1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Li GX, Chen L, Hsiao Y, Mannan R, Zhang Y, Luo J, Petralia F, Cho H, Hosseini N, Leprevost FDV, Calinawan A, Li Y, Anand S, Dagar A, Geffen Y, Kumar-Sinha C, Chugh S, Le A, Ponce S, Guo S, Zhang C, Schnaubelt M, Al Deen NN, Chen F, Caravan W, Houston A, Hopkins A, Newton CJ, Wang X, Polasky DA, Haynes S, Yu F, Jing X, Chen S, Robles AI, Mesri M, Thiagarajan M, An E, Getz GA, Linehan WM, Hostetter G, Jewell SD, Chan DW, Wang P, Omenn GS, Mehra R, Ricketts CJ, Ding L, Chinnaiyan AM, Cieslik MP, Dhanasekaran SM, Zhang H, Nesvizhskii AI. Comprehensive proteogenomic characterization of rare kidney tumors. Cell Rep Med 2024; 5:101547. [PMID: 38703764 PMCID: PMC11148773 DOI: 10.1016/j.xcrm.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanbyul Cho
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaoming Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Gad A Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Han R, Lin C, Lu C, Wang Y, Kang J, Hu C, Dou Y, Wu D, He T, Tang H, Zheng J, Li L, He Y. Sialyltransferase ST3GAL4 confers osimertinib resistance and offers strategies to overcome resistance in non-small cell lung cancer. Cancer Lett 2024; 588:216762. [PMID: 38408602 DOI: 10.1016/j.canlet.2024.216762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.
Collapse
Affiliation(s)
- Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Chongqing University Jiangjin Hospital, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - TingTing He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Huan Tang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Novoa Díaz MB, Carriere P, Gigola G, Zwenger AO, Calvo N, Gentili C. Involvement of Met receptor pathway in aggressive behavior of colorectal cancer cells induced by parathyroid hormone-related peptide. World J Gastroenterol 2022; 28:3177-3200. [PMID: 36051345 PMCID: PMC9331538 DOI: 10.3748/wjg.v28.i26.3177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) plays a key role in the development and progression of many tumors. We found that in colorectal cancer (CRC) HCT116 cells, the binding of PTHrP to its receptor PTHR type 1 (PTHR1) activates events associated with an aggressive phenotype. In HCT116 cell xenografts, PTHrP modulates the expression of molecular markers linked to tumor progression. Empirical evidence suggests that the Met receptor is involved in the development and evolution of CRC. Based on these data, we hypothesized that the signaling pathway trigged by PTHrP could be involved in the transactivation of Met and consequently in the aggressive behavior of CRC cells.
AIM To elucidate the relationship among PTHR1, PTHrP, and Met in CRC models.
METHODS For in vitro assays, HCT116 and Caco-2 cells derived from human CRC were incubated in the absence or presence of PTHrP (1-34) (10-8 M). Where indicated, cells were pre-incubated with specific kinase inhibitors or dimethylsulfoxide, the vehicle of the inhibitors. The protein levels were evaluated by Western blot technique. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the changes in gene expression. Wound healing assay and morphological monitoring were performed to evaluate cell migration and changes related to the epithelial-mesenchymal transition (EMT), respectively. The number of viable HCT116 cells was counted by trypan blue dye exclusion test to evaluate the effects of irinotecan (CPT-11), oxaliplatin (OXA), or doxorubicin (DOXO) with or without PTHrP. For in vivo tests, HCT116 cell xenografts on 6-wk-old male N:NIH (S)_nu mice received daily intratumoral injections of PTHrP (40 μg/kg) in 100 μL phosphate-buffered saline (PBS) or the vehicle (PBS) as a control during 20 d. Humanitarian slaughter was carried out and the tumors were removed, weighed, and fixed in a 4% formaldehyde solution for subsequent treatment by immunoassays. To evaluate the expression of molecular markers in human tumor samples, we studied 23 specimens obtained from CRC patients which were treated at the Hospital Interzonal de Graves y Agudos Dr. José Penna (Bahía Blanca, Buenos Aires, Argentina) and the Hospital Provincial de Neuquén (Neuquén, Neuquén, Argentina) from January 1990 to December 2007. Seven cases with normal colorectal tissues were assigned to the control group. Tumor tissue samples and clinical histories of patients were analyzed. Paraffin-embedded blocks from primary tumors were reviewed by hematoxylin-eosin staining technique; subsequently, representative histological samples were selected from each patient. From each paraffin block, tumor sections were stained for immunohistochemical detection. The statistical significance of differences was analyzed using proper statistical analysis. The results were considered statistically significant at P < 0.05.
