1
|
Mann B, Artz N, Darawsheh R, Kram DE, Hingtgen S, Satterlee AB. Opportunities and challenges for patient-derived models of brain tumors in functional precision medicine. NPJ Precis Oncol 2025; 9:47. [PMID: 39953052 PMCID: PMC11828933 DOI: 10.1038/s41698-025-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Here, we review a growing paradigm shift from genomics-based precision medicine toward functional precision medicine, which evaluates therapeutic efficacy by directly treating living patient tumors ex vivo to better predict patient-specific responses to treatment. We discuss several classes of patient-derived models of central nervous system tumors, highlighting unique features of each. Each class of models holds promise to improve treatment selection, prolong survival, and enhance patient outcomes.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichole Artz
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rami Darawsheh
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Lombardi F, Augello FR, Artone S, Ciafarone A, Topi S, Cifone MG, Cinque B, Palumbo P. Involvement of Cyclooxygenase-2 in Establishing an Immunosuppressive Microenvironment in Tumorspheres Derived from TMZ-Resistant Glioblastoma Cell Lines and Primary Cultures. Cells 2024; 13:258. [PMID: 38334650 PMCID: PMC10854914 DOI: 10.3390/cells13030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Glioblastoma (GBM) is characterized by an immunosuppressive tumor microenvironment (TME) strictly associated with therapy resistance. Cyclooxygenase-2 (COX-2) fuels GBM proliferation, stemness, and chemoresistance. We previously reported that COX-2 upregulation induced by temozolomide (TMZ) supported chemoresistance. Also, COX-2 transfer by extracellular vesicles released by T98G promoted M2 polarization in macrophages, whereas COX-2 inhibition counteracted these effects. Here, we investigated the COX-2 role in the stemness potential and modulation of the GBM immunosuppressive microenvironment. The presence of macrophages U937 within tumorspheres derived from GBM cell lines and primary cultures exposed to celecoxib (COX-2 inhibitor) with or without TMZ was studied by confocal microscopy. M2 polarization was analyzed by TGFβ-1 and CD206 levels. Osteopontin (OPN), a crucial player within the TME by driving the macrophages' infiltration, and CD44 expression was assessed by Western blot. TMZ strongly enhanced tumorsphere size and induced the M2 polarization of infiltrating macrophages. In macrophage-infiltrated tumorspheres, TMZ upregulated OPN and CD44 expression. These TMZ effects were counteracted by the concurrent addition of CXB. Remarkably, exogenous prostaglandin-E2 restored OPN and CD44, highlighting the COX-2 pivotal role in the protumor macrophages' state promotion. COX-2 inhibition interfered with TMZ's ability to induce M2-polarization and counteracted the development of an immunosuppressive TME.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Serena Artone
- PhD School in Medicine and Public Health, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessia Ciafarone
- PhD School in Health & Environmental Sciences, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, Aleksandër Xhuvani University, 3001 Elbasan, Albania;
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| |
Collapse
|
3
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
4
|
Phon BWS, Kamarudin MNA, Bhuvanendran S, Radhakrishnan AK. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed Pharmacother 2022; 145:112396. [PMID: 34775238 DOI: 10.1016/j.biopha.2021.112396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma (GBM) remains incurable despite the overwhelming discovery of 2-dimensional (2D) cell-based potential therapeutics since the majority of them have met unsatisfactory results in animal and clinical settings. Incremental empirical evidence has laid the widespread need of transitioning 2D to 3-dimensional (3D) cultures that better mimic GBM's complex and heterogenic nature to allow better translation of pre-clinical results. This systematic scoping review analyses the transcriptomic data involving 3D models of GBM against 2D models from 22 studies identified from four databases (PubMed, ScienceDirect, Medline, and Embase). From a total of 499 genes reported in these studies, 313 (63%) genes were upregulated across 3D models cultured using different scaffolds. Our analysis showed that 4 of the replicable upregulated genes are associated with GBM stemness, epithelial to mesenchymal transition (EMT), hypoxia, and migration-related genes regardless of the type of scaffolds, displaying close resemblances to primitive undifferentiated tumour phenotypes that are associated with decreased overall survival and increased hazard ratio in GBM patients. The upregulation of drug response and drug efflux genes (e.g. cytochrome P450s and ABC transporters) mirrors the GBM genetic landscape that contributes to in vivo and clinical treatment resistance. These upregulated genes displayed strong protein-protein interactions when analysed using an online bioinformatics software (STRING). These findings reinforce the need for widespread transition to 3D GBM models as a relatively inexpensive humanised pre-clinical tool with suitable genetic biomarkers to bridge clinical gaps in potential therapeutic evaluations.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Muhamad N A Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
