1
|
Wang P, Lin J, Zheng X, Xu X. RNase P: Beyond Precursor tRNA Processing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae016. [PMID: 38862431 PMCID: PMC12016569 DOI: 10.1093/gpbjnl/qzae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Juntao Lin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangyang Zheng
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine, Dehua Hospital, Dehua 362500, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Yan B, Liu Y, Chen YC, Liu F. External Guide Sequence Effectively Suppresses the Gene Expression and Replication of Herpes Simplex Virus 2. Molecules 2024; 29:2052. [PMID: 38731543 PMCID: PMC11085068 DOI: 10.3390/molecules29092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a promising nucleic acid-based gene targeting approach for gene expression knock-down and modulation. The RNase P-EGS strategy is unique as an EGS can be designed to basepair any mRNA sequence and recruit intracellular RNase P for hydrolysis of the target mRNA. In this study, we provide the first direct evidence that the RNase P-based approach effectively blocks the gene expression and replication of herpes simplex virus 2 (HSV-2), the causative agent of genital herpes. We constructed EGSs to target the mRNA encoding HSV-2 single-stranded DNA binding protein ICP8, which is essential for viral DNA genome replication and growth. In HSV-2 infected cells expressing a functional EGS, ICP8 levels were reduced by 85%, and viral growth decreased by 3000 folds. On the contrary, ICP8 expression and viral growth exhibited no substantial differences between cells expressing no EGS and those expressing a disabled EGS with mutations precluding RNase P recognition. The anti-ICP8 EGS is specific in targeting ICP8 because it only affects ICP8 expression but does not affect the expression of the other viral immediate-early and early genes examined. This study shows the effective and specific anti-HSV-2 activity of the RNase P-EGS approach and demonstrates the potential of EGS RNAs for anti-HSV-2 applications.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zhou B, Wan F, Lei KX, Lan P, Wu J, Lei M. Coevolution of RNA and protein subunits in RNase P and RNase MRP, two RNA processing enzymes. J Biol Chem 2024; 300:105729. [PMID: 38336296 PMCID: PMC10966300 DOI: 10.1016/j.jbc.2024.105729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.
Collapse
Affiliation(s)
- Bin Zhou
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Kevin X Lei
- Shanghai High School International Division, Shanghai, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Shanghai, China; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yan B, Liu Y, Chen YC, Liu F. A RNase P Ribozyme Inhibits Gene Expression and Replication of Hepatitis B Virus in Cultured Cells. Microorganisms 2023; 11:microorganisms11030654. [PMID: 36985227 PMCID: PMC10058342 DOI: 10.3390/microorganisms11030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hepatitis B virus (HBV), an international public health concern, is a leading viral cause of liver disease, such as hepatocellular carcinoma. Sequence-specific ribozymes derived from ribonuclease P (RNase P) catalytic RNA are being explored for gene targeting applications. In this study, we engineered an active RNase P ribozyme, M1-S-A, targeting the overlapping region of HBV S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA), all deemed essential for viral infection. Ribozyme M1-S-A cleaved the S mRNA sequence efficiently in vitro. We studied the effect of RNase P ribozyme on HBV gene expression and replication using the human hepatocyte HepG2.2.15 culture model that harbors an HBV genome and supports HBV replication. In these cultured cells, the expression of M1-S-A resulted in a reduction of more than 80% in both HBV RNA and protein levels and an inhibition of about 300-fold in the capsid-associated HBV DNA levels when compared to the cells that did not express any ribozymes. In control experiments, cells expressing an inactive control ribozyme displayed little impact on HBV RNA and protein levels, and on capsid-associated viral DNA levels. Our study signifies that RNase P ribozyme can suppress HBV gene expression and replication, implying the promise of RNase P ribozymes for anti-HBV therapy.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- Correspondence: ; Tel.: +1-(510)-643-2436; Fax: +1-(510)-643-9955
| |
Collapse
|
5
|
Lan P, Zhou B, Tan M, Li S, Cao M, Wu J, Lei M. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science 2020; 369:656-663. [PMID: 32586950 DOI: 10.1126/science.abc0149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Ribonuclease (RNase) MRP is a conserved eukaryotic ribonucleoprotein complex that plays essential roles in precursor ribosomal RNA (pre-rRNA) processing and cell cycle regulation. In contrast to RNase P, which selectively cleaves transfer RNA-like substrates, it has remained a mystery how RNase MRP recognizes its diverse substrates. To address this question, we determined cryo-electron microscopy structures of Saccharomyces cerevisiae RNase MRP alone and in complex with a fragment of pre-rRNA. These structures and the results of biochemical studies reveal that coevolution of both protein and RNA subunits has transformed RNase MRP into a distinct ribonuclease that processes single-stranded RNAs by recognizing a short, loosely defined consensus sequence. This broad substrate specificity suggests that RNase MRP may have myriad yet unrecognized substrates that could play important roles in various cellular contexts.
