1
|
Zhang XL, An ZY, Lu GJ, Zhang T, Liu CW, Liu MQ, Wei QX, Quan LH, Kang JD. MCT1-mediated transport of valeric acid promotes porcine preimplantation embryo development by improving mitochondrial function and inhibiting the autophagic AMPK-ULK1 pathway. Theriogenology 2024; 225:152-161. [PMID: 38805997 DOI: 10.1016/j.theriogenology.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Cheng-Wei Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Meng-Qi Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Qing-Xin Wei
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
2
|
Ma Z, Liang H, Wang S, Miao W, Yu L, Liu S, Luo Z, Su S, Wang J, Liu S, Li Y, Liang Y, Zhou L. Nardosinone relieves metabolic-associated fatty liver disease and promotes energy metabolism through targeting CYP2D6. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155748. [PMID: 38788398 DOI: 10.1016/j.phymed.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Nardosinone, a major extract of Rhizoma nardostachyos, plays a vital role in sedation, neural stem cell proliferation, and protection of the heart muscle. However, the huge potential of nardosinone in regulating lipid metabolism and gut microbiota has not been reported, and its potential mechanism has not been studied. PURPOSE To explore the regulation of nardosinone on liver lipid metabolism and gut microbiota. METHODS In this study, the role of nardosinone in lipid metabolism was investigated in vitro and in vivo by adding it to mouse feed and HepG2 cell culture medium. And 16S rRNA gene sequencing was used to explore its regulatory effect on gut microbiota. RESULTS Results showed that nardosinone could improve HFD-induced liver injury and abnormal lipid metabolism by promoting mitochondrial energy metabolism in hepatocytes, alleviating oxidative stress damage, and regulating the composition of the gut microbiota. Mechanistically, combined with network pharmacology and reverse docking analysis, it was predicted that CYP2D6 was the target of nardosinone, and the binding was verified by cellular thermal shift assay (CETSA). CONCLUSIONS This study highlights a novel mechanism function of nardosinone in regulating lipid metabolism and gut microbiota. It also predicts and validates CYP2D6 as a previously unknown regulatory target, which provides new possibilities for the application of nardosinone and the treatment of metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Zeqiang Ma
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Huanjie Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shengnan Wang
- Shaanxi Provincial Key Laboratory of Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, Shaanxi 712199, China
| | - Weiwei Miao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jiale Wang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Shi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
3
|
Kang Z, Zhang Z, Li J, Deng K, Wang F, Fan Y. Mechanistic of AMPK/ACC2 regulating myoblast differentiation by fatty acid oxidation of goat. Int J Biol Macromol 2024; 270:132243. [PMID: 38744369 DOI: 10.1016/j.ijbiomac.2024.132243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.
Collapse
Affiliation(s)
- Ziqi Kang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Bernardi O, Ramé C, Reverchon M, Dupont J. Adiponectin and visfatin expression profile in extra-embryonic annexes and role during embryo development in layer and broiler chickens. Gen Comp Endocrinol 2024; 349:114466. [PMID: 38325528 DOI: 10.1016/j.ygcen.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Some evidence showed differences between layer and broiler embryo development. We recently showed that two adipokines, adiponectin and visfatin are expressed in the extra embryonic membranes and fluids. However, their role in the embryo development is unknown. Thus, our objectives were 1. to compare the expression of AdipoQ and its receptors AdipoR1 and AdipoR2 and visfatin in extra-embryonic annexes in broiler and layer breeders during the embryo development and 2. to investigate the role of two adipokines in embryo development in both broiler and layer breed after in ovo injection of blocking antibodies against chicken adiponectin or visfatin. We found that adiponectin, AdipoR1, AdipoR2 and visfatin were mainly more expressed in the allantoic that in amniotic membranes. In addition, these expressions increased according the stage of embryo development. We observed a higher expression in layer than in broiler of AdipoQ in allantoic membranes at ED14 and ED18, of AdipoR1 and AdipoR2 in both allantoic and amniotic membranes at ED7 and ED14 and of visfatin only in allantoic membrane from ED7 to ED18. AdipoQ and visfatin were absent in amniotic fluid at ED7 but present at ED14 or ED18 where higher concentrations were detected in layer than in broiler. Interestingly, we showed a strong positive correlation between Adipo and visfatin concentration in amniotic fluid and the body weight of embryo in both breeds. However, after in ovo injection of Adipo antibodies we did not observe any effect on the embryo mortality whereas injection of visfatin antibodies increased in a dose dependent manner the embryo mortality in both breeds. Taken together, Adipo and visfatin are higher expressed in layer than broiler in extra-embryonic membranes and amniotic fluid. Our data suggest also that visfatin could be a main regulator of embryo development.
Collapse
Affiliation(s)
- Ophélie Bernardi
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380, Nouzilly, France; Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, F-37380 Nouzilly, France
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380, Nouzilly, France
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, F-37380 Nouzilly, France.
| |
Collapse
|
5
|
Zhu S, Zhang B, Zhu T, Wang D, Liu C, Liu Y, He Y, Liang W, Li W, Han R, Li D, Yan F, Tian Y, Li G, Kang X, Li Z, Jiang R, Sun G. miR-128-3p inhibits intramuscular adipocytes differentiation in chickens by downregulating FDPS. BMC Genomics 2023; 24:540. [PMID: 37700222 PMCID: PMC10496186 DOI: 10.1186/s12864-023-09649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-β signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.
