLL progression with TGF-β modulation and proposes an alternative strategy to explore in CLL therapy.
Collapse
|
26
|
Yang R, Li Y, Wang H, Qin T, Yin X, Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. MOLECULAR BIOMEDICINE 2022; 3:8. [PMID: 35243562 PMCID: PMC8894518 DOI: 10.1186/s43556-022-00071-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hormone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-specific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted therapies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summarize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
Collapse
Affiliation(s)
- Ruoning Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.,Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Hang Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Taolin Qin
- West China Hospital, West China Medical School Sichuan University, Chengdu, PR, China
| | - Xiaomeng Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.
| |
Collapse
|
27
|
Wang K, Zhang M, Zhao S, Xie Z, Zhang Y, Liu J, Zhang Y, Yang X, Wu N. Mutational spectrum of syndromic genes in sporadic brain arteriovenous malformation. Chin Neurosurg J 2022; 8:4. [PMID: 35209959 PMCID: PMC8867132 DOI: 10.1186/s41016-022-00270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain arteriovenous malformations (BAVMs) are abnormal vessels that are apt to rupture, causing life-threatening intracranial hemorrhage (ICH). The estimated prevalence of BAVMs is 0.05% among otherwise healthy individuals. In this study, we aim to investigate the mutational spectrum of syndromic genes in sporadic BAVM. Methods We recruited a cohort of 150 patients with BAVM and performed whole-exome sequencing on their peripheral blood DNA. To explore the mutational spectrum of syndromic genes in sporadic brain arteriovenous malformation, we selected six genes according to the Online Mendelian Inheritance in Man (OMIM) and literature. All variants in the six candidate genes were extracted and underwent filtering for qualifying variants. Results There are a total of four patients with rare variants in hereditary hemorrhagic telangiectasia-related genes. In addition, we identified two patients have the variant of RASA1 gene in our database, which are also rare mutations that are absent from population databases. However, we did not find any patients with GNAQ mutations in our database. Conclusions In conclusion, we demonstrated that variants in syndromic vascular malformations play important roles in the etiology of sporadic BAVM.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Zhixin Xie
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
28
|
Zhao S, Zhang Y, Hallgrimsdottir S, Zuo Y, Li X, Batkovskyte D, Liu S, Lindelöf H, Wang S, Hammarsjö A, Yang Y, Ye Y, Wang L, Yan Z, Lin J, Yu C, Chen Z, Niu Y, Wang H, Zhao Z, Liu P, Qiu G, Posey JE, Wu Z, Lupski JR, Micule I, Anderlid BM, Voss U, Sulander D, Kuchinskaya E, Nordgren A, Nilsson O, Zhang TJ, Grigelioniene G, Wu N. Expanding the mutation and phenotype spectrum of MYH3-associated skeletal disorders. NPJ Genom Med 2022; 7:11. [PMID: 35169139 PMCID: PMC8847563 DOI: 10.1038/s41525-021-00273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-β signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-β signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-β signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sigrun Hallgrimsdottir
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sen Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Hillevi Lindelöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongyu Ye
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zihui Yan
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Departments of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ieva Micule
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, Vienibas gatve 45, Riga, LV-1004, Latvia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dennis Sulander
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden.,School of Medical Sciences, Örebro University and Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China.
