1
|
Molyneaux K, Laggner C, Brady‐Kalnay SM. A novel binding pocket in the D2 domain of protein tyrosine phosphatase mu (PTPmu) guides AI screen to identify small molecules that modulate tumour cell adhesion, growth and migration. J Cell Mol Med 2023; 27:3553-3564. [PMID: 37860940 PMCID: PMC10660673 DOI: 10.1111/jcmm.17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 10/21/2023] Open
Abstract
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.
Collapse
Affiliation(s)
- Kathleen Molyneaux
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOhioUSA
| | | | - Susann M. Brady‐Kalnay
- Department of Molecular Biology & MicrobiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Molyneaux K, Laggner C, Vincent J, Brady-Kalnay S. Small molecule antagonists of PTPmu identified by artificial intelligence-based computational screening block glioma cell migration and growth. PLoS One 2023; 18:e0288980. [PMID: 37494327 PMCID: PMC10370706 DOI: 10.1371/journal.pone.0288980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
PTPmu (PTPμ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in both homophilic cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma generating extracellular and intracellular fragments that have oncogenic activity. The intracellular fragments, in particular, are known to accumulate in the cytoplasm and nucleus where they interact with inappropriate binding partners/substrates generating signals required for glioma cell migration and growth. Thus, interfering with these fragments is an attractive therapeutic strategy. To develop agents that target these fragments, we used the AI-based AtomNetⓇ model, a drug design and discovery tool, to virtually screen molecular libraries for compounds able to target a binding pocket bordered by the wedge domain, a known regulatory motif located within the juxtamembrane portion of the protein. Seventy-four high-scoring and chemically diverse virtual hits were then screened in multiple cell-based assays for effects on glioma cell motility (scratch assays) and growth in 3D culture (sphere assays), and PTPmu-dependent adhesion (Sf9 aggregation). We identified three inhibitors (247678835, 247682206, 247678791) that affected the motility of multiple glioma cell lines (LN229, U87MG, and Gli36delta5), the growth of LN229 and Gli36 spheres, and PTPmu-dependent Sf9 aggregation. Compound 247678791 was further shown to suppress PTPmu enzymatic activity in an in vitro phosphatase assay, and 247678835 was able to inhibit the growth of human glioma tumors in mice. We propose that these three compounds are PTPmu-targeting agents with therapeutic potential for treating glioblastoma.
Collapse
Affiliation(s)
- Kathleen Molyneaux
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Jason Vincent
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Susann Brady-Kalnay
- Department of Molecular Biology & Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
3
|
Artificial Intelligence-Based Computational Screening and Functional Assays Identify Candidate Small Molecule Antagonists of PTPmu-Dependent Adhesion. Int J Mol Sci 2023; 24:ijms24054274. [PMID: 36901713 PMCID: PMC10001486 DOI: 10.3390/ijms24054274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
PTPmu (PTPµ) is a member of the receptor protein tyrosine phosphatase IIb family that participates in cell-cell adhesion and signaling. PTPmu is proteolytically downregulated in glioblastoma (glioma), and the resulting extracellular and intracellular fragments are believed to stimulate cancer cell growth and/or migration. Therefore, drugs targeting these fragments may have therapeutic potential. Here, we used the AtomNet® platform, the first deep learning neural network for drug design and discovery, to screen a molecular library of several million compounds and identified 76 candidates predicted to interact with a groove between the MAM and Ig extracellular domains required for PTPmu-mediated cell adhesion. These candidates were screened in two cell-based assays: PTPmu-dependent aggregation of Sf9 cells and a tumor growth assay where glioma cells grow in three-dimensional spheres. Four compounds inhibited PTPmu-mediated aggregation of Sf9 cells, six compounds inhibited glioma sphere formation/growth, while two priority compounds were effective in both assays. The stronger of these two compounds inhibited PTPmu aggregation in Sf9 cells and inhibited glioma sphere formation down to 25 micromolar. Additionally, this compound was able to inhibit the aggregation of beads coated with an extracellular fragment of PTPmu, directly demonstrating an interaction. This compound presents an interesting starting point for the development of PTPmu-targeting agents for treating cancer including glioblastoma.