Collapse
Affiliation(s)
- Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yixuan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Tu W, Zhang Y, Jiang K, Jiang S. Osteocalcin and Its Potential Functions for Preventing Fatty Liver Hemorrhagic Syndrome in Poultry. Animals (Basel) 2023; 13:ani13081380. [PMID: 37106943 PMCID: PMC10135196 DOI: 10.3390/ani13081380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Osteocalcin (OCN) is synthesized and secreted by differentiating osteoblasts. In addition to its role in bone, OCN acts as a hormone in the pancreas, liver, muscle, fat, and other organs to regulate multiple pathophysiological processes including glucose homeostasis and adipic acid metabolism. Fat metabolic disorder, such as excessive fat buildup, is related to non-alcoholic fatty liver disease (NAFLD) in humans. Similarly, fatty liver hemorrhage syndrome (FLHS) is a metabolic disease in laying hens, resulting from lipid accumulation in hepatocytes. FLHS affects hen health with significant impact on poultry egg production. Many studies have proposed that OCN has protective function in mammalian NAFLD, but its function in chicken FLHS and related mechanism have not been completely clarified. Recently, we have revealed that OCN prevents laying hens from FLHS through regulating the JNK pathway, and some pathways related to the disease progression have been identified through both in vivo and vitro investigations. In this view, we discussed the current findings for predicting the strategy for using OCN to prevent or reduce FLHS impact on poultry production.
Collapse
Affiliation(s)
- Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuhan Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kunyu Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
7
|
The different effects of intramuscularly-injected lactate on white and brown adipose tissue in vivo. Mol Biol Rep 2022; 49:8507-8516. [PMID: 35753026 DOI: 10.1007/s11033-022-07672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lactate is an important product of glycolysis metabolism during exercise and has long been recognized as an important metabolic signaling molecule involved in inhibiting lipolysis and promoting lipogenesis, which consequently leads to regulated adipose tissue metabolism. However, recent studies have shown that lactate promotes the browning of white adipose tissue (WAT), which induces heat production and energy expenditure and ultimately causes weight loss. These studies assessing the effects of lactate on lipid metabolism in adipose tissue have revealed conflicting data, making it an important area worthy of further research. METHODS In this study, using intramuscular injection of lactate to the gastrocnemius, we identified the role of lactate treatment on lipid metabolism and mitochondrial biogenesis of white adipose tissue and brown adipose tissue (BAT). RESULTS Our results showed that lactate treatment activated the cAMP/PKA signaling pathway and promoted the expression of lipolysis-related proteins (AMPK, HSL, ATGL) and mitochondrial biomarkers (PGC-1α, COXIV) of WAT, while BAT showed an opposite trend after lactate treatment. Further studies showed that lactate treatment significantly increased serum epinephrine and promoted β3-AR protein expression in WAT and significantly decreased in BAT. CONCLUSION Our study shows that lactate seems to regulate β3-adrenergic receptors differently in WAT and BAT, thereby eliciting disparate responses in adipose tissue.
Collapse
|
8
|
Wu Z, Li Q, Yang S, Zheng T, Shao J, Guan W, Chen F, Zhang S. Energy deprivation-induced AMPK activation inhibits milk synthesis by targeting PrlR and PGC-1α. Cell Commun Signal 2022; 20:25. [PMID: 35248054 PMCID: PMC8898430 DOI: 10.1186/s12964-022-00830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Background The mammary gland is responsible for milk production and secretion, which is critical for neonatal health during lactation. Lactation efficiency is largely affected by energy status with unclear mechanism. Results In the current study, we found that synthesis of milk fat and protein was significantly inhibited under energy-deficient conditions, which is accompanied with AMP-activated protein kinase (AMPK) activation. Modulating the AMPK signaling pathway directly or indirectly affects the synthesis of milk fat and protein. Besides mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of milk synthesis, we discovered that AMPK mainly regulates the synthesis of milk protein through prolactin signaling. Mechanistically, AMPK triggers the ubiquitination of prolactin receptor (PrlR) through regulating the activity of β-transducin repeat-containing protein (β-TrCP, an E3 ligase). Subsequently, PrlR is degraded by the endocytosis process of lysosomes, which further attenuates prolactin signaling. In addition, our results revealed that AMPK activation inhibits milk fat synthesis through decreasing and accelerating de novo synthesis and β-oxidation of fatty acids, respectively. To be precise, AMPK activation inhibits rate limiting enzymes and transcriptional regulatory factors involved in de novo fatty acid synthesis and decreases the acetylation process of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) to strengthen the oxidation of fatty acids. Conclusions Taken together, AMPK regulates the synthesis of milk not only depends on canonical mTORC1 signaling and key rate-limiting enzymes, but also through manipulating the degradation of PrlR and the acetylation of PGC-1α. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00830-6.
Collapse
|
9
|
Cai J, Hu Q, Lin H, Zhao J, Jiao H, Wang X. Adiponectin/adiponectin receptors mRNA expression profiles in chickens and their response to feed restriction. Poult Sci 2021; 100:101480. [PMID: 34700095 PMCID: PMC8554277 DOI: 10.1016/j.psj.2021.101480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Adiponectin (ADPN) is related to fatty acid synthesis and oxidation in mammals. In chickens, the lipid metabolism, structure and sequence of ADPN are different from that in mammals. The aim of this study was to determine the role of ADPN in broilers lipid metabolism by investigating the temporal and spatial expression profiles of ADPN and its receptors, as well as their response to feed restriction. The results showed that the abdominal fat has the highest expression level, followed by the duodenum, glandular stomach, heart, hypothalamus, liver, and skeletal muscle. Broilers have high energy mobilization during their early stage of growth, in which the fat demand in the liver and muscles is high, thus the expression of ADPN and its receptor are also increased. To study the effects of feed restriction on ADPN and lipid metabolism, broilers were fasted for 12 h and refeed for 2 h. The results showed that fasting decreased the concentration of triglyceride (TG) (P < 0.05) and total cholesterol (TCHO) (P < 0.05) in plasma. The mRNA expression of ADPN in the liver (P < 0.05), breast (P < 0.05) and thigh (P < 0.05), and the mRNA expression of ADPNR1 in the liver (P < 0.05) and duodenum (P < 0.05) were significantly increased in the Fasted group. All above phenomena were recovered after refeeding, suggesting that feed restriction may promote the utilization of fatty acids in active metabolism tissues through ADPN, to guarantee the energy homeostasis of the body. However, the AMP-activated protein kinase (AMPK) signaling pathway and hepatic lipid metabolism were not necessary to cause the above changes under this experimental condition.
