1
|
Azuaje-Hualde E, Lartitegui-Meneses N, Alonso-Cabrera J, Inchaurraga-Llamas A, Alvarez-Braña Y, Martínez-dePancorbo M, Benito-Lopez F, Basabe-Desmonts L. CellStudio: a Modular, Tunable and Accessible Platform for Analysis of Growth Factors Secretions in Cell Cultures. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8914-8923. [PMID: 39881577 DOI: 10.1021/acsami.4c17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Traditional cell culture methods face significant limitations in monitoring cell secretions with spatial and temporal precision. Advanced microsystems incorporating biosensors have been developed to address these challenges, but they tend to lack versatility, and their complexity, along with the requirement for specialized equipment, limits their broader adoption. CellStudio offers an innovative, user-friendly solution that exploits Printing and Vacuum Lithography combined with bead-based assays to create modular and tunable cell patterns surrounded by biosensors. This platform allows for high-resolution, spatially resolved analysis of secreted proteins, such as VEGF and FGF-2, while being easily implementable in standard laboratory settings. CellStudio's design is compatible with conventional laboratory equipment, facilitating its integration into existing workflows without the need for extensive training or specialized tools. Validation experiments using mesenchymal stem cells and HeLa cells demonstrated that CellStudio can detect small secretion levels from small cell clusters with high sensitivity and analyze diffusion profiles, remarking the possibilities for studying cell behavior. By offering a standardized, cost-effective approach to detailed cellular analysis, CellStudio significantly enhances the capabilities of traditional cell culture techniques with broad applications across biological and biomedical research.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Naiara Lartitegui-Meneses
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juncal Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Asier Inchaurraga-Llamas
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Yara Alvarez-Braña
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Marian Martínez-dePancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Basque Foundation of Science, IKERBASQUE, Bilbao 48011, Spain
| |
Collapse
|
2
|
Cecerska-Heryć E, Goszka M, Gliźniewicz M, Grygorcewicz B, Serwin N, Stodolak P, Słodzińska W, Birger R, Polikowska A, Budkowska M, Rakoczy R, Dołęgowska B. The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets. Int J Mol Sci 2024; 25:3644. [PMID: 38612456 PMCID: PMC11012199 DOI: 10.3390/ijms25073644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Platelets are actively involved in tissue injury site regeneration by producing a wide spectrum of platelet-derived growth factors such as PDGF (platelet-derived growth factor), IGF-1 (insulin-like growth factor), TGF-β1 (transforming growth factor β), FGF (fibroblast growth factor), etc. A rotating magnetic field (RMF) can regulate biological functions, including reduction or induction regarding inflammatory processes, cell differentiation, and gene expression, to determine the effect of an RMF on the regenerative potential of platelets. The study group consisted of 30 healthy female and male volunteers (n = 15), from which plasma was collected. A portion of the plasma was extracted and treated as an internal control group. Subsequent doses of plasma were exposed to RMF at different frequencies (25 and 50 Hz) for 1 and 3 h. Then, the concentrations of growth factors (IGF-1, PDGF-BB, TGF-β1, and FGF-1) were determined in the obtained material by the ELISA method. There were statistically significant differences in the PDGF-BB, TGF-β1, IGF-1, and FGF-1 concentrations between the analyzed groups. The highest concentration of PDGF-BB was observed in the samples placed in RMF for 1 h at 25 Hz. For TGF-β1, the highest concentrations were obtained in the samples exposed to RMF for 3 h at 25 Hz and 1 h at 50 Hz. The highest concentrations of IGF-1 and FGF-1 were shown in plasma placed in RMF for 3 h at 25 Hz. An RMF may increase the regenerative potential of platelets. It was noted that female platelets may respond more strongly to RMF than male platelets.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Bartłomiej Grygorcewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
- Department of Forensic Genetic, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Weronika Słodzińska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Radosław Birger
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71-311 Szczecin, Poland; (B.G.); (R.R.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.G.); (M.G.); (N.S.); (P.S.); (W.S.); (R.B.); (A.P.); (B.D.)