Collapse
|
4
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
5
|
Lattanzio R, Iezzi M, Sala G, Tinari N, Falasca M, Alberti S, Buglioni S, Mottolese M, Perracchio L, Natali PG, Piantelli M. PLC-gamma-1 phosphorylation status is prognostic of metastatic risk in patients with early-stage Luminal-A and -B breast cancer subtypes. BMC Cancer 2019; 19:747. [PMID: 31362705 PMCID: PMC6668079 DOI: 10.1186/s12885-019-5949-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Phospholipase Cγ1 (PLCγ1) is highly expressed in human tumours. Our previous studies reported that both stable and inducible PLCγ1 down-regulation can inhibit formation of breast-cancer-derived experimental lung metastasis. Further, high expression of PLCγ1 and its constitutively activated forms (i.e., PLCγ1-pY1253, PLCγ1-pY783) is associated with worse clinical outcome in terms of incidence of distant metastases, but not of local relapse in T1-T2, N0 breast cancer patients. Methods In the present retrospective study, we analysed the prognostic role of PLCγ1 in early breast cancer patients stratified according to the St. Gallen criteria and to their menopausal status. PLCγ1-pY1253 and PLCγ1-pY783 protein expression levels were determined by immunohistochemistry on tissue microarrays, and were correlated with patients’ clinical data, using univariate and multivariate statistical analyses. Results In our series, the prognostic value of PLCγ1 overexpression was restricted to Luminal type tumours. From multivariate analyses, pY1253-PLCγ1High was an independent prognostic factor only in postmenopausal patients with Luminal-B tumours (hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.1–5.3; P = 0.034). Conversely, PLCγ1-pY783High was a remarkably strong risk factor (HR, 20.1; 95% CI, 2.2–178.4; P = 0.003) for pre/perimenopausal patients with Luminal-A tumours. Conclusions PLCγ1 overexpression is a strong predictive surrogate marker of development of metastases in early Luminal-A and -B breast cancer patients, being able to discriminate patients with high and low risk of metastases. Therefore, targeting the PLCγ1 pathway can be considered of potential benefit for prevention of metastatic disease. Electronic supplementary material The online version of this article (10.1186/s12885-019-5949-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy.,Department of Medicine and Aging Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Saverio Alberti
- Department of Biotechnology BIOMORF, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Simonetta Buglioni
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Pier Giorgio Natali
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Mauro Piantelli
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| |
Collapse
|
6
|
β1,6 GlcNAc branches-modified protein tyrosine phosphatase Mu attenuates its tyrosine phosphatase activity and promotes glioma cell migration through PLCγ-PKC pathways. Biochem Biophys Res Commun 2018; 505:569-577. [PMID: 30274773 DOI: 10.1016/j.bbrc.2018.09.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 02/05/2023]
Abstract
The metastatic potential of malignant tumor has been shown to be correlated with the increased expression of tri- and tetra-antennary β1,6-N-acetylglucosamine (β1,6-GlcNAc) N-glycans. In this study, We found that GnT-V expression was negatively correlated with receptor protein tyrosine phosphatase type μ(RPTPμ) in human glioma tissues. To study whether RPTPμ is a novel substance of GnT-V which further affect RPTPμ's downstream dephosphorylation function, we preform lentiviral infection with GnT-V gene to construct stably transfected GnT-V glial cell lines. We found RPTPμ undergone severer cleavage in GnT-V transfected glioma cells compare to Mock cells. RPTPμ intracellular domain fragments increased while β1,6-GlcNAc-branched N-glycans increased, in consistent with the decrease of RPTPμ's catalytic activity. The results showed that abnormal glycosylation could decrease the phosphorylation activity of PTP μ, and affect PLCγ-PKC pathways. Both protease inhibitor Furin and N-glycan biosynthesis inhibitor swainsonine could decrease cell mobility in GnT-V-U87 transfectants and other glioma cell lines. All results above suggest increased post-translational modification of RPTPμ N-glycans by GnT-V attenuates its tyrosine phosphatase activity and promotes glioma cell migration through PLCγ-PKC pathways, and that the β1,6-GlcNAc-branched N-glycans of RPTPμ play a crucial role in glioma invasivity.