Collapse
Affiliation(s)
- Jiangxue Cai
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Qingmei Hu
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hai Lin
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Jingpeng Zhao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hongchao Jiao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xiaojuan Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China.
| |
Collapse
|
10
|
Bernardi O, Estienne A, Reverchon M, Bigot Y, Froment P, Dupont J. Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol Cell Endocrinol 2021; 534:111370. [PMID: 34171419 DOI: 10.1016/j.mce.2021.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Adipose tissue is now recognized as an active endocrine organ, which synthesizes and secretes numerous peptides factors called adipokines. In mammals, they exert pleiotropic effects affecting energy metabolism but also fertility. In mammals, secretion of adipokines is altered in adipose tissue dysfunctions and may participate to obesity-associated disorders. Thus, adipokines are promising candidates both for novel pharmacological treatment strategies and as diagnostic tools. As compared to mammals, birds exhibit several unique physiological features, which make them an interesting model for comparative studies on endocrine control of metabolism and adiposity and reproductive functions. Some adipokines such as leptin and visfatin may have different roles in avian species as compared to mammals. In addition, some of them found in mammals such as CCL2 (chemokine ligand 2), resistin, omentin and FGF21 (Fibroblast Growth factor 21) have not yet been mapped to the chicken genome model and among its annotated gene models. This brief review aims to summarize data (structure, metabolic and reproductive roles and molecular mechanisms involved) related to main avian adipokines (leptin, adiponectin, visfatin, and chemerin) and we will briefly discuss the adipokines that are still lacking in avian species.
Collapse
Affiliation(s)
- Ophélie Bernardi
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France; SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
11
|
Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: A review. Med Res Rev 2020; 41:556-585. [PMID: 33084093 DOI: 10.1002/med.21740] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a global health problem that affects all age groups in both developing and developed countries. In recent years, the prevalence of overweight and obesity has reached pandemic levels, resulting in a dramatic increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer, consequently leading to massive health and socioeconomic burdens. Together with lifestyle changes, antiobesity pharmacotherapy is gaining momentum as an adjunctive treatment. However, the available pharmacological approaches have limited use owing to either significant adverse effects or low efficacy. Over the years, natural products have been an important source of lead compounds for drug discovery. Among these, flavonoids are associated with important biological effects and health-promoting activities. In this review, we discuss the modulatory effects of flavonoids on obesity and their potential mechanisms of action. The literature strongly suggests that most common flavonoids demonstrate a pronounced effect on obesity as shown by their ability to lower body weight, fat mass, and plasma triglycerides/cholesterol, both in in vitro and in vivo models. The impact of flavonoids on obesity can be observed through different mechanisms: reducing food intake and fat absorption, increasing energy expenditure, modulating lipid metabolism, or regulating gut microbiota profile. A better understanding of the known antiobesity mechanisms of flavonoids will enable their potential use to treat this medical condition. Therefore, this review focuses on the putative biological mechanisms through which flavonoids may prevent or treat obesity and highlights new perspectives on future pharmacological use.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
13
|
Liu Y, Liu X, Zhou J, Ren Z, Yang X, Cao Y, Yang X. Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers. Poult Sci 2020; 98:6816-6825. [PMID: 31328769 PMCID: PMC8913948 DOI: 10.3382/ps/pez413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023] Open
Abstract
With intensive selection for meat production in broilers, excessive fat accumulation is also accompanied and causes economic concerns. Folic acid was reported to be involved in lipid metabolism. The present study was conducted to investigate the role of folic acid in reducing abdominal fat deposition. A total of 105 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments, including the control (Con), saline-perfusion group (NS), and folic acid perfusion group (FA). The growth performance, biochemical characteristics in serum, and lipid metabolism in the liver and abdominal fat tissues were evaluated. Results have shown that folic acid significantly reduced abdominal fat percentage (P < 0.05) and had no effects on BW, ADFI, ADG, and FCR (P > 0.05). Serum triglycerides (TG), total cholesterol (TC), and alanine aminotransferase (ALT) levels were lower in FA group but albumin concentration was higher (P < 0.05). Hepatic ACC, SCD, ELOVL6, PI3K, LDLR, HMGCR, and ABCA1 mRNA abundance were all down-regulated in FA group (P < 0.05) when compared with the Con and NS groups, while CPT1 and PPARα were not affected. In addition, MTTP mRNA abundance was higher in the liver of birds subjected to folic acid (P < 0.05). There was no difference about TG deposition in the liver among all groups based on hematoxylin−eosin (HE) and Oil Red O staining. On the other hand, ELOVL6, PPARγ, IGF1, and TGFβ2 expression were notably decreased in the abdominal fat in FA group (P < 0.05). In conclusion, our data demonstrated that folic acid has reduced abdominal fat percentage by decreasing hepatic lipogenesis and suppressing adipocytes proliferation and differentiation. And the inhibiting effect of adipocytes might be mediated by IGF1 and TGFβ2 down-regulation.
Collapse
Affiliation(s)
- Y Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - J Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Kong M, Xiang H, Wang J, Liu J, Zhang X, Zhao X. Mitochondrial DNA Haplotypes Influence Energy Metabolism across Chicken Transmitochondrial Cybrids. Genes (Basel) 2020; 11:genes11010100. [PMID: 31963157 PMCID: PMC7017162 DOI: 10.3390/genes11010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The association between mitochondrial DNA haplotype and productive performances has been widely reported in chicken breeds. However, there has not been physiological evidence of this seen previously. In this study, chicken transmitochondrial cells were generated using the nucleus of the DF-1 cell line and mitochondria of primary cell lines derived from two native chicken breeds, Tibetan chicken and Shouguang chicken. Generally, Tibetan chicken primary cells showed a stronger metabolic capacity than Shouguang chicken primary cells. However, the Tibetan chicken cybrids had a dramatic drop in relative mtDNA copies and oxygen consumption. Higher rates of oxygen consumption (OCR) and expression levels of mitochondrial biogenesis and fusion genes were observed in Shouguang chicken cybrids, potentially reflecting that the mitochondrial DNA haplotype of Shouguang chicken had better coordination with the DF-1 nucleus than others. Meanwhile, mitonuclear incompatibility occurred in Tibetan chicken cybrids. The results demonstrate functional differences among mitochondrial DNA haplotypes and may shed light on the interaction between the mitochondria and nucleus in Gallus gallus domesticus.