6
|
Liesche-Starnecker F, Mayer K, Kofler F, Baur S, Schmidt-Graf F, Kempter J, Prokop G, Pfarr N, Wei W, Gempt J, Combs SE, Zimmer C, Meyer B, Wiestler B, Schlegel J. Immunohistochemically Characterized Intratumoral Heterogeneity Is a Prognostic Marker in Human Glioblastoma. Cancers (Basel) 2020; 12:cancers12102964. [PMID: 33066251 PMCID: PMC7602025 DOI: 10.3390/cancers12102964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Intratumoral heterogeneity is believed to contribute to the immense therapy resistance and recurrence rate of glioblastoma. The aim of this retrospective study was to analyze the heterogeneity of 36 human glioblastoma samples on a morphological level by immunohistochemistry. We confirmed that this method is valid for heterogeneity detection. 115 Areas of Interest were labelled. By cluster analysis, we defined two subtypes (“classical” and “mesenchymal”). The results of epigenomic analyses corroborated the findings. Interestingly, patients with tumors that consisted of both subtypes (“subtype-heterogeneous”) showed a shorter overall survival compared to patients with tumor that were dominated by one subtype (“subtype-dominant”). Furthermore, the analysis of 21 corresponding pairs of primary and recurrent glioblastoma demonstrated that, additionally to an intratumoral heterogeneity, there is also a chronological heterogeneity with dominance of the mesenchymal subtype in recurrent tumors. Our study confirms the prognostic impact of intratumoral heterogeneity in glioblastoma and makes this hallmark assessable by routine diagnostics. Abstract Tumor heterogeneity is considered to be a hallmark of glioblastoma (GBM). Only more recently, it has become apparent that GBM is not only heterogeneous between patients (intertumoral heterogeneity) but more importantly, also within individual patients (intratumoral heterogeneity). In this study, we focused on assessing intratumoral heterogeneity. For this purpose, the heterogeneity of 38 treatment-naïve GBM was characterized by immunohistochemistry. Perceptible areas were rated for ALDH1A3, EGFR, GFAP, Iba1, Olig2, p53, and Mib1. By clustering methods, two distinct groups similar to subtypes described in literature were detected. The classical subtype featured a strong EGFR and Olig2 positivity, whereas the mesenchymal subtype displayed a strong ALDH1A3 expression and a high fraction of Iba1-positive microglia. 18 tumors exhibited both subtypes and were classified as “subtype-heterogeneous”, whereas the areas of the other tumors were all assigned to the same cluster and named “subtype-dominant”. Results of epigenomic analyses corroborated these findings. Strikingly, the subtype-heterogeneous tumors showed a clearly shorter overall survival compared to subtype-dominant tumors. Furthermore, 21 corresponding pairs of primary and recurrent GBM were compared, showing a dominance of the mesenchymal subtype in the recurrent tumors. Our study confirms the prognostic impact of intratumoral heterogeneity in GBM, and more importantly, makes this hallmark assessable by routine diagnostics.
Collapse
Affiliation(s)
- Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
- Correspondence: ; Tel.: +49-89-6145
| | - Karoline Mayer
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
| | - Sandra Baur
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Friederike Schmidt-Graf
- Department of Neurology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.S.-G.); (J.K.)
| | - Johanna Kempter
- Department of Neurology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.S.-G.); (J.K.)
| | - Georg Prokop
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstraße 18, 81675 München, Germany;
| | - Wu Wei
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (J.G.); (B.M.)
| | - Stephanie E. Combs
- Department of RadiationOncology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany;
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (J.G.); (B.M.)
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Einsteinstraße 25, 81675 München, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| |
Collapse
|
7
|
Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020; 182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.