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, Lin S, Pu L, Wang Z, Huang W. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-dependent Recycling of TβRI. Am J Respir Cell Mol Biol 2021; 66:158-170. [PMID: 34705621 DOI: 10.1165/rcmb.2021-0257oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. Asporin (ASPN), a member of the small leucine-rich proteoglycan (SLRP) family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models and the role of ASPN in TGF-β/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TβRI and TβRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-β/Smad signaling and myofibroblast differentiation by regulating the stability of TβRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-β/Smad signaling by suppressing recycling of TβRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TβRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Cardiac Surgery, Guangzhou, China
| | - Xiaofan Lai
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Lu Yang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Fang Ye
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Chanyan Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Yuan Qiu
- Sun Yat-Sen University, 26469, Center for stem cell biology and tissue engineering, Guangzhou, China
| | - Sijia Lin
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Lvya Pu
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Zhongxing Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Wenqi Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China;
| |
Collapse
|
30
|
Wang J, Lai X, Yao S, Chen H, Cai J, Luo Y, Wang Y, Qiu Y, Huang Y, Wei X, Wang B, Lu Q, Guan Y, Wang T, Li S, Xiang AP. Nestin promotes pulmonary fibrosis via facilitating recycling of TGF-β receptor I. Eur Respir J 2021; 59:13993003.03721-2020. [PMID: 34625478 PMCID: PMC9068978 DOI: 10.1183/13993003.03721-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2021] [Indexed: 12/03/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. Methods Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-β/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TβRI, TβRI endocytosis and TβRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. Results We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-β signalling by suppressing recycling of TβRI to the cell surface and that Rab11 was required for the ability of nestin to promote TβRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. Conclusion Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TβRI and shed new light on pulmonary fibrosis treatment. Nestin regulates the vesicular trafficking system by promoting Rab11-dependent recycling of TβRI and thereby contributes to the progression of pulmonary fibrosis. Precise targeting of nestin may represent a potential therapeutic strategy for IPF.https://bit.ly/3zO75c3
Collapse
Affiliation(s)
- Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.,These authors contributed equally to this work
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Senyu Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Hainan Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Boyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Nagavally RR, Sunilkumar S, Akhtar M, Trombetta LD, Ford SM. Chrysin Ameliorates Cyclosporine-A-Induced Renal Fibrosis by Inhibiting TGF-β 1-Induced Epithelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms221910252. [PMID: 34638597 PMCID: PMC8508845 DOI: 10.3390/ijms221910252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/27/2023] Open
Abstract
Cyclosporine A (CsA) is a nephrotoxicant that causes fibrosis via induction of epithelial-mesenchymal transition (EMT). The flavonoid chrysin has been reported to have anti-fibrotic activity and inhibit signaling pathways that are activated during EMT. This study investigated the nephroprotective role of chrysin in the prevention of CsA-induced renal fibrosis and elucidated a mechanism of inhibition against CsA-induced EMT in proximal tubule cells. Treatment with chrysin prevented CsA-induced renal dysfunction in Sprague Dawley rats measured by blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Chrysin inhibited CsA-induced tubulointerstitial fibrosis, characterized by reduced tubular damage and collagen deposition. In vitro, chrysin significantly inhibited EMT in LLC-PK1 cells, evidenced by inhibition of cell migration, decreased collagen expression, reduced presence of mesenchymal markers and elevated epithelial junction proteins. Furthermore, chrysin co-treatment diminished CsA-induced TGF-β1 signaling pathways, decreasing Smad 3 phosphorylation which lead to a subsequent reduction in Snail expression. Chrysin also inhibited activation of the Akt/ GSK-3β pathway. Inhibition of both pathways diminished the cytosolic accumulation of β-catenin, a known trigger for EMT. In conclusion, flavonoids such as chrysin offer protection against CsA-induced renal dysfunction and interstitial fibrosis. Chrysin was shown to inhibit CsA-induced TGF-β1-dependent EMT in proximal tubule cells by modulation of Smad-dependent and independent signaling pathways.
Collapse
Affiliation(s)
- Rohan Reddy Nagavally
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (R.R.N.); (S.S.); (M.A.); (L.D.T.)
- Viatris Inc., 1000 Mylan Blvd, Canonsburg, PA 15317, USA
| | - Siddharth Sunilkumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (R.R.N.); (S.S.); (M.A.); (L.D.T.)
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mumtaz Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (R.R.N.); (S.S.); (M.A.); (L.D.T.)
| | - Louis D. Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (R.R.N.); (S.S.); (M.A.); (L.D.T.)
| | - Sue M. Ford
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (R.R.N.); (S.S.); (M.A.); (L.D.T.)