Collapse
Affiliation(s)
- Minghua Kong
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Jian Liu
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
| | - Xiben Zhang
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Bijie 551700, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
- Correspondence: ; Tel.: +86-010-62733417; Fax: +86-010-62733417
| |
Collapse
|
15
|
Sun G, Li F, Ma X, Sun J, Jiang R, Tian Y, Han R, Li G, Wang Y, Li Z, Kang X, Li W. gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells 2019; 8:E556. [PMID: 31181634 PMCID: PMC6627633 DOI: 10.3390/cells8060556] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF) is the most important evaluating indicator of chicken meat quality, the content of which is positively correlated with tenderness, flavor, and succulence of the meat. Chicken IMF deposition process is regulated by many factors, including genetic, nutrition, and environment. Although large number of omics' studies focused on the IMF deposition process, the molecular mechanism of chicken IMF deposition is still poorly understood. In order to study the role of miRNAs in chicken intramuscular adipogenesis, the intramuscular adipocyte differentiation model (IMF-preadipocytes and IMF-adipocytes) was established and subject to miRNA-Seq. A total of 117 differentially expressed miRNAs between two groups were obtained. Target genes prediction and functional enrichment analysis revealed that eight pathways involved in lipid metabolism related processes, such as fatty acid metabolism and fatty acid elongation. Meanwhile a putative miRNA, gga-miR-18b-3p, was identified be served a function in the intramuscular adipocyte differentiation. Luciferase assay suggested that the gga-miR-18b-3p targeted to the 3'UTR of ACOT13. Subsequent functional experiments demonstrated that gga-miR-18b-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting ACOT13. Our findings laid a new theoretical foundation for the study of lipid metabolism, and also provided a potential target to improve the meat quality in the poultry industry.
Collapse
Affiliation(s)
- Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junwei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
16
|
Hulgan T, Ramsey BS, Koethe JR, Samuels DC, Gerschenson M, Libutti DE, Sax PE, Daar ES, McComsey GA, Brown TT. Relationships Between Adipose Mitochondrial Function, Serum Adiponectin, and Insulin Resistance in Persons With HIV After 96 Weeks of Antiretroviral Therapy. J Acquir Immune Defic Syndr 2019; 80:358-366. [PMID: 30531304 PMCID: PMC6375746 DOI: 10.1097/qai.0000000000001926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Some antiretroviral therapy (ART) and HIV itself confer metabolic risk, perhaps through altered mitochondrial function and adipokines. In AIDS Clinical Trials Group study A5224s, adipose mitochondrial DNA (mtDNA) levels decreased on ART, and electron transport chain complex I (CI) and complex IV (CIV) activity decreased. Another study found decreased serum adiponectin on ART with mtDNA mutation m.10398A>G. We hypothesized that decreased adipose tissue mitochondrial function would be associated with lower adiponectin and insulin sensitivity on ART, and m.10398G would influence these changes. DESIGN Retrospective analysis of an ART-naive substudy population from A5224s. METHODS Analyses included adipose mtDNA levels, CI and CIV activity by immunoassay, visceral adipose tissue by computed tomography, and fasting serum glucose at week 0 and week 96 of ART. Fasting insulin and adiponectin were measured from cryopreserved serum using multiplex bead array. Homeostasis model assessment-2 (HOMA2)-IR and HOMA2-%B estimated insulin resistance and β-cell function, respectively. The m.10398A>G mtDNA variant was available from existing genetic data. RESULTS Thirty-seven participants had adipose biopsies at week 0 and week 96. Percent decreases in CIV activity and adiponectin were correlated (Spearman rho 0.41; P = 0.01); this association persisted after controlling for age, sex, body mass index, or visceral adipose tissue in single-covariate regression. HOMA2-IR correlated with decreased CIV (-0.44; P = 0.01) and CI (-0.34; P = 0.05) activity. Among 12 non-Hispanic white persons, m.10398G was associated with decreased adiponectin (P = 0.04). CONCLUSIONS Decreased adipose mitochondrial activity correlated with changes in adiponectin and glucose homeostasis on ART. Previous findings that a mtDNA mutation modulates adiponectin levels in persons with HIV were replicated.