Collapse
|
8
|
Reichel D, Sagong B, Teh J, Zhang Y, Wagner S, Wang H, Chung LWK, Butte P, Black KL, Yu JS, Perez JM. Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS NANO 2020; 14:8392-8408. [PMID: 32551496 PMCID: PMC7438253 DOI: 10.1021/acsnano.0c02509] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Hongqiang Wang
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Leland W. K. Chung
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| | - Pramod Butte
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - John S. Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| |
Collapse
|
9
|
Crocetin Extracted from Saffron Shows Antitumor Effects in Models of Human Glioblastoma. Int J Mol Sci 2020; 21:ijms21020423. [PMID: 31936544 PMCID: PMC7013996 DOI: 10.3390/ijms21020423] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
Over recent years, many authors discussed the effects of different natural compounds on glioblastoma (GBM). Due to its capacity to impair survival and progression of different cancer types, saffron extract (SE), named crocetin (CCT), is particularly noteworthy. In this work, we elucidated the antitumor properties of crocetin in glioma in vivo and in vitro models for the first time. The in vitro results showed that the four tumor cell lines observed in this study (U251, U87, U138, and U373), which were treated with increasing doses of crocetin, showed antiproliferative and pro-differentiative effects as demonstrated by a significant reduction in the number of viable cells, deep changes in cell morphology, and the modulation of mesenchymal and neuronal markers. Indeed, crocetin decreased the expression of Cluster of Differentiation CD44, CD90, CXCR4, and OCT3/4 mesenchymal markers, but increased the expression of βIII-Tubulin and neurofilaments (NFH) neuronal linage-related markers. Epigenetic mechanisms may modulate these changes, since Histone Deacetylase, HDAC1 and HDAC3 were downmodulated in U251 and U87 cells, whereas HDAC1 expression was downmodulated in U138 and U373 cells. Western blotting analyses of Fatty Acid Synthase, FASN, and CD44 resulted in effective inhibition of these markers after CCT treatment, which was associated with important activation of the apoptosis program and reduced glioma cell movement and wound repair. The in vivo studies aligned with the results obtained in vitro. Indeed, crocetin was demonstrated to inhibit the growth of U251 and U87 cells that were subcutaneously injected into animal models. In particular, the Tumor To Progression or TTP values and Kaplan-Meier curves indicated that crocetin had more major effects than radiotherapy alone, but similar effects to temozolomide (TMZ). An intra-brain cell inoculation of a small number of luciferase-transfected U251 cells provided a model that was able to recapitulate recurrence after surgical tumor removal. The results obtained from the orthotopic intra-brain model indicated that CCT treatment increased the disease-free survival (DFS) and overall survival (OS) rates, inducing a delay in appearance of a detectable bioluminescent lesion. CCT showed greater efficacy than Radio Therapy (RT) but comparable efficacy to temozolomide in xenograft models. Therefore, we aimed to continue the study of crocetin's effects in glioma disease, focusing our attention on the radiosensitizing properties of the natural compound and highlighting the ways in which this was realized.
Collapse
|
10
|
Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, Palumbo P, Lombardi F, Cimini A, Cifone MG, Crovace A, Galzio R. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon 2019; 5:e02818. [PMID: 31844735 PMCID: PMC6889232 DOI: 10.1016/j.heliyon.2019.e02818] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| | - Alberto Maria Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Samer K. Elbabaa
- Pediatric Neurosurgery, Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, 1222 S. Orange Avenue, 2nd Floor, MP 154, Orlando, FL, 32806, USA
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Annamaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Renato Galzio
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| |
Collapse
|
11
|
Alameda F, Velarde JM, Carrato C, Vidal N, Arumí M, Naranjo D, Martinez-Garcia M, Ribalta T, Balañá C. Prognostic value of stem cell markers in glioblastoma. Biomarkers 2019; 24:677-683. [DOI: 10.1080/1354750x.2019.1652345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesc Alameda
- Department of Pathology, Hospital del Mar, Barcelona, Spain
- Universitat Autonoma, Barcelona, Spain
| | - José María Velarde
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Noemí Vidal
- Department of Pathology, Hospital de Bellvitge, L'Hospitalet de Llobregat, Spain
| | | | | | | | - Teresa Ribalta
- Department of Pathology, Hospital Clinic i Provincial, Barcelona, Spain
| | - Carme Balañá
- Department of Medical Oncology, Catalan Institute of Oncology, Badalona, Spain
| |
Collapse
|
12
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Luzzi S, Dolo V, Cifone MG, Cinque B. NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. Int J Mol Sci 2019; 20:ijms20123010. [PMID: 31226744 PMCID: PMC6627770 DOI: 10.3390/ijms20123010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The relevance of nitric oxide synthase 2 (NOS2) as a prognostic factor in Glioblastoma Multiforme (GBM) malignancy is emerging. We analyzed the effect of NOS2 inhibitor 1400W on the autophagic flux and extracellular vesicle (EV) secretion in U87MG glioma cells. The effects of glioma stem cells (GSC)-derived EVs on adherent U87MG were evaluated. Cell proliferation and migration were examined while using Cell Counting Kit-8 assay (CCK-8) and scratch wound healing assay. Cell cycle profile and apoptosis were analyzed by flow cytometry. Autophagy-associated acidic vesicular organelles were detected and quantified by acridine orange staining. The number and size of EVs were assessed by nanoparticle tracking analysis. EV ultrastructure was verified by transmission electron microscopy (TEM). WB was used to analyze protein expression and acid sphingomyelinase was determined through ceramide levels. 1400W induced autophagy and EV secretion in both adherent U87MG and GSCs. EVs secreted by 1400W-treated GSC, but not those from untreated cells, were able to inhibit adherent U87MG cell growth and migration while also inducing a relevant level of autophagy. The hypothesis of NOS2 expression as GBM profile marker or interesting therapeutic target is supported by our findings. Autophagy and EV release following treatment with the NOS2 inhibitor could represent useful elements to better understand the complex biomolecular frame of GBM.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74 - 27100 Pavia, Italy.