RESULTS By Western blot analysis and using total Met antibody, we found that PTHrP regulated Met expression in HCT116 cells but not in Caco-2 cells. In HCT116 cells, Met protein levels increased at 30 min (P < 0.01) and at 20 h (P < 0.01) whereas the levels diminished at 3 min (P < 0.05), 10 min (P < 0.01), and 1 h to 5 h (P < 0.01) of PTHrP treatment. Using an active Met antibody, we found that where the protein levels of total Met decreased (3 min, 10 min, and 60 min of PTHrP exposure), the status of phosphorylated/activated Met increased (P < 0.01) at the same time, suggesting that Met undergoes proteasomal degradation after its phosphorylation/activation by PTHrP. The increment of its protein level after these decreases (at 30 min and 20 h) suggests a modulation of Met expression by PTHrP in order to improve Met levels and this idea is supported by our observation that the cytokine increased Met mRNA levels at least at 15 min in HCT116 cells as revealed by RT-qPCR analysis (P < 0.05). We then proceeded to evaluate the signaling pathways that mediate the phosphorylation/ activation of Met induced by PTHrP in HCT116 cells. By Western blot technique, we observed that PP1, a specific inhibitor of the activation of the proto-oncogene protein tyrosine kinase Src, blocked the effect of PTHrP on Met phosphorylation (P < 0.05). Furthermore, the selective inhibition of the ERK 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) using PD98059 and the p38 MAPK using SB203580 diminished the effect of PTHrP on Met phosphorylation/activation (P < 0.05). Using SU11274, the specific inhibitor of Met activation, and trypan blue dye exclusion test, Western blot, wound healing assay, and morphological analysis with a microscope, we observed the reversal of cell events induced by PTHrP such as cell proliferation (P < 0.05), migration (P < 0.05), and the EMT program (P < 0.01) in HCT116 cells. Also, PTHrP favored the chemoresistance to CPT-11 (P < 0.001), OXA (P < 0.01), and DOXO (P < 0.01) through the Met pathway. Taken together, these findings suggest that Met activated by PTHrP participates in events associated with the aggressive phenotype of CRC cells. By immunohistochemical analysis, we found that PTHrP in HCT116 cell xenografts enhanced the protein expression of Met (0.190 ± 0.014) compared to tumors from control mice (0.110 ± 0.012; P < 0.05) and of its own receptor (2.27 ± 0.20) compared to tumors from control mice (1.98 ± 0.14; P < 0.01). Finally, assuming that the changes in the expression of PTHrP and its receptor are directly correlated, we investigated the expression of both Met and PTHR1 in biopsies of CRC patients by immunohistochemical analysis. Comparing histologically differentiated tumors with respect to those less differentiated, we found that the labeling intensity for Met and PTHR1 increased and diminished in a gradual manner, respectively (P < 0.05).
CONCLUSION PTHrP acts through the Met pathway in CRC cells and regulates Met expression in a CRC animal model. More basic and clinical studies are needed to further evaluate the PTHrP/Met relationship.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Graciela Gigola
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | | | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
5
|
Liu Y, Lan L, Li Y, Lu J, He L, Deng Y, Fei M, Lu JW, Shangguan F, Lu JP, Wang J, Wu L, Huang K, Lu B. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol 2022; 54:102366. [PMID: 35728303 PMCID: PMC9214875 DOI: 10.1016/j.redox.2022.102366] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the evidences of elevated expression of Mer tyrosine kinase (MerTK) in multiple human cancers, mechanisms underlying the oncogenic roles of MerTK in hepatocellular carcinoma (HCC) remains undefined. We explored the functional effects of MerTK and N-Glycosylated MerTK on HCC cell survival and tumor growth. Here, we show that MerTK ablation increases reactive oxygen species (ROS) production and promotes the switching from glycolytic metabolism to oxidative phosphorylation in HCC cells, thus suppressing HCC cell proliferation and tumor growth. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote oncogenic transformation. Moreover, we observed that nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. Pathologically, tissue microarray (TMA) data indicate that MerTK is a pivotal prognostic factor for HCC. Our data strongly support the roles of MerTK N-glycosylation in HCC tumorigenesis and suggesting N-glycosylation inhibition as a potential HCC therapeutic strategy. MerTK promotes the switching from oxidative phosphorylation to glycolytic metabolism in HCC cells. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote HCC tumor growth. The nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. MerTK is a pivotal prognostic factor for HCC and its N-glycosylation inhibition is a potential HCC therapeutic strategy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujie Li