Collapse
Affiliation(s)
- Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Bin Zhou
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Wan F, Wang Q, Tan J, Tan M, Chen J, Shi S, Lan P, Wu J, Lei M. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Nat Commun 2019; 10:2617. [PMID: 31197137 PMCID: PMC6565675 DOI: 10.1038/s41467-019-10496-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential ribozyme responsible for tRNA 5′ maturation. Here we report the cryo-EM structures of Methanocaldococcus jannaschii (Mja) RNase P holoenzyme alone and in complex with a tRNA substrate at resolutions of 4.6 Å and 4.3 Å, respectively. The structures reveal that the subunits of MjaRNase P are strung together to organize the holoenzyme in a dimeric conformation required for efficient catalysis. The structures also show that archaeal RNase P is a functional chimera of bacterial and eukaryal RNase Ps that possesses bacterial-like two RNA-based anchors and a eukaryal-like protein-aided stabilization mechanism. The 3′-RCCA sequence of tRNA, which is a key recognition element for bacterial RNase P, is dispensable for tRNA recognition by MjaRNase P. The overall organization of MjaRNase P, particularly within the active site, is similar to those of bacterial and eukaryal RNase Ps, suggesting a universal catalytic mechanism for all RNase Ps. Ribonulease P is a conserved ribozyme present in all kingdoms of life that is involved in the 5′ maturation step of tRNAs. Here the authors determine the structure of an archaeal RNase P holoenzyme that reveals how archaeal RNase P recognizes its tRNA substrate and suggest a conserved catalytic mechanism amongst RNase Ps despite structural variability.
Collapse
Affiliation(s)
- Futang Wan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Jing Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Shaohua Shi
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Pengfei Lan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200125, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Deng Q, Liu Y, Li X, Yan B, Sun X, Tang W, Trang P, Yang Z, Gong H, Wang Y, Lu J, Chen J, Xia C, Xing X, Lu S, Liu F. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA (NEW YORK, N.Y.) 2019; 25:645-655. [PMID: 30803999 PMCID: PMC6467005 DOI: 10.1261/rna.069682.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 05/08/2023]
Abstract
External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.
Collapse
MESH Headings
- Base Pairing
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cytomegalovirus/genetics
- Cytomegalovirus/metabolism
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation, Viral
- Gene Targeting/methods
- Genetic Engineering/methods
- Host-Pathogen Interactions/genetics
- Humans
- Molecular Targeted Therapy
- Neuroglia/metabolism
- Neuroglia/virology
- Nucleic Acid Conformation
- Primary Cell Culture
- RNA Cleavage
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- Qiudi Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, California 94720, USA
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bin Yan
- School of Public Health, University of California, Berkeley, California 94720, USA
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Wei Tang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Hao Gong
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Yu Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Jie Lu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Klemm BP, Karasik A, Kaitany KJ, Shanmuganathan A, Henley MJ, Thelen AZ, Dewar AJL, Jackson ND, Koutmos M, Fierke CA. Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P. RNA (NEW YORK, N.Y.) 2017; 23:1860-1873. [PMID: 28874505 PMCID: PMC5689006 DOI: 10.1261/rna.061457.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/31/2017] [Indexed: 05/06/2023]
Abstract
Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Matthew J Henley
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam Z Thelen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Allison J L Dewar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathaniel D Jackson
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Li W, Sheng J, Xu M, Vu GP, Yang Z, Liu Y, Sun X, Trang P, Lu S, Liu F. Inhibition of Murine Cytomegalovirus Infection in Animals by RNase P-Associated External Guide Sequences. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:322-332. [PMID: 29246310 PMCID: PMC5684469 DOI: 10.1016/j.omtn.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.