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| |
Collapse
|
13
|
C Jayakrishnan P, H Venkat E, M Ramachandran G, K Kesavapisharady K, N Nair S, Bharathan B, Radhakrishnan N, Gopala S. In vitro neurosphere formation correlates with poor survival in glioma. IUBMB Life 2018; 71:244-253. [PMID: 30393962 DOI: 10.1002/iub.1964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
Abstract
Sphere formation is an indicator of tumor aggressiveness independent of the tumor grade; however, its relation to progression-free survival (PFS) is less known. This study was designed to assess the neurosphere forming ability among low grade glioma (LGG) and high-grade glioma (HGG), its stem cell marker expression, and correlation to PFS. Tumor samples of 140 patients, including (LGG; n = 67) and (HGG; n = 73) were analyzed. We used sphere forming assay, immunofluorescence, and immunohistochemistry to characterize the tumors. Our study shows that, irrespective of the pathological sub type, both LGG and HGG formed neurospheres in vitro under conventional sphere forming conditions. However, the number of neurospheres formed from tumor tissues were significantly higher in HGG compared to LGG (P < 0.0001). Different grades of glioma were further characterized for the expression of stem cell marker proteins and lineage markers. When neurospheres were analyzed, CD133 positive cells were identified in addition to CD15 and nestin positive cells in both LGG and HGG. When these neurospheres were subjected to differentiation, cells positive for GFAP and β-tubulin III were observed. Expression of stem cell markers and β-tubulin III were prominent in HGG compared to LGG, whereas GFAP expression was higher in LGG than in HGG. Kaplan-Meier survival analysis demonstrated that neurosphere forming ability was significantly associated with shorter PFS (P < 0.05) in both LGG and HGG. Our results supports earlier studies that neurosphere formation may serve as a definitive indicator of stem cell population within the tumor and thus a better predictor of PFS than the tumor grades alone. © 2018 IUBMB Life, 71(1):244-253, 2019.
Collapse
Affiliation(s)
- Padmakrishnan C Jayakrishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Easwer H Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Girish M Ramachandran
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Krishna K Kesavapisharady
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Suresh N Nair
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Bhavya Bharathan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Neelima Radhakrishnan
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| |
Collapse
|
14
|
Peng Y, He X, Chen H, Duan H, Shao B, Yang F, Li H, Yang P, Zeng Y, Zheng J, Li Y, Hu J, Lin L, Teng L. Inhibition of microRNA-299-5p sensitizes glioblastoma cells to temozolomide via the MAPK/ERK signaling pathway. Biosci Rep 2018; 38:BSR20181051. [PMID: 30061180 PMCID: PMC6131327 DOI: 10.1042/bsr20181051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBMs) are a lethal class of brain cancer, with a median survival <15 months in spite of therapeutic advances. The poor prognosis of GBM is largely attributed to acquired chemotherapy resistance, and new strategies are urgently needed to target resistant glioma cells. Here we report a role for miR-299-5p in GBM. The level of miR-299-5p expression was detected in glioma specimens and cell lines by qRT-PCR. Luciferase reporter assays and Western blots were performed to verify GOLPH3 as a direct target of miR-299-5p. In vitro cell proliferation, invasion, cell cycle distribution, and apoptosis were assessed to determine whether or not miR-299-5p knockdown sensitized GBM cells to temozolomide (TMZ). We demonstrated that miR-299-5p levels were up-regulated in the GBM groups compared with the normal control group. The highest expression of miR-129-5p occurred in the highest GBM stage. miR-299-5p knockdown significantly inhibited the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. We also showed that miR-299-5p knockdown enhanced sensitivity of GBM cells to TMZ both in vitro and in vivo by inhibiting cell proliferation and invasion and promoting apoptosis. In addition, we demonstrated that GOLPH3 is a novel functional target of miR-299-5p GOLPH3 regulates the MAPK/ERK axis under miR-299-5p regulation. In conclusion, we identified a link between miR-299-5p expression and the GOLPH3/MAPK/ERK axis, thus illustrating a novel role for miR-299-5p in GBM.