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Lu
- Department of Laboratory Medicine, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Lipeng He
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Deng
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Wan Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ju-Ping Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxin Wang
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Saitou A, Hasegawa Y, Fujitani N, Ariki S, Uehara Y, Hashimoto U, Saito A, Kuronuma K, Matsumoto K, Chiba H, Takahashi M. N
‐glycosylation regulates MET processing and signaling. Cancer Sci 2022; 113:1292-1304. [PMID: 35092134 PMCID: PMC8990287 DOI: 10.1111/cas.15278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
MET, the receptor for the hepatocyte growth factor (HGF), is strongly associated with resistance to tyrosine kinase inhibitors, key drugs that are used in the therapy of non–small cell lung cancer. MET contains 11 potential N‐glycosylation sites, but the site‐specific roles of these N‐glycans have not been elucidated. We report herein that these N‐glycans regulate the proteolytic processing of MET and HGF‐induced MET signaling, and that this regulation is site specific. Inhibitors of N‐glycosylation were found to suppress the processing and trafficking of endogenous MET in H1975 and EBC‐1 lung cancer cells and exogenous MET in CHO‐K1 cells. We purified the recombinant extracellular domain of human MET and determined the site‐specific N‐glycan structures and occupancy using mass spectrometry. The results indicated that most sites were fully glycosylated and that the dominant population was the complex type. To examine the effects of the deletion of N‐glycans of MET, we prepared endogenous MET knockout Flp‐In CHO cells and transfected them with a series of N‐glycan–deletion mutants of MET. The results showed that several N‐glycans are implicated in the processing of MET. The findings also suggested that the N‐glycans of the SEMA domain of MET positively regulate HGF signaling, and the N‐glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing, cell surface expression, and signaling were significantly suppressed in the case of the all‐N‐glycan–deletion mutant. The overall findings suggest that N‐glycans of MET affect the status and the function of the receptor in a site‐specific manner.
Collapse
Affiliation(s)
- Atsushi Saitou
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Naoki Fujitani
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Shigeru Ariki
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Chemistry Center for Medical Education Sapporo Medical University Japan
| | - Yasuaki Uehara
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Ukichiro Hashimoto
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation Cancer Research Institute and WPI‐Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Kanazawa Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Motoko Takahashi
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| |
Collapse
|
7
|
Xu B, Zhou L, Chen Q, Zhang J, Huang L, Wang S, Ye Z, Ren X, Cai Y, Jensen LD, Chen W, Li X, Ju R. Role of VEGFR2 in Mediating Endoplasmic Reticulum Stress Under Glucose Deprivation and Determining Cell Death, Oxidative Stress, and Inflammatory Factor Expression. Front Cell Dev Biol 2021; 9:631413. [PMID: 34222224 PMCID: PMC8249873 DOI: 10.3389/fcell.2021.631413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Retinal pigment epithelium (RPE), a postmitotic monolayer located between the neuroretina and choroid, supports the retina and is closely associated with vision loss diseases such as age-related macular degeneration (AMD) upon dysfunction. Although environmental stresses are known to play critical roles in AMD pathogenesis and the roles of other stresses have been well investigated, glucose deprivation, which can arise from choriocapillary flow voids, has yet to be fully explored. In this study, we examined the involvement of VEGFR2 in glucose deprivation-mediated cell death and the underlying mechanisms. We found that VEGFR2 levels are a determinant for RPE cell death, a critical factor for dry AMD, under glucose deprivation. RNA sequencing analysis showed that upon VEGFR2 knockdown under glucose starvation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are reduced. Consistently, VEGFR2 overexpression increased ER stress under the same condition. Although VEGFR2 was less expressed compared to EGFR1 and c-Met in RPE cells, it could elicit a higher level of ER stress induced by glucose starvation. Finally, downregulated VEGFR2 attenuated the oxidative stress and inflammatory factor expression, two downstream targets of ER stress. Our study, for the first time, has demonstrated a novel role of VEGFR2 in RPE cells under glucose deprivation, thus providing valuable insights into the mechanisms of AMD pathogenesis and suggesting that VEGFR2 might be a potential therapeutic target for AMD prevention, which may impede its progression.