- Correspondence: ; Tel.: +1-71-8990-6220
| |
Collapse
|
32
|
QiShenYiQi Pill Improves Myocardial Hypertrophy Caused by Pressure Overload in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536723. [PMID: 34221074 PMCID: PMC8225423 DOI: 10.1155/2021/5536723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
Pressure-overloaded myocardial hypertrophy is an independent risk factor for various cardiovascular diseases (CVDs), such as heart failure (HF), arrhythmia, and even sudden death. It is reported that QiShenYiQi pill (QSYQ) is widely used in the treatment of CVDs and can prevent pathological hypertrophy of myocardium, but its specific mechanism is still unclear. In this study, a rat model of myocardial hypertrophy was established through the pressure overload caused by abdominal aortic constriction in Wistar rats. The rats were randomly divided into model group, valsartan group, and QSYQ group, and sham-operated animals served as the control group. At the 4 and 8 weeks of intervention, the general morphology of the heart, myocardial collagen content, collagen volume factor (CVF), collagen type I, collagen type III, myocardial pathological changes, and the expression of ANP, β-MHC, TGF-β1, and CTGF were analyzed, respectively, in order to explore the possible effect of QSYQ on the mechanism of myocardial hypertrophy. We observed that QSYQ could effectively improve myocardial hypertrophy in pressure-overloaded rats, which was related to the regulatory mechanism of TGF-β1 and CTGF.
Collapse
|
33
|
Abstract
Hepatitis D virus (HDV) is a small, defective RNA virus that depends on hepatitis B virus (HBV) for virion assembly and transmission. It replicates within the nucleus of hepatocytes and interacts with several cellular proteins. Chronic hepatitis D is a severe and progressive disease, leading to cirrhosis in up to 80% of cases. A high proportion of patients die of liver decompensation or hepatocellular carcinoma (HCC), but the lack of large prospective studies has made it difficult to precisely define the rate of these long-term complications. In particular, the question of whether HDV is an oncogenic virus has been a matter of debate. Studies conducted over the past decade provided evidence that HDV is associated with a significantly higher risk of developing HCC compared to HBV monoinfection. However, the mechanisms whereby HDV promotes liver cancer remain elusive. Recent data have demonstrated that the molecular profile of HCC-HDV is unique and distinct from that of HBV-HCC, with an enrichment of upregulated genes involved in cell-cycle/DNA replication, and DNA damage and repair, which point to genome instability as an important mechanism of HDV hepatocarcinogenesis. These data suggest that HBV and HDV promote carcinogenesis by distinct molecular mechanisms despite the obligatory dependence of HDV on HBV.
Collapse
|
34
|
De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021; 5:e2000168. [PMID: 33852183 PMCID: PMC8717409 DOI: 10.1002/adbi.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a complex multisystem disease with the highest case-specific mortality among all autoimmune rheumatic diseases, yet without any available curative therapy. Therefore, the development of novel therapeutic antifibrotic strategies that effectively decrease skin and organ fibrosis is needed. Existing animal models are cost-intensive, laborious and do not recapitulate the full spectrum of the disease and thus commonly fail to predict human efficacy. Advanced in vitro models, which closely mimic critical aspects of the pathology, have emerged as valuable platforms to investigate novel pharmaceutical therapies for the treatment of SSc. This review focuses on recent advancements in the development of SSc in vitro models, sheds light onto biological (e.g., growth factors, cytokines, coculture systems), biochemical (e.g., hypoxia, reactive oxygen species) and biophysical (e.g., stiffness, topography, dimensionality) cues that have been utilized for the in vitro recapitulation of the SSc microenvironment, and highlights future perspectives for effective drug discovery and validation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
| | - Benjamin D Korman
- Prof. B. D. Korman, Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Astrid Jüngel
- Prof. A. Jüngel, Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, 8008, Switzerland
- Prof. A. Jüngel, Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, 8008, Switzerland
| | - Karin Wuertz-Kozak