Collapse
Affiliation(s)
- Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Benjamin S Ramsey
- University of South Carolina School of Medicine Greenville, Greenville, SC
| | - John R Koethe
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Daniel E Libutti
- John A. Burns School of Medicine, University of Hawaii-Manoa, Honolulu, HI
| | - Paul E Sax
- Harvard University, Brigham and Women's Hospital, Boston, MA
| | - Eric S Daar
- David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, CA
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
17
|
Association of three SNPs in adiponectin gene with lipid traits of Tianzhu Black Muscovy (Cairina moschata). Mol Biol Rep 2018; 46:325-332. [DOI: 10.1007/s11033-018-4475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
|
18
|
Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN 2018; 28:21-35. [DOI: 10.1016/j.clnesp.2018.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
|
19
|
Mellouk N, Ramé C, Delaveau J, Rat C, Maurer E, Froment P, Dupont J. Adipokines expression profile in liver, adipose tissue and muscle during chicken embryo development. Gen Comp Endocrinol 2018; 267:146-156. [PMID: 29953882 DOI: 10.1016/j.ygcen.2018.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022]
Abstract
In broiler chickens, the intense genetic selection for rapid growth has resulted in an increase in growth rate and fat deposition. Adipose tissue is now recognized as an important endocrine organ that secretes a variety of factors including adipokines. However, the expression pattern of these adipokines is unclear in chicken embryo development. In the present study, we determined the expression profile of three novel adipokines, NAMPT, RARRES2 and ADIPOQ, and their cognate receptors in metabolic tissues (liver, muscles and adipose tissue) of chicken embryo/chicks from 15 days of incubation (E15) to hatching (D0). From E15 to hatching, embryos gradually gained weight and started to develop subcutaneous adipose tissue at E15. We conducted western blot and RT-qPCR tests and found that ADIPOQ expression increased over time and was positively correlated with adipose tissue weight. In addition, NAMPT expression increased only in muscles. By using a new homemade chicken RARRES2 specific antibody we showed that RARRES2 protein levels increased specifically at hatching in adipose tissue, liver and pectoralis major and this was associated with an increase in the weight of embryo. Taken together, these results support a potential involvement of adipokines in metabolic regulation during chicken embryo development.
Collapse
Affiliation(s)
- Namya Mellouk
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE F, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE F, 37380 Nouzilly, France
| | - Joël Delaveau
- INRA - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours, UEPEAT 1295, F-37380 Nouzilly, France
| | - Christophe Rat
- INRA - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours, UEPEAT 1295, F-37380 Nouzilly, France
| | - Eric Maurer
- Agro-Bio, 2 Allée de la Chavannerie, 45240 La Ferté Saint Aubin, France
| | - Pascal Froment
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE F, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE F, 37380 Nouzilly, France.
| |
Collapse
|
20
|
Grossini E, Farruggio S, Raina G, Mary D, Deiro G, Gentilli S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients 2018; 10:E978. [PMID: 30060502 PMCID: PMC6115928 DOI: 10.3390/nu10080978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Obesity can lead to pathological growth of adipocytes by inducing inflammation and oxidative stress. Genistein could be a potential candidate for the treatment of obesity due to its antioxidant properties. Specific kits were used to examine the effects of genistein vs adiponectin on human visceral pre-adipocytes differentiation, cell viability, mitochondrial membrane potential, and oxidative stress in pre-adipocytes and in white/brown adipocytes. Western Blot was performed to examine changes in protein activation/expression. Genistein increased human visceral pre-adipocytes differentiation and browning, and caused a dose-related improvement of cell viability and mitochondrial membrane potential. Similar effects were observed in brown adipocytes and in white adipocytes, although in white cells the increase of cell viability was inversely related to the dose. Moreover, genistein potentiated AMP-activated protein kinase (AMPK)/mitofusin2 activation/expression in pre-adipocytes and white/brown adipocytes and protected them from the effects of hydrogen peroxide. The effects caused by genistein were similar to those of adiponectin. The results obtained showed that genistein increases human visceral pre-adipocytes differentiation and browning, protected against oxidative stress in pre-adipocytes and white/brown adipocytes through mechanisms related to AMPK-signalling and the keeping of mitochondrial function.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- Experimental Surgery, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Serena Farruggio
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Raina
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - David Mary
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Giacomo Deiro
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Sergio Gentilli
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
21
|
Abdalla BA, Chen J, Nie Q, Zhang X. Genomic Insights Into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model. Front Genet 2018; 9:262. [PMID: 30073018 PMCID: PMC6060281 DOI: 10.3389/fgene.2018.00262] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic selection for an increased growth rate in meat-type chickens has been accompanied by excessive fat accumulation particularly in abdominal cavity. These progressed to indirect and often unhealthy effects on meat quality properties and increased feed cost. Advances in genomics technology over recent years have led to the surprising discoveries that the genome is more complex than previously thought. Studies have identified multiple-genetic factors associated with abdominal fat deposition. Meanwhile, the obesity epidemic has focused attention on adipose tissue and the development of adipocytes. The aim of this review is to summarize the current understanding of genetic/epigenetic factors associated with abdominal fat deposition, or as it relates to the proliferation and differentiation of preadipocytes in chicken. The results discussed here have been identified by different genomic approaches, such as QTL-based studies, the candidate gene approach, epistatic interaction, copy number variation, single-nucleotide polymorphism screening, selection signature analysis, genome-wide association studies, RNA sequencing, and bisulfite sequencing. The studies mentioned in this review have described multiple-genetic factors involved in an abdominal fat deposition. Therefore, it is inevitable to further study the multiple-genetic factors in-depth to develop novel molecular markers or potential targets, which will provide promising applications for reducing abdominal fat deposition in meat-type chicken.