Collapse
Affiliation(s)
- Wei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mengqiong Xu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhu Yang
- Jiangsu Affynigen Biotechnolgies, Inc., Taizhou, Jiangsu 225300, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, St. George's University, Grenada, West Indies; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Phong Trang
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Liu J, Shao L, Trang P, Yang Z, Reeves M, Sun X, Vu GP, Wang Y, Li H, Zheng C, Lu S, Liu F. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences. Sci Rep 2016; 6:27068. [PMID: 27279482 PMCID: PMC4899697 DOI: 10.1038/srep27068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/06/2016] [Indexed: 02/01/2023] Open
Abstract
An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu 225300, China
| | - Michael Reeves
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Xu Sun
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu 225300, China
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongjian Li
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- School of Public Health, University of California, Berkeley, CA 94720, USA
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
11
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
12
|
Newhart A, Powers SL, Shastrula PK, Sierra I, Joo LM, Hayden JE, Cohen AR, Janicki SM. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition. Mol Biol Cell 2016; 27:1154-69. [PMID: 26842893 PMCID: PMC4814222 DOI: 10.1091/mbc.e15-02-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022] Open
Abstract
RNase P protein subunits Rpp29, POP1, and Rpp21 interact with histone H3.3 upstream of nucleosome deposition, suggesting that a variant of this enzyme regulates H3.3 function. Rpp29 knockdown increases H3.3 chromatin incorporation, suggesting that it represses H3.3 nucleosome deposition, which has important implications for epigenetic regulation. In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Sara Lawrence Powers
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Prashanth Krishna Shastrula
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104 Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104
| | - Isabel Sierra
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Lucy M Joo
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - James E Hayden
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| | - Andrew R Cohen
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104
| | - Susan M Janicki
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
13
|
Lechner M, Rossmanith W, Hartmann RK, Thölken C, Gutmann B, Giegé P, Gobert A. Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya. Mol Biol Evol 2015; 32:3186-93. [PMID: 26341299 DOI: 10.1093/molbev/msv187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase P is the endonuclease that removes 5' leader sequences from tRNA precursors. In Eukarya, separate RNase P activities exist in the nucleus and mitochondria/plastids. Although all RNase P enzymes catalyze the same reaction, the different architectures found in Eukarya range from ribonucleoprotein (RNP) enzymes with a catalytic RNA and up to 10 protein subunits to single-subunit protein-only RNase P (PRORP) enzymes. Here, analysis of the phylogenetic distribution of RNP and PRORP enzymes in Eukarya revealed 1) a wealth of novel P RNAs in previously unexplored phylogenetic branches and 2) that PRORP enzymes are more widespread than previously appreciated, found in four of the five eukaryal supergroups, in the nuclei and/or organelles. Intriguingly, the occurrence of RNP RNase P and PRORP seems mutually exclusive in genetic compartments of modern Eukarya. Our comparative analysis provides a global picture of the evolution and diversification of RNase P throughout Eukarya.
Collapse
Affiliation(s)
- Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Walter Rossmanith
- Zentrum für Anatomie & Zellbiologie, Medizinische Universität Wien, Wien, Austria
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Clemens Thölken
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Bernard Gutmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| | - Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du CNRS, Strasbourg, France
| |
Collapse
|
14
|
Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. RNA (NEW YORK, N.Y.) 2015; 21:1591-605. [PMID: 26135751 PMCID: PMC4536320 DOI: 10.1261/rna.049007.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 05/06/2023]
Abstract
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins. Viruses 2015; 7:3345-60. [PMID: 26114473 PMCID: PMC4517104 DOI: 10.3390/v7072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.