Collapse
|
7
|
Zacharias M, Brcic L, Eidenhammer S, Popper H. Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer 2018; 18:717. [PMID: 29976164 PMCID: PMC6034257 DOI: 10.1186/s12885-018-4640-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels. Methods Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs. Results Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours. Conclusion Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally. Electronic supplementary material The online version of this article (10.1186/s12885-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Luka Brcic
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Helmut Popper
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria.
| |
Collapse
|
8
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
9
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
10
|
Emmanouilidi A, Lattanzio R, Sala G, Piantelli M, Falasca M. The role of phospholipase Cγ1 in breast cancer and its clinical significance. Future Oncol 2017; 13:1991-1997. [DOI: 10.2217/fon-2017-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer, the most common malignancy among women, is usually detected at an early stage and has a low risk of relapse. Nevertheless, a significant number of patients cannot be cured solely by local treatment. Distinguishing between patients who are of low risk of relapse from those who are of high risk may have important implications to improve treatment outcomes. The PLC-γ1 signaling pathway promotes many physiological processes, including cell migration and invasion. Increasing evidence shows aberrant PLC-γ1 signaling implication in carcinogenesis including breast cancer. In this review, the role of PLC-γ1 in breast cancer and its clinical implications will be discussed, as well as its potential as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rossano Lattanzio
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Marco Falasca
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga JI, Totoki Y, Chiba K, Sato-Otsubo A, Nagae G, Ishii R, Muto S, Kotani S, Watatani Y, Takeda J, Sanada M, Tanaka H, Suzuki H, Sato Y, Shiozawa Y, Yoshizato T, Yoshida K, Makishima H, Iwanaga M, Ma G, Nosaka K, Hishizawa M, Itonaga H, Imaizumi Y, Munakata W, Ogasawara H, Sato T, Sasai K, Muramoto K, Penova M, Kawaguchi T, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Nakamaki T, Ishiyama K, Miyawaki S, Yoon SS, Tobinai K, Miyazaki Y, Takaori-Kondo A, Matsuda F, Takeuchi K, Nureki O, Aburatani H, Watanabe T, Shibata T, Matsuoka M, Miyano S, Shimoda K, Ogawa S. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015; 47:1304-15. [PMID: 26437031 DOI: 10.1038/ng.3415] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satsuki Muto
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosaku Watatani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Iwanaga
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Japan
| | | | - Marina Penova
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuro Kameda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Ishiyama
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Department of Internal Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Rolón-Reyes K, Kucheryavykh YV, Cubano LA, Inyushin M, Skatchkov SN, Eaton MJ, Harrison JK, Kucheryavykh LY. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS One 2015; 10:e0131059. [PMID: 26098895 PMCID: PMC4476590 DOI: 10.1371/journal.pone.0131059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.
Collapse
Affiliation(s)
- Kimberleve Rolón-Reyes
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Yuriy V. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
| | - Lilia Y. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chen J, Sun D, Chu H, Gong Z, Zhang C, Gong B, Li Y, Li N, Jiang L. Screening of differential microRNA expression in gastric signet ring cell carcinoma and gastric adenocarcinoma and target gene prediction. Oncol Rep 2015; 33:2963-2971. [PMID: 25964059 DOI: 10.3892/or.2015.3935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis after diagnosis. The expression of microRNAs has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. Distinctive expression of miRNAs in GSRCC was investigated in the present study. Samples of GSRCC were compared to that of intestinal gastric adenocarcinoma using Agilent microarray technique, and two differentially expressed miRNAs were identified, hsa-miR-665 and hsa-miR‑95. qRT-PCR verification showed downregulation of both miRNAs in signet ring cell carcinoma and upregulation in gastric adenocarcinoma, which was not consistent with the results obtained by the microarray. Target gene prediction using online databases conferred two strong candidate genes, GLI2 and PLCG1. GO/KO analysis of these two genes showed close correlations with carcinogenesis and chemoresistance. It was concluded that hsa-miR-665 and hsa-miR-95 were downregulated in GSRCC but upregulated in intestinal gastric adenocarcinoma, and the relatively differential expression of the miRNAs negatively controlling their target genes could be closely related to the high invasive metastasis and chemoresistance of GSRCC.
Collapse
Affiliation(s)
- Jian Chen
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Di Sun
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongjin Chu
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chenglin Zhang
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Benjiao Gong
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yan Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
14
|
Zhao S, Sedwick D, Wang Z. Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 2014; 34:3885-94. [PMID: 25263441 PMCID: PMC4377308 DOI: 10.1038/onc.2014.326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs.