Collapse
Affiliation(s)
- Yujiang Peng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Xijun He
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Huihui Chen
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Hongyu Duan
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Bo Shao
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Fan Yang
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Huiyong Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Pengxiang Yang
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Yu Zeng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| | - Jinrong Zheng
- Department of Neurosurgery, Taizhou Cancer Hospital, Zhejiang Province 317500, China
| | - Yongsheng Li
- Department of Neurosurgery, The Hospital of Integrated Traditional Chinese and Western Medicine of Taizhou, Zhejiang Province 317523, China
| | - Jiachang Hu
- Department of Neurosurgery, The Dongfang Hospital of Wenling, Zhejiang Province 317525, China
| | - Liguo Lin
- Department of Neurosurgery, Taizhou Orthopedics Hospital, Zhejiang Province 317500, China
| | - Lingfang Teng
- Department of Neurosurgery, The First People's Hospital of Wenling, Zhejiang Province 317500, China
| |
Collapse
|
15
|
Palumbo P, Lombardi F, Siragusa G, Dehcordi SR, Luzzi S, Cimini A, Cifone MG, Cinque B. Involvement of NOS2 Activity on Human Glioma Cell Growth, Clonogenic Potential, and Neurosphere Generation. Int J Mol Sci 2018; 19:ijms19092801. [PMID: 30227679 PMCID: PMC6165034 DOI: 10.3390/ijms19092801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant nitric oxide synthase 2 (NOS2) expression has been suggested as an interesting therapeutic target that is being implicated as a component of the molecular profile of several human malignant tumors, including glioblastoma, which is the most aggressive brain tumor with limited therapeutic options and poor prognosis. The aim of the present work was to evaluate the effect of 1400W, a specific NOS2 inhibitor, on human glioma cells in terms of clonogenic potential, proliferation, migration rate, and neurosphere generation ability. NOS2 expression was determined by Western blotting. Nitric oxide (NO) production was measured through nitrite level determination. The trypan blue exclusion test and the plate colony formation assay were performed to evaluate cell proliferation and clonogenic potential. Cell proliferation and migration ability was assessed by the in vitro wound-healing assay. Neurosphere generation in a specific stemcell medium was investigated. NOS2 was confirmed to be expressed in both the glioma cell line and a human glioma primary culture, and overexpressed in relative derived neurospheres. Experiments that aimed to evaluate the influence of 1400W on U-87 MG, T98G (glioblastoma cell lines) and primary glioma cells sustained the crucial role played by NOS2 in proliferation, colony formation, migration, and neurosphere generation, thus supporting the emerging relevance of a NOS2/NO system as a prognostic factor for glioma malignancy and recurrence.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Giuseppe Siragusa
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | | | - Sabino Luzzi
- Operative Unit of Neurosurgery, San Salvatore Hospital, 67100 L'Aquila, Italy.
| | - AnnaMaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, Coppito, 67100 L'Aquila, Italy.
| |
Collapse
|
16
|
Dhez AC, Benedetti E, Antonosante A, Panella G, Ranieri B, Florio TM, Cristiano L, Angelucci F, Giansanti F, Di Leandro L, d'Angelo M, Melone M, De Cola A, Federici L, Galzio R, Cascone I, Raineri F, Cimini A, Courty J, Giordano A, Ippoliti R. Targeted therapy of human glioblastoma via delivery of a toxin through a peptide directed to cell surface nucleolin. J Cell Physiol 2018; 233:4091-4105. [PMID: 28941284 DOI: 10.1002/jcp.26205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022]
Abstract
Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma.