Collapse
Affiliation(s)
- Bohan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qishan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhimin Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Cai
- Chengdu Aier Eye Hospital, Chengdu, China
| | - Lasse Dahl Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
9
|
Jiménez JA, Ptacek TS, Tuttle AH, Schmid RS, Moy SS, Simon JM, Zylka MJ. Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life. Mol Autism 2020; 11:74. [PMID: 33023670 PMCID: PMC7537101 DOI: 10.1186/s13229-020-00369-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chromodomain helicase DNA-binding protein 8 (Chd8) is a high-confidence risk gene for autism spectrum disorder (ASD). However, how Chd8 haploinsufficiency impairs gene expression in the brain and impacts behavior at different stages of life is unknown. METHODS We generated a mutant mouse line with an ASD-linked loss-of-function mutation in Chd8 (V986*; stop codon mutation). We examined the behavior of Chd8 mutant mice along with transcriptional changes in the cerebral cortex as a function of age, with a focus on one embryonic (E14.5) and three postnatal ages (1, 6, and 12 months). RESULTS Chd8V986*/+ mutant mice displayed macrocephaly, reduced rearing responses and reduced center time in the open field, and enhanced social novelty preference. Behavioral phenotypes were more evident in Chd8V986*/+ mutant mice at 1 year of age. Pup survival was reduced in wild-type x Chd8V986*/+ crosses when the mutant parent was female. Transcriptomic analyses indicated that pathways associated with synaptic and neuronal projections and sodium channel activity were reduced in the cortex of embryonic Chd8V986*/+ mice and then equalized relative to wild-type mice in the postnatal period. At 12 months of age, expression of genes associated with endoplasmic reticulum (ER) stress, chaperone-mediated protein folding, and the unfolded protein response (UPR) were reduced in Chd8V986*/+ mice, whereas genes associated with the c-MET signaling pathway were increased in expression. LIMITATIONS It is unclear whether the transcriptional changes observed with age in Chd8V986*/+ mice reflect a direct effect of CHD8-regulated gene expression, or if CHD8 indirectly affects the expression of UPR/ER stress genes in adult mice as a consequence of neurodevelopmental abnormalities. CONCLUSIONS Collectively, these data suggest that UPR/ER stress pathways are reduced in the cerebral cortex of aged Chd8V986*/+ mice. Our study uncovers neurodevelopmental and age-related phenotypes in Chd8V986*/+ mice and highlights the importance of controlling for age when studying Chd8 haploinsufficient mice.
Collapse
Affiliation(s)
- Jessica A Jiménez
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alex H Tuttle
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralf S Schmid
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Harada Y, Nakajima K, Suzuki T, Fukushige T, Kondo K, Seino J, Ohkawa Y, Suzuki T, Inoue H, Kanekura T, Dohmae N, Taniguchi N, Maruyama I. Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles. Cell Rep 2020; 33:108261. [DOI: 10.1016/j.celrep.2020.108261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
|
11
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene 2019; 38:1936-1950. [PMID: 30390071 PMCID: PMC6417953 DOI: 10.1038/s41388-018-0537-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ligand-dependent oligomerization of receptor tyrosine kinases (RTKs) results in their activation through highly specific conformational changes in the extracellular and intracellular receptor domains. These conformational changes are unique for each RTK subfamily, limiting cross-activation between unrelated RTKs. The proto-oncogene MET receptor tyrosine kinase overcomes these structural constraints and phosphorylates unrelated RTKs in numerous cancer cell lines. The molecular basis for these interactions is unknown. We investigated the mechanism by which MET phosphorylates the human epidermal growth factor receptor-3 (HER3 or ERBB3), a catalytically impaired RTK whose phosphorylation by MET has been described as an essential component of drug resistance to inhibitors targeting EGFR and HER2. We find that in untransformed cells, HER3 is not phosphorylated by MET in response to ligand stimulation, but rather to increasing levels of MET expression, which results in ligand-independent MET activation. Phosphorylation of HER3 by its canonical co-receptors, EGFR and HER2, is achieved by engaging an allosteric site on the HER3 kinase domain, but this site is not required when HER3 is phosphorylated by MET. We also observe that HER3 preferentially interacts with MET during its maturation along the secretory pathway, before MET is post translationally processed by cleavage within its extracellular domain. This results in accumulation of phosphorylated HER3 in the Golgi apparatus. We further show that in addition to HER3, MET phosphorylates other RTKs in the Golgi, suggesting that this mechanism is not limited to HER3 phosphorylation. These data demonstrate a link between MET overexpression and its aberrant activation in the Golgi endomembranes and suggest that non-canonical interactions between MET and other RTKs occur during maturation of receptors. Our study highlights a novel aspect of MET signaling in cancer that would not be accessible to inhibition by therapeutic antibodies.