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
- Prof. K. Wuertz-Kozak, Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, 81547, Germany
| |
Collapse
|
35
|
Ding J, Li HY, Zhang L, Zhou Y, Wu J. Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells 2021; 10:cells10010123. [PMID: 33440657 PMCID: PMC7826706 DOI: 10.3390/cells10010123] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (Hh) signaling is a classic morphogen in controlling embryonic development and tissue repairing. Aberrant activation of Hh signaling has been well documented in liver cancer, including hepatoblastoma, hepatocellular carcinoma (HCC) and cholangiocarcinoma. The present review aims to update the current understanding on how abnormal Hh signaling molecules modulate initiation, progression, drug resistance and metastasis of HCC. The latest relevant literature was reviewed with our recent findings to provide an overview regarding the molecular interplay and clinical relevance of the Hh signaling in HCC management. Hh signaling molecules are involved in the transformation of pre-carcinogenic lesions to malignant features in chronic liver injury, such as nonalcoholic steatohepatitis. Activation of GLI target genes, such as ABCC1 and TAP1, is responsible for drug resistance in hepatoma cells, with a CD133−/EpCAM− surface molecular profile, and GLI1 and truncated GLI1 account for the metastatic feature of the hepatoma cells, with upregulation of matrix metalloproteinases. A novel bioassay for the Sonic Hh ligand in tissue specimens may assist HCC diagnosis with negative α-fetoprotein and predict early microvascular invasion. In-depth exploration of the Hh signaling deepens our understanding of its molecular modulation in HCC initiation, drug sensitivity and metastasis, and guides precise management of HCC on an individual basis.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Yuan Zhou
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-215-423-7705; Fax: +86-216-422-7201
| |
Collapse
|
36
|
Lv X, Zhang J, Zhang J, Guan W, Ren W, Liu Y, Xu G. A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells. Onco Targets Ther 2021; 14:187-198. [PMID: 33447060 PMCID: PMC7802777 DOI: 10.2147/ott.s282367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) and the transforming growth factor-β (TGF-β) signaling pathway play important roles in colorectal tumorigenesis and progress. However, the underlying regulatory mechanisms between NAMPT and TGF-β signaling in colorectal cancer (CRC) remain poorly understood. METHODS Public data were extracted from the Oncomine database and the PrognoScan database to investigate the mRNA expression and the prognostic value of NAMPT, respectively, in CRC. Western blot tests were performed to detect Smad2, Smad3, p-Smad2, p-Smad3, Smad4 expression in CRC cells transfected with human NAMPT-siRNA or NAMPT-overexpressing plasmid. TGF-β1 concentrations in culture supernatants were assayed using ELISA kits. The effect of TGF-β1 on NAMPT expression was evaluated by quantitative real-time PCR and Western blot. The dual-luciferase reporter assay was employed to confirm the binding of miR-1-3p to NAMPT 3'-UTR. Subsequently, NAMPT levels in HCT116 cells transfected with the mimics and inhibitors of miR-1-3p were detected by quantitative real-time PCR and Western blot. RESULTS NAMPT was overexpressed in human CRC and was correlated with short overall survival. NAMPT increased the protein expression levels of components in the TGF-β signaling pathway including Smad2, Smad3, and Smad4. Moreover, NAMPT promoted TGF-β1 secretion. Intriguingly, the TGF-β1 treatment down-regulated NAMPT expression at mRNA and protein levels in CRC cells which were partly through the up-regulation of miR-1-3p that directly bound to the NAMPT 3'-UTR. These outcomes demonstrated that NAMPT was a downstream target of miR-1-3p and there was a negative association between NAMPT and miR-1-3p in CRC. CONCLUSION There is a negative feedback loop between NAMPT and the TGF-β signaling pathway in CRC cells, providing new insight into the mechanism underlying the regulatory pathways in CRC.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jun Zhang
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Weifang Ren
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yujuan Liu
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
37
|