Collapse
Affiliation(s)
- Anne-Chloé Dhez
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Université Paris-Est, UPEC, Créteil, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, France
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Brigida Ranieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marina Melone
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Cola
- Department of Experimental and Clinical Sciences, University of Chieti 'G. D'Annunzio', Chieti, Italy
| | - Luca Federici
- Department of Experimental and Clinical Sciences, University of Chieti 'G. D'Annunzio', Chieti, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Cascone
- Université Paris-Est, UPEC, Créteil, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, France
| | - Fabio Raineri
- Université Paris-Est, UPEC, Créteil, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, France
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - José Courty
- Université Paris-Est, UPEC, Créteil, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, France
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
17
|
Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci Rep 2018; 8:2836. [PMID: 29434344 PMCID: PMC5809429 DOI: 10.1038/s41598-018-20929-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/25/2018] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma stem-like cells (GSCs) are critical for the aggressiveness and progression of glioblastoma (GBM) and contribute to its resistance to adjuvant treatment. MicroRNAs (miRNAs) are small, non-coding RNAs controlling gene expression at the post-transcriptional level, which are known to be important regulators of the stem-like features. Moreover, miRNAs have been previously proved to be promising diagnostic biomarkers in several cancers including GBM. Using global expression analysis of miRNAs in 10 paired in-vitro as well as in-vivo characterized primary GSC and non-stem glioblastoma cultures, we identified a miRNA signature associated with the stem-like phenotype in GBM. 51 most deregulated miRNAs classified the cell cultures into GSC and non-stem cell clusters and identified a subgroup of GSC cultures with more pronounced stem-cell characteristics. The importance of the identified miRNA signature was further supported by demonstrating that a Risk Score based on the expression of seven miRNAs overexpressed in GSC predicted overall survival in GBM patients in the TCGA dataset independently of the IDH1 status. In summary, we identified miRNAs differentially expressed in GSCs and described their association with GBM patient survival. We propose that these miRNAs participate on GSC features and could represent helpful prognostic markers and potential therapeutic targets in GBM.
Collapse
|
18
|
Li X, Wei J, Liu Y, Li P, Fan L, Wang Y, Li M, Zhao D, Yu Z, Ye J, Guo Y, Yan Q, Guo S, Wang Z. Primary Astrocytic Tumours and Paired Recurrences have Similar Biological Features in IDH1, TP53 and TERTp Mutation and MGMT, ATRX Loss. Sci Rep 2017; 7:13038. [PMID: 29026176 PMCID: PMC5638900 DOI: 10.1038/s41598-017-13272-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
Astrocytic tumours are the most common type of primary malignant brain tumour. Most astrocytic tumours will recur at some point after surgery. Currently, the combination of radiotherapy and chemotherapy does not prevent the recurrence of astrocytic tumours. In this study, we investigated the consistency in isocitrate dehydrogenase 1 (IDH1), tumour protein p53 (TP53) and telomerase reverse transcriptase promoter (TERTp) mutations during astrocytic tumour recurrence. We also evaluated the protein loss of O-6-methylguanine-DNA methyltransferase (MGMT) and alpha-thalassemia/mental retardation, X-linked (ATRX) during disease recurrence. We then determined the prognostic significance of these findings in terms of progression-free survival (PFS) using Kaplan-Meier analysis and Cox regression models. Our results showed that in most cases, IDH1, TP53 and TERTp mutation status and MGMT and ATRX protein expression levels were stable during recurrence, which may indicate that these alterations occurred early in astrocytic tumour development. Furthermore, in IDH1 wild type group, the patients who were negative for MGMT and had a low Ki67 index showed a longer PFS. Therefore, we suggest that IDH1 mutation combined with MGMT expression level and Ki67 index might be an effective biomarker panel for evaluating the PFS of patients with astrocytic tumours.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Jie Wei
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Peifeng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Danhui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Zhou Yu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Ying Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital; and School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaan Xi Province, China.
| |
Collapse
|
19
|
Ledur PF, Onzi GR, Zong H, Lenz G. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? Oncotarget 2017; 8:69185-69197. [PMID: 28978189 PMCID: PMC5620329 DOI: 10.18632/oncotarget.20193] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022] Open
Abstract
In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo. Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that “mis-cultured” glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.