Collapse
Affiliation(s)
- Bahareldin A. Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- National-Local Joint Engineering Research Center for Livestock Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, The Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
22
|
Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, Cantão ME, Ledur MC, Ibelli AMG, Peixoto JDO, Moura ASAMT, Garrick D, Coutinho LL. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics 2018; 19:374. [PMID: 29783939 PMCID: PMC5963092 DOI: 10.1186/s12864-018-4779-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
Background Excess fat content in chickens has a negative impact on poultry production. The discovery of QTL associated with fat deposition in the carcass allows the identification of positional candidate genes (PCGs) that might regulate fat deposition and be useful for selection against excess fat content in chicken’s carcass. This study aimed to estimate genomic heritability coefficients and to identify QTLs and PCGs for abdominal fat (ABF) and skin (SKIN) traits in a broiler chicken population, originated from the White Plymouth Rock and White Cornish breeds. Results ABF and SKIN are moderately heritable traits in our broiler population with estimates ranging from 0.23 to 0.33. Using a high density SNP panel (355,027 informative SNPs), we detected nine unique QTLs that were associated with these fat traits. Among these, four QTL were novel, while five have been previously reported in the literature. Thirteen PCGs were identified that might regulate fat deposition in these QTL regions: JDP2, PLCG1, HNF4A, FITM2, ADIPOR1, PTPN11, MVK, APOA1, APOA4, APOA5, ENSGALG00000000477, ENSGALG00000000483, and ENSGALG00000005043. We used sequence information from founder animals to detect 4843 SNPs in the 13 PCGs. Among those, two were classified as potentially deleterious and two as high impact SNPs. Conclusions This study generated novel results that can contribute to a better understanding of fat deposition in chickens. The use of high density array of SNPs increases genome coverage and improves QTL resolution than would have been achieved with low density. The identified PCGs were involved in many biological processes that regulate lipid storage. The SNPs identified in the PCGs, especially those predicted as potentially deleterious and high impact, may affect fat deposition. Validation should be undertaken before using these SNPs for selection against carcass fat accumulation and to improve feed efficiency in broiler chicken production. Electronic supplementary material The online version of this article (10.1186/s12864-018-4779-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Costa Monteiro Moreira
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Clarissa Boschiero
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - James M Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa, USA
| | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - Priscila Anchieta Trevisoli
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | | | | | | | | | | | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
23
|
Liu Z, Gu H, Gan L, Xu Y, Feng F, Saeed M, Sun C. Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue. Oncotarget 2018; 8:9267-9279. [PMID: 28030827 PMCID: PMC5354730 DOI: 10.18632/oncotarget.14035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Sirtuin 1 (Sirt1) promotes adaptive thermogenesis by controlling the acetylation status of enzymes and transcriptional factors in interscapular brown adipose tissue (iBAT). However, the effects of Sirt1 on endoplasmic reticulum (ER) stress and apoptosis of iBAT remain elusive. In this study, the mRNA levels of Sirt1 and thermogenesis genes were reduced but the genes related with ER stress were elevated in iBAT of high-fat diet (HFD)-induced obese mice. Moreover, ER stress further inhibited mRNA level of Sirt1 and triggered brown adipocyte apoptosis in vitro and in vivo. Further analysis revealed that Sirt1 overexpression alleviated ER stress-induced brown adipocyte apoptosis by inhibiting Smad3 and ATF4. In addition, Smad3 bound to ATF4 promoter region and positively transcriptional regulation of ATF4. Our data also confirmed that Sirt1 reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by directly interacting with ATF4. Furthermore, Sirt1 attenuated tunicamycin-induced cold intolerance and elevating thermogenesis by inhibiting ER stress and apoptosis in iBAT. In summary, our data collectively revealed Sirt1 reduced ER stress and apoptosis of brown adipocyte in vivo and in vitro by inhibiting Smad3/ATF4 signal. These data reveal a novel mechanism that links Sirt1 to brown adipocyte apoptosis.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huihui Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
24
|
Mellouk N, Ramé C, Barbe A, Grandhaye J, Froment P, Dupont J. Chicken Is a Useful Model to Investigate the Role of Adipokines in Metabolic and Reproductive Diseases. Int J Endocrinol 2018; 2018:4579734. [PMID: 30018639 PMCID: PMC6029501 DOI: 10.1155/2018/4579734] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ, ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on avian species.
Collapse
Affiliation(s)
- Namya Mellouk
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alix Barbe
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Pascal Froment
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| |
Collapse
|
25
|
Hu XF, Wang L, Lu YZ, Xiang G, Wu ZX, Yan YB, Zhang Y, Zhao X, Zang Y, Shi L, Lei W, Feng YF. Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro. Acta Biomater 2017. [PMID: 28624657 DOI: 10.1016/j.actbio.2017.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes-induced reactive oxygen species (ROS) overproduction would result in compromised osteointegration of titanium implant (TI) and high rate of implant failure, yet the underlying mechanisms remain elusive. Adiponectin (APN) is a fat-derived adipocytokine with strong antioxidant, mitochondrial-protective and anti-diabetic efficacies. We hypothesized that mitochondrial dysfunction under diabetes may account for the oxidative stress in osteoblasts and titanium-bone interface (TBI) instability, which could be ameliorated by APN. To test this hypothesis, we incubated primary rat osteoblasts on TI and tested the cellular behaviors when subjected to normal milieu (NM), diabetic milieu (DM), DM+APN, DM+AICAR (AMPK activator) and DM+APN+Compound C (AMPK inhibitor). In vivo, APN or APN+Compound C were administered to diabetic db/db mice with TI implanted in their femurs. Results showed that diabetes induced structural damage, dysfunction and content decrease of mitochondria in osteoblasts, which led to ROS overproduction, dysfunction and apoptosis of osteoblasts accompanied by the inhibition of AMPK signaling. APN alleviated the mitochondrial damage by activating AMPK, thus reversing osteoblast impairment and improving the osteointegration of TI evidenced by Micro-CT and histological analysis. Furthermore, AICAR showed beneficial effects similar to APN treatment, while the protective effects of APN were abolished when AMPK activation was blocked by Compound C. This study clarifies mitochondrial dysfunction as a crucial mechanism in the impaired bone healing and implant loosening in diabetes, and provides APN as a novel promising active component for biomaterial-engineering to improve clinical performance of TI in diabetic patients. STATEMENT OF SIGNIFICANCE The loosening rate of titanium implants in diabetic patients is high. The underlying mechanisms remain elusive and, with the rapid increase of diabetic morbility, efficacious strategies to mitigate this problem have become increasingly important. Our study showed that the mitochondrial impairment and the consequent oxidative stress in osteoblasts at the titanium-bone interface (TBI) play a critical role in the diabetes-induced poor bone repair and implant destabilization, which could become therapeutic targets. Furthermore, adiponectin, a cytokine, promotes the bio-functional recovery of osteoblasts and bone regeneration at the TBI in diabetes. This provides APN as a novel bioactive component used in material-engineering to promote the osteointegration of implants, which could reduce implant failure, especially for diabetic patients.