Collapse
|
16
|
Weber C, Hartig A, Hartmann RK, Rossmanith W. Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms. PLoS Genet 2014; 10:e1004506. [PMID: 25101763 PMCID: PMC4125048 DOI: 10.1371/journal.pgen.1004506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 11/22/2022] Open
Abstract
The RNase P family is a diverse group of endonucleases responsible for the removal of 5′ extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. Many biocatalysts apparently evolved independently more than once, leading to structurally unrelated macromolecules catalyzing the same biochemical reaction. The RNase P enzyme family is an exceptional case of this phenomenon called convergent evolution. RNase P enzymes use not only unrelated, but chemically distinct macromolecules, either RNA or protein, to catalyze a specific step in the biogenesis of transfer RNAs, the ubiquitous adaptor molecules in protein synthesis. However, this fundamental difference in the identity of the actual catalyst, together with a broad variation in structural complexity of the diverse forms of RNase P, cast doubts on their functional equivalence. Here we compared two of the structurally most extreme variants of RNase P by replacing the yeast nuclear enzyme, a 10-subunit RNA-protein complex, with a single-protein from plants representing the apparently simplest form of RNase P. Surprisingly, the viability and fitness of these RNase P-swapped yeasts and their molecular analyses demonstrated the full functional exchangeability of the highly dissimilar enzymes. The RNase P family, with its combination of structural diversity and functional uniformity, thus not only truly represents an extraordinary case of convergent evolution, but also demonstrates that increased structural complexity does not necessarily entail broadened functionality, but may rather be the result of “neutral” evolutionary mechanisms.
Collapse
Affiliation(s)
- Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Hartig
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Roland K. Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Yang Z, Vu GP, Qian H, Chen YC, Wang Y, Reeves M, Zen K, Liu F. Engineered RNase P ribozymes effectively inhibit human cytomegalovirus gene expression and replication. Viruses 2014; 6:2376-91. [PMID: 24932966 PMCID: PMC4074932 DOI: 10.3390/v6062376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
RNase P ribozyme can be engineered to be a sequence-specific gene-targeting agent with promising application in both basic research and clinical settings. By using an in vitro selection system, we have previously generated RNase P ribozyme variants that have better catalytic activity in cleaving an mRNA sequence than the wild type ribozyme. In this study, one of the variants was used to target the mRNA encoding human cytomegalovirus (HCMV) essential transcription factor immediate-early protein 2 (IE2). The variant was able to cleave IE2 mRNA in vitro 50-fold better than the wild type ribozyme. A reduction of about 98% in IE2 expression and a reduction of 3500-fold in viral production was observed in HCMV-infected cells expressing the variant compared to a 75% reduction in IE2 expression and a 100-fold reduction in viral production in cells expressing the ribozyme derived from the wild type sequence. These results suggest that ribozyme variants that are selected to be highly active in vitro are also more effective in inhibiting the expression of their targets in cultured cells. Our study demonstrates that RNase P ribozyme variants are efficient in reducing HCMV gene expression and growth and are potentially useful for anti-viral therapeutic application.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Hua Qian
- Department of Gynecology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, China.
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China.
| | - Michael Reeves
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Ke Zen
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Jiang X, Sunkara N, Lu S, Liu F. Directing RNase P-mediated cleavage of target mRNAs by engineered external guide sequences in cultured cells. Methods Mol Biol 2014; 1103:45-56. [PMID: 24318885 PMCID: PMC4066411 DOI: 10.1007/978-1-62703-730-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (termed as EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. In previous studies, by using an in vitro selection procedure, we have successfully generated EGS variants that are complementary to target mRNAs, and these variants exhibit higher efficiency in directing human RNase P to cleave the target mRNAs than those derived from nature RNAs in vitro. This chapter describes the procedure of using engineered EGSs for in vitro trans-cleavage of target viral mRNAs in cultured cells. Detailed information is focused on (1) generation and in vitro cleavage assay of the customized EGS variants and (2) stable expression of EGS and evaluation of its activity in inhibition of viral gene expression and growth in cultured cells. These methods should provide general guidelines for using engineered EGS to direct RNase P-mediated cleavage of target mRNAs in cultured cells.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Public Health, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
19
|
Zhang Z, Vu GP, Gong H, Xia C, Chen YC, Liu F, Wu J, Lu S. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells. PLoS One 2013; 8:e65268. [PMID: 23776459 PMCID: PMC3680410 DOI: 10.1371/journal.pone.0065268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 01/12/2023] Open
Abstract
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
20
|
Zeng W, Chen YC, Bai Y, Trang P, Vu GP, Lu S, Wu J, Liu F. Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme. PLoS One 2012; 7:e51855. [PMID: 23300569 PMCID: PMC3530568 DOI: 10.1371/journal.pone.0051855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G(83) -> U(83) and G(340) -> A(340)) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.