Wu D, Zhao B, Song Y, Chi X, Fu H, Guan T, Zhang L, Yang X, Hu K, Huang R, Jin X, Miao QR, Shao S. Nogo-B receptor is required for stabilizing TGF-β type I receptor and promotes the TGF-β1-induced epithelial-to-mesenchymal transition of non-small cell lung cancer. J Cancer 2021; 12:717-725. [PMID: 33403029 PMCID: PMC7778533 DOI: 10.7150/jca.50483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background and Objective: Metastasis is the leading cause of death in patients with advanced non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) is a crucial event in the metastasis of NSCLC. Our previous works demonstrated that NgBR promoted EMT in NSCLC. However, the molecular mechanism was unclear. Methods: TGF-β1 was used to induce EMT process of NSCLC cells. The biological functions of NgBR in promoting TGF-β1-induced NSCLC metastasis were studied by gain- and loss-of-function assays both in vitro and in vivo. The underlying mechanisms were studied using molecular biology assays. Results: We found that knockdown of NgBR inhibited TGF-β1-induced cell migration and invasion in NSCLC cells. In contrast, NgBR overexpression promoted TGF-β1-induced EMT of A549 cells. Mechanically, we found that knockdown of NgBR facilitated ubiquitination and degradation of TβRI, leading to downregulation of TβRI expression in NSCLC cells. Moreover, we confirmed a positive correlation between NgBR and TβRI in NSCLC tissues. Conclusions: Our findings provide a novel role of NgBR in modulating TGF-β1-induced EMT and propose NgBR as a new therapeutic target for treating NSCLC patients.
Collapse
Affiliation(s)
- Donghua Wu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese. Academy of Sciences, Dalian 116023, China
| | - Yang Song
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xinming Chi
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Hailu Fu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Tiantong Guan
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Liyuan Zhang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xueguang Yang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Ke Hu
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Rong Huang
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaomeng Jin
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Shujuan Shao
- Key Laboratory of Proteomics of Liaoning Province, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
38
|
D'Urso M, Kurniawan NA. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol 2020; 8:609653. [PMID: 33425874 PMCID: PMC7793682 DOI: 10.3389/fbioe.2020.609653] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are cells present throughout the human body that are primarily responsible for the production and maintenance of the extracellular matrix (ECM) within the tissues. They have the capability to modify the mechanical properties of the ECM within the tissue and transition into myofibroblasts, a cell type that is associated with the development of fibrotic tissue through an acute increase of cell density and protein deposition. This transition from fibroblast to myofibroblast-a well-known cellular hallmark of the pathological state of tissues-and the environmental stimuli that can induce this transition have received a lot of attention, for example in the contexts of asthma and cardiac fibrosis. Recent efforts in understanding how cells sense their physical environment at the micro- and nano-scales have ushered in a new appreciation that the substrates on which the cells adhere provide not only passive influence, but also active stimulus that can affect fibroblast activation. These studies suggest that mechanical interactions at the cell-substrate interface play a key role in regulating this phenotype transition by changing the mechanical and morphological properties of the cells. Here, we briefly summarize the reported chemical and physical cues regulating fibroblast phenotype. We then argue that a better understanding of how cells mechanically interact with the substrate (mechanosensing) and how this influences cell behaviors (mechanotransduction) using well-defined platforms that decouple the physical stimuli from the chemical ones can provide a powerful tool to control the balance between physiological tissue regeneration and pathological fibrotic response.
Collapse
Affiliation(s)
- Mirko D'Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
39
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis. Cell Signal 2020; 77:109826. [PMID: 33160018 DOI: 10.1016/j.cellsig.2020.109826] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-βs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.