| |
Collapse
|
3
|
Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X, Liu F, Zhang L. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther 2023; 14:381. [PMID: 38124129 PMCID: PMC10734083 DOI: 10.1186/s13287-023-03587-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
With the continuous improvement of human technology, the medical field has gradually moved from molecular therapy to cellular therapy. As a safe and effective therapeutic tool, cell therapy has successfully created a research boom in the modern medical field. Mesenchymal stem cells (MSCs) are derived from early mesoderm and have high self-renewal and multidirectional differentiation ability, and have become one of the important cores of cell therapy research by virtue of their immunomodulatory and tissue repair capabilities. In recent years, the application of MSCs in various diseases has received widespread attention, but there are still various problems in the treatment of MSCs, among which the heterogeneity of MSCs may be one of the causes of the problem. In this paper, we review the correlation of MSCs heterogeneity to provide a basis for further reduction of MSCs heterogeneity and standardization of MSCs and hope to provide a reference for cell therapy.
Collapse
Affiliation(s)
- Jingxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030600, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Schönborn M, Gregorczyk-Maga I, Batko K, Bogucka K, Maga M, Płotek A, Pasieka P, Słowińska-Solnica K, Maga P. Circulating Angiogenic Factors and Ischemic Diabetic Foot Syndrome Advancement-A Pilot Study. Biomedicines 2023; 11:1559. [PMID: 37371653 DOI: 10.3390/biomedicines11061559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Despite clear evidence of inadequate angiogenesis in ischemic diabetic foot syndrome (DFS) pathogenesis, angiogenic factor level changes in patients with ischemic DFS remain inconsistent. This study aimed to assess circulating angiogenic factors concerning ischemic DFS advancement and describe their relationships with patients' clinical characteristics, microvascular parameters, and diabetic control. The study included 41 patients with ischemic DFS (67.3 (8.84) years; 82.9% males). Angiogenic processes were assessed by identifying circulating concentrations of five pro- and two anti-angiogenic factors. We found that penetrating ulcers were related to a significantly higher FGF-2 level (8.86 (5.29) vs. 5.23 (4.17) pg/mL, p = 0.02). Moreover, plasma FGF-2 showed a significant correlation with the SINBAD score (r = 0.32, p = 0.04), platelet count (r = 0.43, p < 0.01), white cell count (r = 0.42, p < 0.01), and age (r = -0.35, p = 0.03). We did not observe any significant linear relationship between the studied biomarkers and microcirculatory parameters, nor for glycemic control. In a univariate analysis using logistic regression, an increase in plasma FGF-2 was tied to greater odds of high-grade ulcers (OR 1.16; 95% CI 1.02-1.38, p = 0.043). This suggests that circulating FGF-2 may serve as a potential biomarker for predicting DFU advancement and progression. It is necessary to conduct further studies with follow-up observations to confirm this hypothesis.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, 31-007 Krakow, Poland
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Iwona Gregorczyk-Maga
- Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Krzysztof Batko
- Department of Research and Development, Medicine Economy Law Society (MELS) Foundation, 30-040 Krakow, Poland
| | - Katarzyna Bogucka
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Mikołaj Maga
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland
- Department of Rehabilitation in Internal Medicine, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Anna Płotek
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland
| | - Patrycja Pasieka
- Department of Dermatology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | | | - Paweł Maga
- Department of Angiology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Clinical Department of Angiology, University Hospital in Krakow, 30-688 Krakow, Poland
| |
Collapse
|
6
|