Collapse
Affiliation(s)
- Wenbo Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yong Bai
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail: (FL); (JW); (SL)
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| |
Collapse
|
21
|
Jiang X, Chen YC, Gong H, Trang P, Lu S, Liu F. Ribonuclease P-mediated inhibition of human cytomegalovirus gene expression and replication induced by engineered external guide sequences. RNA Biol 2012; 9:1186-95. [PMID: 23018778 PMCID: PMC3579886 DOI: 10.4161/rna.21724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
External guide sequences (EGSs) are RNA molecules that can bind to a target mRNA and direct ribonuclease P (RNase P), a tRNA processing enzyme, for specific cleavage of the target mRNA. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the mRNAs coding for human cytomegalovirus (HCMV) capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. The EGS variant was about 40-fold more active in directing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of about 98% and 75% in CSP/assemblin gene expression and a reduction of 7000- and 250-fold in viral growth were observed in HCMV-infected cells that expressed the variant and the tRNA-derived EGS, respectively. Our study shows that the EGS variant is more effective in blocking HCMV gene expression and growth than the tRNA-derived EGS. Moreover, these results demonstrate the utility of highly active EGS RNA variants in gene targeting applications including anti-HCMV therapy.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Public Health; University of California; Berkeley, CA USA
- School of Life Sciences; Nanjing University; Nanjing, Jiangsu China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| | - Hao Gong
- School of Public Health; University of California; Berkeley, CA USA
| | - Phong Trang
- School of Public Health; University of California; Berkeley, CA USA
| | - Sangwei Lu
- School of Public Health; University of California; Berkeley, CA USA
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| | - Fenyong Liu
- School of Public Health; University of California; Berkeley, CA USA
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| |
Collapse
|
22
|
A two-piece derivative of a group I intron RNA as a platform for designing self-assembling RNA templates to promote Peptide ligation. J Nucleic Acids 2012; 2012:305867. [PMID: 22966423 PMCID: PMC3432377 DOI: 10.1155/2012/305867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022] Open
Abstract
Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA) as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.
Collapse
|
23
|
Wolin SL, Sim S, Chen X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet 2012; 28:306-13. [PMID: 22475369 DOI: 10.1016/j.tig.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Nuclear noncoding RNA (ncRNA) surveillance pathways play key roles in shaping the steady-state transcriptomes of eukaryotic cells. Defective and unneeded ncRNAs are primarily degraded by exoribonucleases that rely on protein cofactors to identify these RNAs. Recent studies have begun to elucidate both the mechanisms by which these cofactors recognize aberrant RNAs and the features that mark RNAs for degradation. One crucial RNA determinant is the presence of an accessible end; in addition, the failure of aberrant RNAs to fold into compact structures and assemble with specific binding proteins probably also contributes to their recognition and subsequent degradation. To date, ncRNA surveillance has been most extensively studied in budding yeast. However, mammalian cells possess nucleases and cofactors that have no known yeast counterparts, indicating that RNA surveillance pathways may be more complex in metazoans. Importantly, there is evidence that the failure of ncRNA surveillance pathways contributes to human disease.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
24
|
Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA (NEW YORK, N.Y.) 2012; 18:720-8. [PMID: 22332141 PMCID: PMC3312559 DOI: 10.1261/rna.030874.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
25
|
Marvin MC, Walker SC, Fierke CA, Engelke DR. Binding and cleavage of unstructured RNA by nuclear RNase P. RNA (NEW YORK, N.Y.) 2011; 17:1429-40. [PMID: 21665997 PMCID: PMC3153968 DOI: 10.1261/rna.2633611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 04/28/2011] [Indexed: 05/25/2023]
Abstract
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - Carol A. Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| |
Collapse
|
26
|
Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé JJ, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA. A boost for the emerging field of RNA nanotechnology. ACS NANO 2011; 5:3405-18. [PMID: 21604810 PMCID: PMC3102291 DOI: 10.1021/nn200989r] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries.