Collapse
Affiliation(s)
- Nicole Michael Frazier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Toni Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - John D Gordan
- Division of Hematology and Oncology - University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
14
|
Romier B, Ivaldi C, Sartelet H, Heinz A, Schmelzer CEH, Garnotel R, Guillot A, Jonquet J, Bertin E, Guéant JL, Alberto JM, Bronowicki JP, Amoyel J, Hocine T, Duca L, Maurice P, Bennasroune A, Martiny L, Debelle L, Durlach V, Blaise S. Production of Elastin-Derived Peptides Contributes to the Development of Nonalcoholic Steatohepatitis. Diabetes 2018; 67:1604-1615. [PMID: 29802129 DOI: 10.2337/db17-0490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022]
Abstract
Affecting more than 30% of the Western population, nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including nonalcoholic steatohepatitis (NASH), cancer, hypertension, and atherosclerosis. Insulin resistance and obesity are described as potential causes of NAFLD. However, we surmised that factors such as extracellular matrix remodeling of large blood vessels, skin, or lungs may also participate in the progression of liver diseases. We studied the effects of elastin-derived peptides (EDPs), biomarkers of aging, on NAFLD progression. We evaluated the consequences of EDP accumulation in mice and of elastin receptor complex (ERC) activation on lipid storage in hepatocytes, inflammation, and fibrosis development. The accumulation of EDPs induces hepatic lipogenesis (i.e., SREBP1c and ACC), inflammation (i.e., Kupffer cells, IL-1β, and TGF-β), and fibrosis (collagen and elastin expression). These effects are induced by inhibition of the LKB1-AMPK pathway by ERC activation. In addition, pharmacological inhibitors of EDPs demonstrate that this EDP-driven lipogenesis and fibrosis relies on engagement of the ERC. Our data reveal a major role of EDPs in the development of NASH, and they provide new clues for understanding the relationship between NAFLD and vascular aging.
Collapse
Affiliation(s)
- Béatrice Romier
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Corinne Ivaldi
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Roselyne Garnotel
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Alexandre Guillot
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Jessica Jonquet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Eric Bertin
- Champagne Ardenne Specialized Center in Obesity, University Hospital Center, Reims, France
| | - Jean-Louis Guéant
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics and Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Marc Alberto
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Pierre Bronowicki
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Johanne Amoyel
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Thinhinane Hocine
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Debelle
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
15
|
Zhao X, Luo G, Cheng Y, Yu W, Chen R, Xiao B, Xiang Y, Feng C, Fu W, Duan C, Yao F, Xia X, Tao Q, Wei M, Dai R. Compound C induces protective autophagy in human cholangiocarcinoma cells via Akt/mTOR‐independent pathway. J Cell Biochem 2018; 119:5538-5550. [DOI: 10.1002/jcb.26723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaofang Zhao
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Guosong Luo
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Ying Cheng
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Wenjing Yu
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Run Chen
- Department of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Bin Xiao
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Yuancai Xiang
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
| | - Chunhong Feng
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Wenguang Fu
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Chunyan Duan
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Fuli Yao
- Department of Biochemistry and Molecular BiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Xianming Xia
- Department of Hepatobiliary Surgery of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuanChina
| | - Qinghua Tao
- MOE Key Laboratory of Protein SciencesTsinghua University School of Life SciencesBeijingChina
| | - Mei Wei
- Department of Liver Diseases of the Affiliated Hospital of Chinese Traditional MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Rongyang Dai
- Liver Diseases LaboratorySouthwest Medical UniversityLuzhouSichuanChina
- Department of Liver Diseases of the Affiliated Hospital of Chinese Traditional MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
16