Collapse
Affiliation(s)
- S Zhao
- 1] Division of Gastroenterology and Hepatology and Shanghai Institution of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China [2] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [3] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - D Sedwick
- 1] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA [2] Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Z Wang
- 1] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [2] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Craig SEL, Brady-Kalnay SM. Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. Semin Cell Dev Biol 2014; 37:108-18. [PMID: 25223585 DOI: 10.1016/j.semcdb.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/04/2023]
Abstract
The initial cloning of receptor protein tyrosine phosphatases (RPTPs) was met with excitement because of their hypothesized function in counterbalancing receptor tyrosine kinase signaling. In recent years, members of a subfamily of RPTPs with homophilic cell-cell adhesion capabilities, known as the R2B subfamily, have been shown to have functions beyond that of counteracting tyrosine kinase activity, by independently influencing cell signaling in their own right and by regulating cell adhesion. The R2B subfamily is composed of four members: PTPmu (PTPRM), PTPrho (PTPRT), PTPkappa (PTPRK), and PCP-2 (PTPRU). The effects of this small subfamily of RPTPs is far reaching, influencing several developmental processes and cancer. In fact, R2B RPTPs are predicted to be tumor suppressors and are among the most frequently mutated protein tyrosine phosphatases (PTPs) in cancer. Confounding these conclusions are more recent studies suggesting that proteolysis of the full-length R2B RPTPs result in oncogenic extracellular and intracellular protein fragments. This review discusses the current knowledge of the role of R2B RPTPs in development and cancer, with special detail given to the mechanisms and implications that proteolysis has on R2B RPTP function. We also touch upon the concept of exploiting R2B proteolysis to develop cancer imaging tools, and consider the effects of R2B proteolysis on axon guidance, perineural invasion and collective cell migration.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, Xiong Z, Jiang H, Zheng J, Hu Z. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis 2014; 35:1901-10. [PMID: 24876153 DOI: 10.1093/carcin/bgu123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The membrane protein tyrosine phosphatase receptor U (PTPRU) has been shown to function as a negative regulator of adhesion and proliferation in certain cancer cell types, primarily through its dephosphorylation of β-catenin and inhibition of subsequent downstream signaling. In the present study, we set out to characterize the role of PTPRU in glioma and found that, while the expression of full-length PTPRU protein is low in these tumors, a number of non-full-length PTPRU isoforms are highly expressed. Among these isoforms, one in particular is localized to the nucleus, and its expression is increased in glioma tissues in a manner that positively correlates with malignancy grade. Short hairpin RNA knockdown of endogenous PTPRU in human and rat glioma cell lines suppressed proliferation, survival, invasion, migration, adhesion and vasculogenic tube formation in vitro, as well as intracranial tumor progression in vivo. In addition, knocking down PTPRU reduced tyrosine phosphorylation (pY) and transcriptional activity of β-catenin, and we were able to specifically rescue the cell migration defect by expressing a LEF1-β-catenin fusion protein in PTPRU-depleted cells. PTPRU knockdown also led to increased tyrosine pY of the E3 ubiquitin ligase c-Cbl and to the destabilization of several focal adhesion proteins. Taken together, our findings demonstrate that endogenous PTPRU promote glioma progression through their effect on β-catenin and focal adhesion signaling.