Collapse
Affiliation(s)
- Pítia Flores Ledur
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS-Brazil
| | - Giovana Ravizzoni Onzi
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS-Brazil
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS-Brazil
| |
Collapse
|
20
|
Raysi Dehcordi S, Ricci A, Di Vitantonio H, De Paulis D, Luzzi S, Palumbo P, Cinque B, Tempesta D, Coletti G, Cipolloni G, Cifone MG, Galzio R. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations. World Neurosurg 2017; 105:895-905. [PMID: 28559081 DOI: 10.1016/j.wneu.2017.05.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies suggested glioma stem cells (GSCs) are key contributors to therapeutic resistance of glioblastoma multiforme (GBM) and are responsible for GBM recurrence. METHODS We characterized the phenotype of cancer cells in the core and periphery of 20 GBM tumors, correlating clinical outcome to the ability to form GSCs and distinguishing survival based on Ki-67 staining. RESULTS Similar levels of methylguanine-deoxyribonucleic acid methyltransferase were found in the core and periphery of GBM tumors, whereas Ki-67 was reduced in the periphery. Similar levels of stemness markers in the periphery and in the core of all GBM cultures were found. Only cells expressing >30% SOX2 levels were able to produce neurospheres. Immunophenotypic analysis showed higher levels of stemness markers in GSC cultures than in all GBM primary cultures. GSC in vitro production and coexpression of Ki-67 >5% negatively correlated with outcome. CONCLUSIONS Not all GBM cultures can generate GSCs, and this capacity is linked to >30% SOX2 levels. The ability to form spheres negatively correlated to survival, and the detection of >5% Ki-67 levels may be useful to identify patients at risk of disease progression. The presence of GSC-/SOX-2-/Ki-67- cells may be regarded as a new prognostic factor. The presence of stemness markers and methylguanine-deoxyribonucleic acid methyltransferase in the periphery of GBM tumors may be the reason for treatment failure and recurrence. Development of stem cell-targeted therapies and elaboration of more aggressive treatments represent an opportunity to eliminate the GBM source and the nidus of recurrence.
Collapse
Affiliation(s)
- Soheila Raysi Dehcordi
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alessandro Ricci
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | | | - Danilo De Paulis
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | - Sabino Luzzi
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gino Coletti
- Operative Unit of Pathology, San Salvatore Hospital, L'Aquila, Italy
| | | | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Renato Galzio
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Bielecka-Wajdman AM, Lesiak M, Ludyga T, Sieroń A, Obuchowicz E. Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother Pharmacol 2017; 79:1249-1256. [DOI: 10.1007/s00280-017-3329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
|
22
|
Palumbo P, Miconi G, Cinque B, Lombardi F, Torre CL, Dehcordi SR, Galzio R, Cimini A, Giordano A, Cifone MG. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression. Oncotarget 2017; 8:25582-25598. [PMID: 28424427 PMCID: PMC5421953 DOI: 10.18632/oncotarget.16106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gianfranca Miconi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina La Torre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Soheila Raysi Dehcordi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Surgery, Operative Unit of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
23
|
Zheng S, Gao X, Liu X, Yu T, Zheng T, Wang Y, You C. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. Int J Nanomedicine 2016; 11:2721-36. [PMID: 27354801 PMCID: PMC4907711 DOI: 10.2147/ijn.s102450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol)-poly(lactide) copolymers (MPEG-PLAs). After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles) exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy.
Collapse
Affiliation(s)
- Songping Zheng
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Xiang Gao
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Xiaoxiao Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ting Yu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Tianying Zheng
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Chao You
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Tamborini M, Locatelli E, Rasile M, Monaco I, Rodighiero S, Corradini I, Franchini MC, Passoni L, Matteoli M. A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. ACS NANO 2016; 10:2509-2520. [PMID: 26745323 DOI: 10.1021/acsnano.5b07375] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma, with life expectancy of around 2 years after diagnosis, due to recidivism and to the blood-brain barrier (BBB) limiting the amount of drugs which reach the residual malignant cells, thus contributing to the failure of chemotherapies. To bypass the obstacles imposed by the BBB, we investigated the use of nanotechnologies combined with radiotherapy, as a potential therapeutic strategy for GBM. We used poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells. Silver nanoparticles were entrapped inside the functionalized nanoparticles (Ag-PNP-CTX), to allow detection and quantification of the cellular uptake by confocal microscopy, both in vitro and in vivo. In vitro experiments performed with different human glioblastoma cell lines showed higher cytoplasmic uptake of Ag-PNP-CTX, with respect to nonfunctionalized nanoparticles. In vivo experiments showed that Ag-NP-CTX efficiently targets the tumor, but are scarcely effective in crossing the blood brain barrier in the healthy brain, where dispersed metastatic cells are present. We show here that single whole brain X-ray irradiation, performed 20 h before nanoparticle injection, enhances the expression of the CTX targets, MMP-2 and ClC-3, and, through BBB permeabilization, potently increases the amount of internalized Ag-PNP-CTX even in dispersed cells, and generated an efficient antitumor synergistic effect able to inhibit in vivo tumor growth. Notably, the application of Ag-PNP-CTX to irradiated tumor cells decreases the extracellular activity of MMP-2. By targeting dispersed GBM cells and reducing MMP-2 activity, the combined use of CTX-nanovectors with radiotherapy may represent a promising therapeutic approach toward GBM.