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Jiang L, Tang Z. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in periodontal tissue remodeling of orthodontic tooth movement. Mol Med Rep 2017; 17:1499-1506. [PMID: 29138812 PMCID: PMC5780090 DOI: 10.3892/mmr.2017.8021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate the expression and regulation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathways in periodontal tissue remodeling of orthodontic tooth movement. Sprague Dawley rats with orthodontic tooth movement were generated. After tension stress for 1, 3, 5, 7 and 14 days, the protein and mRNA expression levels of ERK1/2 and p38 in periodontal tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. Primary human periodontal ligament cells (hPDLCs) were separated and characterized. Following exposure to centrifugal force for 1, 2, 6, 8 and 12 h, the protein expression levels of ERK1/2 and p38 MAPK, and the mRNA expression levels of ERK1/2, p38 and osteogenesis associated-genes [including alkaline phosphatase (ALP), osteopontin (OPN), collagen I (Col I), osteocalcin (OCN) and bone sialoprotein (BSP)] were measured. The protein expression levels of ERK1/2 and p38 MAPK in periodontal tissue and hPDLCs treated with stress were similar to those in the control groups. However, compared with the control, the phosphorylation and mRNA expression levels of the genes encoding ERK1/2 and p38 MAPK in orthodontic periodontal tissue and forced hPDLCs were elevated. These increases reached a peak at 5 days for orthodontic periodontal tissue and at 6 h for forced hPDLCs. In forced hPDLCs, the mRNA expression levels of ALP, OPN, Col I, OCN and BSP were notably and continuously upregulated in a time-dependent manner. In addition, hPDLCs were treated with the ERK1/2 inhibitor, PD098059, and the p38 MAPK inhibitor, SB203580, and the mRNA expression levels of the osteogenesis associated-genes were then measured using RT-qPCR. Following treatment with the ERK1/2 inhibitor and p38 MAPK inhibitor, the mRNA expression levels of ALP, OPN, Col I, OCN and BSP were significantly downregulated. In conclusion, ERK1/2 and p38 MAPK signaling pathways may be positively and closely associated with periodontal tissue remodeling of orthodontic tooth movement.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Tang
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Baeten J, Johnson A, Sunny S, Suresh A, Birur P, Uma K, Kademani D. Chairside molecular imaging of aberrant glycosylation in subjects with suspicious oral lesions using fluorescently labeled wheat germ agglutinin. Head Neck 2017; 40:292-301. [PMID: 28963821 DOI: 10.1002/hed.24943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant sialylation is accepted as a carcinogenic biomarker. In previous work, fluorescently labeled wheat germ agglutinin (WGA) distinguished between cancerous and normal oral biopsies. The purpose of this study was to investigate WGA-fluorescein isothiocyanate (FITC) as a point-of-care tool for detecting oral malignant and dysplastic lesions in vivo. METHODS Subject recruitment was divided into two groups: (1) the clinically normal oral mucosa group; or (2) the presence of clinically suspicious oral lesion(s) group. A WGA-FITC solution was topically applied to observable lesions or to half the subject's mouth (sagittal plane) if lesions were absent. Fluorescent molecular imaging was used to evaluate WGA-FITC localization. RESULTS Fluorescent imaging in 55 subjects demonstrated that WGA-FITC could detect histopathologically-confirmed cancerous and dysplastic lesions with high sensitivity (100% and 81%, respectively) and specificity (82%). CONCLUSION This study supports in vivo fluorescent molecular imaging of WGA-FITC to visualize aberrant sialic acid expression associated with carcinogenesis. This technique resulted in the immediate chairside detection of oral cancerous and dysplastic lesions.
Collapse
Affiliation(s)
| | | | - Sumsum Sunny
- Mazumdar Shaw Cancer Center, Narayana Health City, Bangalore, Karnataka, India.,Mazumdar Shaw Center for Translational Research, Bangalore, Karnataka, India
| | - Amritha Suresh
- Mazumdar Shaw Cancer Center, Narayana Health City, Bangalore, Karnataka, India.,Mazumdar Shaw Center for Translational Research, Bangalore, Karnataka, India.,Roswell Park Cancer Institute, Buffalo, New York
| | - Praveen Birur
- KLES Dental College, Department of Oral Medicine, Bangalore, Karnataka, India
| | - K Uma
- KLES Dental College, Department of Oral Pathology, Bangalore, Karnataka, India
| | - Deepak Kademani
- University of Minnesota, Minneapolis, Minnesota.,North Memorial Oral and Maxillofacial Surgery, Minneapolis, Minnesota
| |
Collapse
|
19
|
Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells. Sci Rep 2017; 7:41901. [PMID: 28157203 PMCID: PMC5291222 DOI: 10.1038/srep41901] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/03/2017] [Indexed: 01/04/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressive, irreversible lung disease with complex pathophysiology. Evidence of endoplasmic reticulum (ER) stress has been reported in alveolar epithelial cells (AEC) in IPF patients. Secreted mediators from bone marrow stem cells (BMSC-cm) have regenerative properties. In this study we investigate the beneficial effects of BMSC-cm on ER stress response in primary AEC and ER stressed A549 cells. We hypothesize that BMSC-cm reduces ER stress. Primary AEC isolated from IPF patients were treated with BMSC-cm. To induce ER stress A549 cells were incubated with Tunicamycin or Thapsigargin and treated with BMSC-cm, or control media. Primary IPF-AEC had high Grp78 and CHOP gene expression, which was lowered after BMSC-cm treatment. Similar results were observed in ER stressed A549 cells. Alveolar epithelial repair increased in presence of BMSC-cm in ER stressed A549 cells. Hepatocyte growth factor (HGF) was detected in biologically relevant levels in BMSC-cm. Neutralization of HGF in BMSC-cm attenuated the beneficial effects of BMSC-cm including synthesis of surfactant protein C (SP-C) in primary AEC, indicating a crucial role of HGF in ER homeostasis and alveolar epithelial repair. Our data suggest that BMSC-cm may be a potential therapeutic option for treating pulmonary fibrosis.