Collapse
Affiliation(s)
- Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
41
|
Papoutsidakis A, Giatagana EM, Berdiaki A, Spyridaki I, Spandidos DA, Tsatsakis A, Tzanakakis GN, Nikitovic D. Lumican mediates HTB94 chondrosarcoma cell growth via an IGF‑IR/Erk1/2 axis. Int J Oncol 2020; 57:791-803. [PMID: 32705211 PMCID: PMC7384848 DOI: 10.3892/ijo.2020.5094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor characterized by the production of a modified cartilage-type extracellular matrix (ECM). In the present study, the expression levels of the small leucine-rich proteoglycans (SLRPs), decorin, biglycan and lumican, were examined in the HTB94 human chondrosarcoma cell line. HTB94 cells were found to express and secrete the 3 SLRP members. RT-qPCR and western blot analysis demonstrated that lumican was the most abundantly secreted SLRP, whereas decorin and biglycan expression levels were low. The utilization of short interfering RNA specific for the decorin, biglycan, and lumican genes resulted in the efficient downregulation of the respective mRNA levels (P≤0.001). The growth of the HTB94 cells was stimulated by lumican (P≤0.001), whereas their migration and adhesion were not affected (P=NS). By contrast, these cellular functions were not sensitive to a decrease in low endogenous levels of decorin and biglycan. Lumicandeficiency significantly inhibited both basal and insulin-like growth factor I (IGF-I)-induced HTB94 cell growth (P≤0.001 andP≤0.01, respectively). These effects were executed through the insulin-like growth factor I receptor (IGF-IR), whose activation was markedly attenuated (P≤0.01) in lumican-deficient HTB94 cells. The downregulation of lumican induced the substantial inhibition of extracellular regulated kinase (ERK1/2) activation (P≤ 0.01), indicating that ERK1/2 is a necessary component of lumican/IGF-IR-mediated HTB94 cell proliferation. Moreover, the lumican-deficient cells exhibit increased mRNA levels of p53 (P≤0.05), suggesting that lumican facilitates HTB94 cell growth through an IGF-IR/ERK1/2/p53 signaling cascade. On the whole, the findings of the present study demonstrate that endogenous lumican is a novel regulator of HTB94 cell growth.
Collapse
Affiliation(s)
- Antonis Papoutsidakis
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini Maria Giatagana
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
42
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
43
|
Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH, Leof EB. IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J 2020; 34:5363-5388. [PMID: 32067272 PMCID: PMC7136152 DOI: 10.1096/fj.201901719rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Pathogenic fibrotic diseases, including idiopathic pulmonary fibrosis (IPF), have some of the worst prognoses and affect millions of people worldwide. With unclear etiology and minimally effective therapies, two-thirds of IPF patients die within 2-5 years from this progressive interstitial lung disease. Transforming Growth Factor Beta (TGFβ) and insulin-like growth factor-1 (IGF-1) are known to promote fibrosis; however, myofibroblast specific upregulation of IGF-1 in the initiation and progression of TGFβ-induced fibrogenesis and IPF have remained unexplored. To address this, the current study (1) documents the upregulation of IGF-1 via TGFβ in myofibroblasts and fibrotic lung tissue, as well as its correlation with decreased pulmonary function in advanced IPF; (2) identifies IGF-1's C1 promoter as mediating the increase in IGF-1 transcription by TGFβ in pulmonary fibroblasts; (3) determines that SMAD2 and mTOR signaling are required for TGFβ-dependent Igf-1 expression in myofibroblasts; (4) demonstrates IGF-1R activation is essential to support TGFβ-driven profibrotic myofibroblast functions and excessive wound healing; and (5) establishes the effectiveness of slowing the progression of murine lung fibrosis with the IGF-1R inhibitor OSI-906. These findings expand our knowledge of IGF-1's role as a novel fibrotic-switch, bringing us one step closer to understanding the complex biological mechanisms responsible for fibrotic diseases and developing effective therapies.