Collapse
Affiliation(s)
- Matteo Tamborini
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marco Rasile
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- Laboratory of Pharmacology and Brain Pathology, Humanitas Research Hospital , Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - Ilaria Monaco
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | | | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | - Lorena Passoni
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | - Michela Matteoli
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
- Laboratory of Pharmacology and Brain Pathology, Humanitas Research Hospital , Via Manzoni 56, Rozzano, 20089 Milano, Italy
| |
Collapse
|
25
|
Parajuli P, Anand R, Mandalaparty C, Suryadevara R, Sriranga PU, Michelhaugh SK, Cazacu S, Finniss S, Thakur A, Lum LG, Schalk D, Brodie C, Mittal S. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget 2016; 7:6121-35. [PMID: 26755664 PMCID: PMC4868744 DOI: 10.18632/oncotarget.6847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common primary brain tumor and one of the most lethal solid tumors. Mechanistic studies into identification of novel biomarkers are needed to develop new therapeutic strategies for this deadly disease. The objective for this study was to explore the potential direct impact of IL-17-IL-17R interaction in gliomas. Immunohistochemistry and flow cytometry analysis of 12 tumor samples obtained from patients with high grade gliomas revealed that a considerable population (2-19%) of cells in all malignant gliomas expressed IL-17RA, with remarkable co-expression of the glioma stem cell (GSC) markers CD133, Nestin, and Sox2. IL-17 enhanced the self-renewal of GSCs as determined by proliferation and Matrigel® colony assays. IL-17 also induced cytokine/chemokine (IL-6, IL-8, interferon-γ-inducible protein [IP-10], and monocyte chemoattractant protein-1 [MCP-1]) secretion in GSCs, which were differentially blocked by antibodies against IL-17R and IL-6R. Western blot analysis showed that IL-17 modulated the activity of signal transducer and activator of transcription 3 (STAT3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), glycogen synthase kinase-3β (GSK-3β) and β-catenin in GSCs. While IL-17R-mediated secretion of IL-6 and IL-8 were significantly blocked by inhibitors of NF-κB and STAT3; NF-κB inhibitor was more potent than STAT3 inhibitor in blocking IL-17-induced MCP-1 secretion. Overall, our results suggest that IL-17-IL-17R interaction in GSCs induces an autocrine/paracrine cytokine feedback loop, which may provide an important signaling component for maintenance/self-renewal of GSCs via constitutive activation of both NF-κB and STAT3. The results also strongly implicate IL-17R as an important functional biomarker for therapeutic targeting of GSCs.
Collapse
Affiliation(s)
- Prahlad Parajuli
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Rohit Anand
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Raviteja Suryadevara
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Preethi U. Sriranga
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Sharon K. Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Archana Thakur
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Lawrence G. Lum
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
- Departments of Internal Medicine, Immunology and Microbiology, and Pediatrics, Wayne State University, Detroit, MI, USA
| | - Dana Schalk
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Chaya Brodie
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
26
|
Sun T, Chen G, Li Y, Xie X, Zhou Y, DU Z. Aggressive invasion is observed in CD133 -/A2B5 + glioma-initiating cells. Oncol Lett 2015; 10:3399-3406. [PMID: 26788141 PMCID: PMC4665828 DOI: 10.3892/ol.2015.3823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme is the most common and fatal primary brain tumor in adults. Aggressive invasion of glioblastoma cells into brain tissue often limits complete surgical resection and contributes to therapeutic resistance. The cell surface marker, CD133, has been identified as a putative stem cell marker in normal and malignant brain tissues; CD133-/A2B5+ cells exhibit neural stem-like cell properties. The invasive properties and the molecular mechanisms of CD133-/A2B5+ glioma-initiating cells (GICs) were investigated in the process of self-renewal and tumorigenesis. An increased number of invasive cells through matrigel and an increase in migratory cells through filters were observed in CD133-/A2B5+ GIC populations compared with matched non-initiating tumor cell populations. Considerable changes were detected in expression of mRNA and protein associated with migration or invasion. CD133-/A2B5+ GIC demonstrated infiltrating growth patterns and displayed greater invasive potential under fluorescent microscopy comparing with the matched non-initiating tumor cells after cells labeled with red fluorescence protein were transplanted into the brains of athymic/nude mice. CD133-/A2B5+ GICs possess strong migratory and invasive capacity. These infiltrating cells in the invasive fronts may be responsible for rapid tumor recurrence following conventional treatments. CD133-/A2B5+ GICs may be an important subpopulation with high invasive potential and they should not be ignored when targeting GICs to prevent GBM recurrence.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueshun Xie
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ziwei DU
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|