Collapse
|
26
|
Zhang X, Zhang Z, Zhao Y, Jiang N, Qiu J, Yang Y, Li J, Liang X, Wang X, Tse G, Li G, Liu T. Alogliptin, a Dipeptidyl Peptidase-4 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function and Biogenesis in Diabetic Rabbits. J Am Heart Assoc 2017; 6:e005945. [PMID: 28507060 PMCID: PMC5524117 DOI: 10.1161/jaha.117.005945] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is increasing evidence implicating atrial mitochondrial dysfunction in the pathogenesis of atrial fibrillation. In this study, we explored whether alogliptin, a dipeptidyl peptidase-4 inhibitor, can prevent mitochondrial dysfunction and atrial remodeling in a diabetic rabbit model. METHODS AND RESULTS A total of 90 rabbits were randomized into 3 groups as follows: control group (n=30), alloxan-induced diabetes mellitus group (n=30), and alogliptin-treated (12.5 mg/kg per day for 8 weeks) diabetes mellitus group (n=30). Echocardiographic and hemodynamic assessments were performed in vivo. The serum concentrations of glucagon-like peptide-1, insulin, and inflammatory and oxidative stress markers were measured. Electrophysiological properties of Langendorff-perfused rabbit hearts were assessed. Mitochondrial morphology, respiratory function, membrane potential, and reactive oxygen species generation rate were assessed. The protein expression of transforming growth factor β1, nuclear factor κB p65, and mitochondrial biogenesis-related proteins were measured by Western blot analysis. Diabetic rabbits exhibited left ventricular hypertrophy and left atrial dilation without obvious hemodynamic abnormalities, and all of these changes were attenuated by alogliptin. Compared with the control group, higher atrial fibrillation inducibility in the diabetes mellitus group was observed, and markedly reduced by alogliptin. Alogliptin decreased mitochondrial reactive oxygen species production rate, prevented mitochondrial membrane depolarization, and alleviated mitochondrial swelling in diabetic rabbits. It also improved mitochondrial biogenesis by peroxisome proliferator-activated receptor-γ coactivator 1α/nuclear respiratory factor-1/mitochondrial transcription factor A signaling regulated by adiponectin/AMP-activated protein kinase. CONCLUSIONS Dipeptidyl peptidase-4 inhibitors can prevent atrial fibrillation by reversing electrophysiological abnormalities, improving mitochondrial function, and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, SAR, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Gorshinova VK, Tsvirkun DV, Sukhanova IA, Tarasova NV, Volodina MA, Marey MV, Smolnikova VU, Vysokikh MY, Sukhikh GT. Cumulus cell mitochondrial activity in relation to body mass index in women undergoing assisted reproductive therapy. BBA CLINICAL 2017; 7:141-146. [PMID: 28660134 PMCID: PMC5481670 DOI: 10.1016/j.bbacli.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022]
Abstract
Most studies have considered the negative influence of obesity on fertility in both genders. In the present study, we assessed mitochondrial activity expressed as the mitochondrial potential index (MPI) in cumulus cells from obese women and women with a normal body mass index (BMI) during assisted reproductive therapy. The results revealed a significant reduction of MPI with increased body mass. The lower MPI levels in cumulus cells from obese women may reflect mitochondrial dysfunction caused by oxidative stress, which can affect the cumulus-oocyte complex and have an impact on oocyte development.
Collapse
Affiliation(s)
- Victoria K Gorshinova
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Daria V Tsvirkun
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Iuliia A Sukhanova
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation.,Lomonosov Moscow State University, Biology Faculty, Moscow, 1/12 Leninskie Gory, 119234, Russian Federation
| | - Nadezhda V Tarasova
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Maria A Volodina
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Maria V Marey
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Veronika U Smolnikova
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| | - Mikhail Yu Vysokikh
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation.,Belozerskii Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, 1 Leninskie gory, 119992, Russian Federation
| | - Gennady T Sukhikh
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Ministry of Healthcare of the Russian Federation, 4 Oparina street, Moscow 117997, Russian Federation
| |
Collapse
|
28
|
Genome-Wide Analysis of lncRNA and mRNA Expression During Differentiation of Abdominal Preadipocytes in the Chicken. G3-GENES GENOMES GENETICS 2017; 7:953-966. [PMID: 28108554 PMCID: PMC5345725 DOI: 10.1534/g3.116.037069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) regulate adipogenesis and other processes associated with metabolic tissue development and function. However, little is known about the function and profile of lncRNAs during preadipocyte differentiation in the chicken (Gallus gallus). Herein, lncRNA and mRNA expression in preadipocytes at different stages of differentiation were analyzed using RNA sequencing. A total of 1,300,074,528 clean reads and 27,023 novel lncRNAs were obtained from 12 samples. The number of genes (1336 lncRNAs and 1759 mRNAs; 3095 in total) differentially expressed across various stages declined as differentiation progressed. Differentially expressed genes were found to be involved in several pathways related to preadipocyte differentiation that have been extensively studied, including glycerolipid metabolism, and the mammalian target of rapamycin, peroxisome proliferator-activated receptor, and mitogen-activated protein kinase signaling pathways. To our knowledge, some pathways are being reported for the first time, including the propanoate metabolism, fatty acid metabolism, and oxidative phosphorylation pathways. Furthermore, 3095 differentially expressed genes were clustered into eight clusters, and their expression patterns were determined through K-means clustering. Genes involved in the K2 cluster likely play important roles in preadipocyte differentiation. Six stage-specific modules related to A0 (day 0), A2 (day 2), and A6 (day 6) stages were identified, using weighted coexpression network analysis. Nine central, highly connected .genes in stage-specific modules were subsequently identified, including XLOC_068731, XLOC_022661, XLOC_045161, XLOC_070302, CHD6, LLGL1, NEURL1B, KLHL38, and ACTR6. This study provides a valuable resource for further study of chicken lncRNA and facilitates a better understanding of preadipocyte differentiation in the chicken