Collapse
Affiliation(s)
- Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Farzin Haque
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - L. Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Jean-Jacques Toulmé
- Université Bordeaux Segalen, INSERM U869, Bâtiment 3A 1er étage, 33076 Bordeaux Cedex, France
| | - Hervé Isambert
- Institut Curie, Research Division, CNRS UMR 168, 11 rue P. & M. Curie, 75005 Paris, France
| | - Peixuan Guo
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Scott A. Tenenbaum
- College of Nanoscale Science & Engineering, University at Albany-SUNY, Albany, New York 12203, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
27
|
Olson PD, Kuechenmeister LJ, Anderson KL, Daily S, Beenken KE, Roux CM, Reniere ML, Lewis TL, Weiss WJ, Pulse M, Nguyen P, Simecka JW, Morrison JM, Sayood K, Asojo OA, Smeltzer MS, Skaar EP, Dunman PM. Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog 2011; 7:e1001287. [PMID: 21347352 PMCID: PMC3037362 DOI: 10.1371/journal.ppat.1001287] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 01/10/2011] [Indexed: 11/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA, catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA) and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle for RNA catabolism-based antimicrobial therapy. The last decade has witnessed a mass downsizing in pharmaceutical antibiotic drug discovery initiatives. This has posed a major healthcare issue that will likely worsen with time; antibiotic resistant bacteria continue to emerge while advances in new therapeutic options languish. In the current body of work, we show that agents that limit bacterial RNA turnover have potential as a new class of antibiotics. More specifically, our findings indicate the essential bacterial protein, RnpA, exhibits in vitro ribonuclease activity and either alone and/or as a member of the RNase P holoenzyme, may contribute to the RNA degradation properties of Staphylococcus aureus, a predominant cause of hospital and community bacterial infections. Accordingly, using high throughput screening we identified small molecule inhibitors of RnpA's in vitro RNA degradation activity. One of these agents, RNPA1000, was shown to limit S. aureus mRNA turnover and growth. RNPA1000 also limited growth of other important Gram-positive bacterial pathogens, exhibited antimicrobial efficacy against biofilm associated S. aureus and protected against the S. aureus pathogenesis in an animal model of infection. When taken together, our results illustrate that components of the bacterial RNA degradation machinery have utility as antibiotic drug-discovery targets and that RNPA1000 may represent a progenitor of this new class of antibiotics.
Collapse
Affiliation(s)
- Patrick D. Olson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa J. Kuechenmeister
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kelsi L. Anderson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sonja Daily
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Christelle M. Roux
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michelle L. Reniere
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Tami L. Lewis
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - William J. Weiss
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Mark Pulse
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Phung Nguyen
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jerry W. Simecka
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - John M. Morrison
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Khalid Sayood
- Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Oluwatoyin A. Asojo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Eric P. Skaar
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Paul M. Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Collins LJ. The RNA infrastructure: an introduction to ncRNA networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:1-19. [PMID: 21915779 DOI: 10.1007/978-1-4614-0332-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.
Collapse
Affiliation(s)
- Lesley J Collins
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
29
|
Abstract
Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiomedical Center, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
30
|
Jiang X, Bai Y, Rider P, Kim K, Zhang CY, Lu S, Liu F. Engineered external guide sequences effectively block viral gene expression and replication in cultured cells. J Biol Chem 2010; 286:322-30. [PMID: 20980254 DOI: 10.1074/jbc.m110.158857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. We have previously used an in vitro selection procedure to generate EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the mRNA encoding the protease of human cytomegalovirus (HCMV), which is essential for viral capsid formation and replication. The EGS variant was about 35-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 95% in the expression of the protease and a reduction of 4,000-fold in viral growth were observed in HCMV-infected cells that expressed the EGS variant, whereas a reduction of 80% in the protease expression and an inhibition of 150-fold in viral growth were detected in cells that expressed the EGS derived from a natural tRNA sequence. No significant reduction in viral protease expression or viral growth was observed in cells that either did not express an EGS or produced a "disabled" EGS, which carried nucleotide mutations that precluded RNase P recognition. Our results provide direct evidence that engineered EGS variant is highly effective in blocking HCMV expression and growth by targeting the viral protease. Furthermore, these results demonstrate the utility of engineered EGS RNAs in gene targeting applications, including the inhibition of HCMV infection by blocking the expression of virus-encoded essential proteins.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|