Collapse
|
20
|
Positive feedback loop between cancer stem cells and angiogenesis in hepatocellular carcinoma. Cancer Lett 2016; 379:213-9. [PMID: 27108065 DOI: 10.1016/j.canlet.2016.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
Anti-angiogenesis-related therapies have become the standard care for patients with advanced hepatocellular carcinoma (HCC), as HCC is a highly vascularized solid tumor. Unfortunately, only modest and limited efficacies are observed. Emerging evidence have attributed to the limited efficacy to the presence of cancer stem cells (CSCs) in the tumor. CSCs predominantly drives angiogenesis via releasing proangiogenic factors and exosomes. They have the ability to resistant intratumoral hypoxia via autophagy or by directly forming the tubular structure to obtain blood. On the other hand, the vascular niche in tumor microenvironment also releases growth factors via juxtacrine and paracrine mechanisms to support the growth of CSCs and maintain its stemness features. This positive feedback loop between angiogenesis and CSCs exists in liver tumor microenvironment that is responsible for the development and poor prognosis of HCC. In this review, we summarize recent advances in our understanding of the crosstalks between angiogenesis and CSCs, and their interactions in liver tumor microenvironment and their purpose that an effective anti-angiogenic therapy should also target CSCs for HCC treatment.
Collapse
|
21
|
Zhang J, Babic A. Regulation of the MET oncogene: molecular mechanisms. Carcinogenesis 2016; 37:345-55. [PMID: 26905592 DOI: 10.1093/carcin/bgw015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers. Its expression is regulated at multiple layers via various mechanisms. It is subject to epigenetic modifications, i.e. DNA methylation and histone acetylation. Hypomethylation and acetylation of the MET gene have been associated with its high expression in some cancers. Multiple transcription factors including Sp1 and Ets-1 govern its transcription. After its transcription, METmRNA is spliced into multiple species in the nucleus before being transported to the cytoplasm where its translation is modulated by at least 30 microRNAs and translation initiation factors, e.g. eIF4E and eIF4B. METmRNA produces a single chain pro-Met protein of 170 kDa which is cleaved into α and β chains. These two chains are bound together through disulfide bonds to form a heterodimer which undergoes either N-linked or O-linked glycosylation in the Golgi apparatus before it is properly localized in the membrane. Upon interactions with its ligand, i.e. hepatocyte growth factor (HGF), the activity of Met kinase is boosted through various phosphorylation mechanisms and the Met signal is relayed to downstream pathways. The phosphorylated Met is then internalized for subsequent degradation or recycle via proteasome, lysosome or endosome pathways. Moreover, the Met expression is subject to autoregulation and activation by other EGFRs and G-protein coupled receptors. Since deregulation of the MET gene leads to cancer and other pathological conditions, a better understanding of the MET regulation is critical for Met-targeted therapeutics.
Collapse
Affiliation(s)
- Jack Zhang
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| | - Andy Babic
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| |
Collapse
|
22
|
Kovács K, Decatur C, Toro M, Pham DG, Liu H, Jing Y, Murray TG, Lampidis TJ, Merchan JR. 2-Deoxy-Glucose Downregulates Endothelial AKT and ERK via Interference with N-Linked Glycosylation, Induction of Endoplasmic Reticulum Stress, and GSK3β Activation. Mol Cancer Ther 2015; 15:264-75. [PMID: 26637370 DOI: 10.1158/1535-7163.mct-14-0315] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Interference with endothelial cell metabolism is a promising, yet unexploited strategy for angiogenesis inhibition. We reported that the glucose analogue 2-deoxy-D-glucose (2-DG) inhibits angiogenesis at significantly lower concentrations than those required for tumor cytotoxicity. Here, we found that hypersensitivity to 2-DG in endothelial cells is not associated with enhanced drug uptake compared with tumor cells, but with time-dependent, endothelial-selective inhibition of AKT and ERK phosphorylation. Downregulation of these critical survival pathways is shown to be due to 2-DG's interference with N-linked glycosylation, leading to alterations in VEGFR2 (and downstream signaling) as well as induction of endoplasmic reticulum (ER) stress, GSK3β activation, and apoptosis. In vivo, periocular administration of 2-DG in LHBETATAG mice was associated with significant reduction of newly formed (CD105(+)) tumor capillaries, ER stress (GRP 78 expression), and endothelial apoptosis (TUNEL). These findings uniquely link N-linked glycosylation inhibition, ER stress, and ERK/AKT downregulation in endothelial cells, and provide a novel drug development strategy to overcome resistance mechanisms to currently available antiangiogenic agents.