Collapse
Affiliation(s)
- Danielle M. Hernandez
- Mayo Clinic Graduate School of Biomedical Sciences, Biochemistry & Molecular Biology Department, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Neurosurgery, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Edward B. Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Abo-Zaid MA, Shaheen ES, Ismail AH. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J Food Biochem 2020; 44:e13219. [PMID: 32215945 DOI: 10.1111/jfbc.13219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Cirrhosis is a chronic liver disease. The present work aimed to evaluate the regulatory immune effect of curcumin in hepatic cirrhosis induced by carbon tetrachloride (CCl4) injections in experimental rats' model. Chronic liver fibrosis was induced in experiment animals by recurrent injections of CCl4 for more than 5 weeks. They were divided into five groups: first group was injected with normal saline, second group with CCl4, third, fourth, and fifth groups were injected with CCl4 (intraperitoneal injection) at dose 3 ml/kg, two times weekly for 6 weeks supplemented with the administration of curcumin with concentrations 250, 200, and 150 mg/kg. Immune response was analyzed to different treatments. Interleukin 10 (IL-10), pro-inflammatory cytokines TNF-α, TGF-1β, and liver histopathological examinations were conducted. The results showed that estimations of IL-10 concentrations were significantly increased in curcumin groups compared with CCl4 group, whereas TNF-α and TGF-1β levels were significantly decreased comparing with CCl4 group. The histopathological examinations for liver tissues showed that curcumin treated groups have almost retained the normal structure of liver tissues. In conclusion, curcumin inhibited hepatic fibrosis and liver fibrogenesis with regulation of the immune system mechanism against invader chemical toxicity. PRACTICAL APPLICATIONS: Curcumin is well documented for its medicinal properties, commonly used as a spice. Our work has thus demonstrated its effectiveness as an immunomodulatory agent. Practically, clinical studies have suggested that curcumin displays a diverse and powerful array of pharmacological effects in nearly all of the human body's major organ systems. These are: antidiabetes, anti-inflammatory, anticancer, antiaging, antioxidant, antibacterial infection, hepatoprotective, neurodegenerative, and cardiovascular effects.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Emad S Shaheen
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
45
|
Ruan Q, Wang H, Burke LJ, Bridle KR, Li X, Zhao CX, Crawford DHG, Roberts MS, Liang X. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int J Cancer 2020; 147:1519-1527. [PMID: 32010970 DOI: 10.1002/ijc.32899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary tumor in the liver and is a leading cause of cancer-related death worldwide. Activated hepatic stellate cells (HSCs) are key components of the HCC microenvironment and play an important role in the onset and progression of HCC through the secretion of growth factors and cytokines. Current treatment modalities that include chemotherapy, radiotherapy and ablation are able to activate HSCs and remodel the tumor microenvironment. Growing evidence has demonstrated that the complex interaction between activated HSCs and tumor cells can facilitate cancer chemoresistance and metastasis. Therefore, therapeutic targeting of activated HSCs has emerged as a promising strategy to improve treatment outcomes for HCC. This review summarizes the molecular mechanisms of HSC activation triggered by treatment modalities, the function of activated HSCs in HCC, as well as the crosstalk between tumor cells and activated HSCs. Pathways of activated HSC reduction are discussed, including inhibition, apoptosis, and reversion to the inactivated state. Finally, we outline the progress and challenges of therapeutic approaches targeting activated HSCs in the development of HCC treatment.