Collapse
Affiliation(s)
- Zhichuan Zhu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongjie Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kui Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiwei Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongtao Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and
| | - Zhiqi Xiong
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zelan Hu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital, Fudan University, Shanghai 200030, China and Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
18
|
Wuchty S, Arjona D, Bauer PO. Important miRs of pathways in different tumor types. PLoS Comput Biol 2013; 9:e1002883. [PMID: 23358700 PMCID: PMC3554575 DOI: 10.1371/journal.pcbi.1002883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022] Open
Abstract
We computationally determined miRs that are significantly connected to molecular pathways by utilizing gene expression profiles in different cancer types such as glioblastomas, ovarian and breast cancers. Specifically, we assumed that the knowledge of physical interactions between miRs and genes indicated subsets of important miRs (IM) that significantly contributed to the regression of pathway-specific enrichment scores. Despite the different nature of the considered cancer types, we found strongly overlapping sets of IMs. Furthermore, IMs that were important for many pathways were enriched with literature-curated cancer and differentially expressed miRs. Such sets of IMs also coincided well with clusters of miRs that were experimentally indicated in numerous other cancer types. In particular, we focused on an overlapping set of 99 overall important miRs (OIM) that were found in glioblastomas, ovarian and breast cancers simultaneously. Notably, we observed that interactions between OIMs and leading edge genes of differentially expressed pathways were characterized by considerable changes in their expression correlations. Such gains/losses of miR and gene expression correlation indicated miR/gene pairs that may play a causal role in the underlying cancers. We assume that a network of physical interactions between miRs and genes allows us to determine miRs that influence the expression of whole pathways in different tumor types. Specifically, we represented each pathway by an enrichment score and an array of miRs counting the number of genes in the pathway a given miR can bind. Despite the different nature of the considered tumor types, we obtained a large set of overlapping miRs using a machine-learning algorithm. Such associated miRs were enriched with literature-curated cancer and differentially expressed miRs and also coincided well with clusters of miRs that were experimentally indicated in numerous other cancer types. Focusing on such sets of miRs we observed that interactions with genes in differentially expressed pathways were characterized by massive gains/losses of expression correlations. Such drastic changes of miR and gene expression correlation indicate miR/gene pairs that may play a causal role in the underlying cancers.
Collapse
Affiliation(s)
- Stefan Wuchty
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
19
|
Protein tyrosine phosphatase µ (PTP µ or PTPRM), a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis. PLoS One 2012. [PMID: 23185569 PMCID: PMC3502354 DOI: 10.1371/journal.pone.0050183] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. Design Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. Results A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. Conclusions Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.
Collapse
|
20
|
Lattanzio R, Marchisio M, La Sorda R, Tinari N, Falasca M, Alberti S, Miscia S, Ercolani C, Di Benedetto A, Perracchio L, Melucci E, Iacobelli S, Mottolese M, Natali PG, Piantelli M. Overexpression of activated phospholipase Cγ1 is a risk factor for distant metastases in T1-T2, N0 breast cancer patients undergoing adjuvant chemotherapy. Int J Cancer 2012; 132:1022-31. [PMID: 22847294 DOI: 10.1002/ijc.27751] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023]
Abstract
Phospholipase Cγ1 (PLCγ1) is highly expressed in several tumors. We have previously reported that both stable and inducible PLCγ1 down-regulation resulted in an almost complete inhibition of breast cancer-derived experimental lung metastasis formation. The aim of our study is to evaluate the association between the expression of PLCγ1 and of PLCγ1 phosphorylated at Tyr1253 (PLCγ1-pY1253) and at Tyr783 (PLCγ1-pY783) with the clinical outcome of patients with node negative, T1/T2 breast cancers. The study groups consisted of 292 (training set) and 122 (validation set) patients presenting with primary unilateral breast carcinoma (T1-T2), with no evidence of nodal involvement and distant metastases. PLCγ1, PLCγ1-pY1253 and PLCγ1-pY783 protein expression were assessed by immunohistochemistry on tissue microarrays and the results correlated with the clinical data using Kaplan-Meier curves and multivariate Cox regression analysis. Tumor cells while expressing variable proportions of cytoplasmic PLCγ1, express PLCγ1-pY1253 and PLCγ1-pY783 predominantly in the nucleus. High expression of PLCγ1, and of its activated forms, is associated with a worse clinical outcome in terms of incidence of distant metastases, and not of local relapse in T1-T2, N0 breast cancer patients undergone adjuvant chemotherapy. PLCγ1 over-expression appears to be a reliable predictive surrogate marker of development of metastases. Thus, targeting PLCγ1 pathways might represent a potential therapeutic approach for the prevention of metastatic disease in breast cancer.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Department of Biomedical Sciences, University G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
22
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
23
|
Phillips-Mason PJ, Craig SEL, Brady-Kalnay SM. Should I stay or should I go? Shedding of RPTPs in cancer cells switches signals from stabilizing cell-cell adhesion to driving cell migration. Cell Adh Migr 2011; 5:298-305. [PMID: 21785275 DOI: 10.4161/cam.5.4.16970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence, or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.
Collapse
Affiliation(s)
- Polly J Phillips-Mason
- Department of Molecular Biology and Microbiology; School of Medicine; Case Western Reserve University; Cleveland, OH USA
| | | | | |
Collapse
|