Collapse
Affiliation(s)
- Krisztina Kovács
- Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Christina Decatur
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Marcela Toro
- Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Dien G Pham
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Huaping Liu
- Department of Cell Biology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Yuqi Jing
- Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Timothy G Murray
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jaime R Merchan
- Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, Florida.
| |
Collapse
|
23
|
Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2015; 139:2944-67. [PMID: 24779027 DOI: 10.1039/c3an02245e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
Collapse
Affiliation(s)
- S Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
24
|
Che MI, Huang J, Hung JS, Lin YC, Huang MJ, Lai HS, Hsu WM, Liang JT, Huang MC. β1, 4-N-acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells. Oncotarget 2015; 5:3673-84. [PMID: 25003232 PMCID: PMC4116512 DOI: 10.18632/oncotarget.1981] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are cancer cells characterized with tumor initiating capacity. β1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) synthesizes GalNAcβ1-4GlcNAc (LacdiNAc) which contributes to self-renewal of mouse embryonic stem cells. We previously showed that B4GALNT3 overexpression enhances colon cancer cell malignant phenotypes in vitro and in vivo. However, the role of B4GALNT3 in cancer stemness remains unclear. We found that B4GALNT3 expression was positively correlated with advanced stages and poor survival in colorectal cancer patients. Knockdown of B4GALNT3 using small interfering (si) RNAs in colon cancer cell lines (HCT116, SW480, HCT15, and HT29 cells) decreased sphere formation and the expression of stem cell markers, OCT4 and NANOG. The expression of B4GALNT3 was upregulated in colonospheres. Interestingly, we found that B4GALNT3 primarily modified N-glycans of EGFR with LacdiNAc by Wisteria floribunda agglutinin (WFA) pull down assays. B4GALNT3 knockdown suppressed EGF-induced phosphorylation of EGFR and its downstream signaling molecules. Furthermore, EGF-induced degradation of EGFR was facilitated. In addition, EGF-induced migration and invasion were significantly suppressed by B4GALNT3 knockdown. Taken together, these data suggest B4GALNT3 regulates cancer stemness and the invasive properties of colon cancer cells through modifying EGFR glycosylation and signaling. Our results provide novel insights into the role of LacdiNAc in colorectal cancer development.
Collapse
Affiliation(s)
- Mei-Ieng Che
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | - Jin-Tung Liang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 2014; 34:3744-50. [PMID: 25241896 DOI: 10.1038/onc.2014.307] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 12/21/2022]
Abstract
Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.
Collapse
|
26
|
Itkonen HM, Mills IG. N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS One 2013; 8:e65016. [PMID: 23724116 PMCID: PMC3665679 DOI: 10.1371/journal.pone.0065016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/21/2013] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer-associated deaths in men and signalling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Androgen treatment is known to affect the expression and activity of other oncogenes including receptor tyrosine kinases (RTKs). In this study we report that AR-positive prostate cancer cell-lines express 50% higher levels of enzymes in the hexosamine biosynthesis pathway (HBP) than AR-negative prostate cell-lines. HBP produces hexosamines that are used by endoplasmic reticulum and golgi enzymes to glycosylate proteins targeted to plasma-membrane and secretion. Inhibition of O-linked glycosylation by ST045849 or N-linked glycosylation with tunicamycin decreased cell viability by 20%. In addition, tunicamycin inhibited the androgen-induced expression of AR target genes KLK3 and CaMKK2 by 50%. RTKs have been shown to enhance AR activity and we used an antibody array to identify changes in the phosphorylation status of RTKs in response to androgen stimulation. Hormone treatment increased the activity of Insulin like Growth Factor 1-Receptor (IGF-1R) ten-fold and this was associated with a concomitant increase in the N-linked glycosylation of the receptor, analyzed by lectin enrichment experiments. Glycosylation is known to be important for the processing and stability of RTKs. Inhibition of N-linked glycosylation resulted in accumulation of IGF-1R pro-receptor with altered mobility as shown by immunoprecipitation. Confocal imaging revealed that androgen induced plasma-membrane localization of IGF-1R was blocked by tunicamycin. In conclusion we have established that the glycosylation of IGF-1R is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGF-1R activation in prostate cells. Achieving similar results selectively in a clinical setting will be an important challenge in the future.
Collapse
Affiliation(s)
- Harri M. Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Prevention and Department of Urology, Oslo University Hospitals, Oslo, Norway
- * E-mail:
| |
Collapse
|