Collapse
|
29
|
Agarwal S, Chattopadhyay M, Mukherjee S, Dasgupta S, Mukhopadhyay S, Bhattacharya S. Fetuin-A downregulates adiponectin through Wnt-PPARγ pathway in lipid induced inflamed adipocyte. Biochim Biophys Acta Mol Basis Dis 2017; 1863:174-181. [DOI: 10.1016/j.bbadis.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
|
30
|
Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis 2016; 7:e2487. [PMID: 27882945 PMCID: PMC5260871 DOI: 10.1038/cddis.2016.388] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Adiponectin is a cytokine produced predominantly by adipose tissue and correlates with glucose and lipid homeostasis. However, the effects of adiponectin on endoplasmic reticulum (ER) stress and apoptosis of adipose tissue remain elusive. In this study, we found that tunicamycin-induced ER stress increased serum free fatty acid (FFA) and impaired glucose tolerance, elevated the mRNA levels of GRP78, Chop, ATF2 and caspase 3, but reduced adiponectin mRNA level in white adipose tissue. Moreover, ER stress-triggered adipocyte apoptosis by increasing cellular FFA level and Ca2+ level. Further analysis revealed that adiponectin alleviated ER stress-induced adipocyte apoptosis by elevating peroxisome proliferator-activated receptor alpha (PPARα) mRNA level. Our data also confirmed that adiponectin reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by activating the AdipoR1/AMP-activated protein kinase (AMPK) signal pathway. In addition, PPARα bound to ATF2 promoter region and inhibited transcription of ATF2. The inhibition of adipocyte apoptosis by adiponectin was correlated with transcriptional suppression of ATF2. Furthermore, adiponectin inhibited ER stress-induced apoptosis by activating the AMPK/PKC pathway. In summary, our data demonstrate adiponectin inhibited ER stress and apoptosis of adipocyte in vivo and in vitro by activating the AMPK/PPARα/ATF2 pathway. Our study establishes that adiponectin is an important adipocytokine for preventing and treating obesity.
Collapse
|
31
|
Gan L, Liu Z, Wu T, Feng F, Sun C. αMSH promotes preadipocyte proliferation by alleviating ER stress-induced leptin resistance and by activating Notch1 signal in mice. Biochim Biophys Acta Mol Basis Dis 2016; 1863:231-238. [PMID: 27717825 DOI: 10.1016/j.bbadis.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/24/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
Abstract
Alpha-melanocyte stimulating hormone (αMSH) has an important role in the regulation of body weight and energy expenditure. Nevertheless, the molecular mechanisms of circulating αMSH on preadipocyte proliferation remain elusive. We found αMSH was reduced by high fat diet (HFD) while leptin was elevated in adipose tissue. Leptin resistance and endoplasmic reticulum (ER) stress of adipose tissue were increased in obese mice. αMSH increased leptin sensitivity and alleviated ER stress along with increased p-STAT3 level and reduced SOCS3, GRP78, CHOP, ATF4, p27 and p53 levels. αMSH and leptin co-treatment alleviated ER stress through decreasing the levels of GRP78 and CHOP. Tunicamycin (TM) or thapsigargin (Tg) induced ER stress blunted leptin sensitivity and inhibited preadipocyte proliferation. αMSH and leptin co-treatment increased the cell number, augmented G1-S transition, elevated leptin sensitivity, and reduced ER stress; it also activated Notch1 signal and stimulated preadipocyte proliferation, whereas ER stress marker genes were decreased during this process. However, the effects of αMSH and leptin were blocked by the specific inhibitor of Notch1 signal. In summary, our data revealed αMSH enhanced leptin sensitivity and preadipocyte proliferation, meanwhile inhibited ER stress of preadipocytes by activating Notch1 signal.
Collapse
Affiliation(s)
- Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Liu Z, Gan L, Liu G, Chen Y, Wu T, Feng F, Sun C. Sirt1 decreased adipose inflammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in mice. J Lipid Res 2016; 57:1373-81. [PMID: 27317762 DOI: 10.1194/jlr.m063537] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Sirtuin type 1 (Sirt1) and protein kinase B (Akt2) are associated with development of obesity and inflammation, but the molecular mechanisms of Sirt1 and Akt2 interaction on adipose inflammation remain unclear. To explore these mechanisms, a mouse model was used. Mice were fed with a high-fat diet (HFD) for 8 weeks, with interventions of resveratrol (RES) or nicotinamide (NAM) during the last 15 days. The HFD reduced Sirt1 mRNA in adipose tissue and elevated interleukin-6 (IL-6) expression. RES reduced the adipose tissue weight, increased the Sirt1 mRNA level, and reduced both mRNA and protein levels of IL-6, MCP-1, inducible nitric oxide synthase, and TNF-α by inhibiting phosphorylation of Akt2 in adipose tissue. Additionally, macrophage type I marker genes were reduced while macrophage type II marker genes were elevated by RES addition. Moreover, activation of Akt2 signal by using insulin significantly blunted the inhibitory effect of RES on adipose inflammation. Immunoprecipitation assay demonstrated that RES enhances the protein-protein interaction between Sirt1 and Akt2, but NAM inhibits this interaction. Furthermore, Sirt1 significantly reduced the levels of raptor and inactivated mammalian target of rapamycin (mTOR)C1 signal by interacting with Akt2, and confirmed that RES attenuated adipose inflammation by inhibiting the mTOR/S6K1 pathway via rapamycin.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guannv Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Kikusato M, Muroi H, Uwabe Y, Furukawa K, Toyomizu M. Oleuropein induces mitochondrial biogenesis and decreases reactive oxygen species generation in cultured avian muscle cells, possibly via an up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α. Anim Sci J 2016; 87:1371-1378. [DOI: 10.1111/asj.12559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| | - Hikaru Muroi
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| | - Yuichiro Uwabe
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| | - Kyohei Furukawa
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| |
Collapse
|