Collapse
Affiliation(s)
- Qi Ruan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Leslie J Burke
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kim R Bridle
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 672] [Impact Index Per Article: 134.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
47
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
48
|
Kou X, Sun Y, Li S, Bian W, Liu Z, Zhang D, Jiang J. Pharmacology Study of the Multiple Angiogenesis Inhibitor RC28-E on Anti-Fibrosis in a Chemically Induced Lung Injury Model. Biomolecules 2019; 9:biom9110644. [PMID: 31652997 PMCID: PMC6920960 DOI: 10.3390/biom9110644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Disease-related injury in any organ triggers a complex cascade of cellular and molecular responses that culminate in tissue fibrosis, inflammation, and angiogenesis simultaneously. Multiple cell angiogenesis is an essential part of the tissue damage response, which is involved in fibrosis development. RC28-E is a novel recombinant dual decoy receptor lgG1 Fc-fusion protein that can block vascular endothelial growth factor (VEGFA), platelet-derived growth factor (PDGF), and fibroblast growth factor-2 (FGF-2) simultaneously. This protein has stepped into clinical trials (NCT03777254) for the treatment of pathological neovascularization-related diseases. Here, we report on the role of RC28-E during anti-fibrosis and its potential multitarget function in regulating fibrosis. Methods: A bleomycin-induced pulmonary fibrosis C57BL/6 mouse model was established. Hematoxylin and eosin staining (HE) and Masson staining (Masson’s) were performed to evaluate the pulmonary fibrosis based on the scoring from, Ashcroft score. Fibrosis related factors and inflammatory cytokines including HYP, α-SMA, procollagen, ICAM, IL-6, IL-1, and TNF-α were also determined at the protein and mRNA levels to characterize the fibrosis. Both mRNA and protein levels of VEGF, FGF, and transforming growth factor (TGF)-β were detected by quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) analysis, respectively. Pulmonary fibrosis and related cytokines were re-evaluated in vivo after 3 doses of RC28-E (5 mg/kg, 15 mg/kg, and 50 mg/kg, ip. Tiw × 9) in comparison with a mono-target antagonist treatment (VEGF or FGF blocking). RC28-E attenuated the activation of TGF-β induced fibroblasts in vitro. Expression levels of α-SMA and collagen I, as well as proliferation and migration, were determined with the human skin fibroblast cell line Detroit 551 and primary murine pulmonary fibroblast cells. The mechanism of RC28-E via the TGF-β/Smad pathway was also investigated. Results: RC28-E exhibits significant anti-fibrosis effects on Idiopathic pulmonary fibrosis (IPF) in vivo. Moreover, TGF-β induced fibroblast activation in vitro via the inhibition of the TGF-β downstream Smad pathway, thus providing potential therapeutics for clinical disease-related fibrosis-like IPF as well as chemotherapy-induced fibrosis in cancer therapy.
Collapse
Affiliation(s)
- Xiangying Kou
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Yeying Sun
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Shenjun Li
- RemeGen Co., Ltd., Yantai 264006, China.
| | - Weihua Bian
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Zhihao Liu
- RemeGen Co., Ltd., Yantai 264006, China.
| | - Daolai Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai 256603, China.
| |
Collapse
|
49
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
50
|
Hanna A, Frangogiannis NG. The Role of the TGF-β Superfamily in Myocardial Infarction. Front Cardiovasc Med 2019; 6:140. [PMID: 31620450 PMCID: PMC6760019 DOI: 10.3389/fcvm.2019.00140] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
The members of the transforming growth factor β (TGF-β) superfamily are essential regulators of cell differentiation, phenotype and function, and have been implicated in the pathogenesis of many diseases. Myocardial infarction is associated with induction of several members of the superfamily, including TGF-β1, TGF-β2, TGF-β3, bone morphogenetic protein (BMP)-2, BMP-4, BMP-10, growth differentiation factor (GDF)-8, GDF-11 and activin A. This manuscript reviews our current knowledge on the patterns and mechanisms of regulation and activation of TGF-β superfamily members in the infarcted heart, and discusses their cellular actions and downstream signaling mechanisms. In the infarcted heart, TGF-β isoforms modulate cardiomyocyte survival and hypertrophic responses, critically regulate immune cell function, activate fibroblasts, and stimulate a matrix-preserving program. BMP subfamily members have been suggested to exert both pro- and anti-inflammatory actions and may regulate fibrosis. Members of the GDF subfamily may also modulate survival and hypertrophy of cardiomyocytes and regulate inflammation. Important actions of TGF-β superfamily members may be mediated through activation of Smad-dependent or non-Smad pathways. The critical role of TGF-β signaling cascades in cardiac repair, remodeling, fibrosis, and regeneration may suggest attractive therapeutic targets for myocardial infarction patients. However, the pleiotropic, cell-specific, and context-dependent actions of TGF-β superfamily members pose major challenges in therapeutic translation.
Collapse
Affiliation(s)
- Anis Hanna
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|