Park JS, Kim D, Hong HS. Priming with a Combination of FGF2 and HGF Restores the Impaired Osteogenic Differentiation of Adipose-Derived Stem Cells. Cells 2022; 11:cells11132042. [PMID: 35805126 PMCID: PMC9265418 DOI: 10.3390/cells11132042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Classical aging-associated diseases include osteoporosis, diabetes, hypertension, and arthritis. Osteoporosis causes the bone to become brittle, increasing fracture risk. Among the various treatments for fractures, stem cell transplantation is currently in the spotlight. Poor paracrine/differentiation capacity, owing to donor age or clinical history, limits efficacy. Lower levels of fibroblast growth factor 2 (FGF2) and hepatocyte growth factor (HGF) are involved in cell repopulation, angiogenesis, and bone formation in the elderly ADSCs (ADSC-E) than in the young ADSCs (ADSC-Y). Here, we study the effect of FGF2/HGF priming on the osteogenic potential of ADSC-E, determined by calcium deposition in vitro and ectopic bone formation in vivo. Age-induced FGF2/HGF deficiency was confirmed in ADSCs, and their supplementation enhanced the osteogenic differentiation ability of ADSC-E. Priming with FGF2/HGF caused an early shift of expression of osteogenic markers, including Runt-related transcription factor 2 (Runx-2), osterix, and alkaline phosphatase (ALP) during osteogenic differentiation. FGF2/HGF priming also created an environment favorable to osteogenesis by facilitating the secretion of bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). Bone tissue of ADSC-E origin was observed in mice transplanted with FGF/HGF-primed ADSC-E. Collectively, FGF2/HGF priming could enhance the bone-forming capacity in ADSC-E. Therefore, growth factor-mediated cellular priming can enhance ADSC differentiation in bone diseases and thus contributes to the increased efficacy in vivo.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Doyoung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-958-1828
| |
Collapse
|
7
|
Mallick A, Xu L, Mehta S, Taylor SKB, Hosein H, Gupta BP. The FGFR4 Homolog KIN-9 Regulates Lifespan and Stress Responses in Caenorhabditis elegans. FRONTIERS IN AGING 2022; 3:866861. [PMID: 35821842 PMCID: PMC9261393 DOI: 10.3389/fragi.2022.866861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) regulate diverse biological processes in eukaryotes. The nematode Caenorhabditis elegans is a good animal model for studying the roles of FGFR signaling and its mechanism of regulation. In this study, we report that KIN-9 is an FGFR homolog in C. elegans that plays essential roles in aging and stress response maintenance. kin-9 was discovered as a target of miR-246, a microRNA that is positively regulated by the Axin family member pry-1. We found that animals lacking kin-9 function were long-lived and resistant to chemically induced stress. Furthermore, they showed a reduced expression of endoplasmic reticulum unfolded protein response (ER-UPR) pathway genes, suggesting that kin-9 is required to maintain a normal ER-UPR. The analysis of GFP reporter-based expression in transgenic animals revealed that KIN-9 is localized in the intestine. Overall, our findings demonstrate that kin-9 is regulated by miR-246 and may function downstream of pry-1. This study prompts future investigations to understand the mechanism of miRNA-mediated FGFR function in maintaining aging and stress response processes.
Collapse
|
8
|
Atallah I, Cieza Rivera AM, Rivero Lezcano OM, Tascón-González L, González-Cortés C, Diez Tascón C, Fernández-Villa T, Martín V. Increased serum concentrations of estrogen-induced growth factors Midkine and FGF2 in NF1 patients with plexiform neurofibroma. Am J Transl Res 2022; 14:3180-3188. [PMID: 35702135 PMCID: PMC9185072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/04/2021] [Indexed: 06/15/2023]
Abstract
Neurofibromatosis type 1 (NF1) predisposes to the development of dermal and plexiform neurofibromas and serum of NF1 patients stimulates neurofibroma proliferation in vitro. This study aimed to determine whether, in NF1 patients, serum levels of midkine (MK) and fibroblast growth factor 2 (FGF2) were associated with the number and/or type of neurofibromas. In addition, their concentrations were correlated with serum levels of dehydroepiandrosterone sulfate (DHEAS), a neurosteroid secreted by the peripheral nervous system. We performed a case control-study and measured, by ELISA assay, serum concentrations of MK, FGF2, and DHEAS in 20 NF1 patients and 30 controls. We found increased serum levels of MK and FGF2 in NF1 patients between 30 and 50 years old. Their concentrations were significantly higher in NF1 patients with plexiform neurofibromas than in controls (P=0.003 for MK and P=0.008 for FGF2). As an underlying hormonal regulation was suspected, DHEAS serum levels were measured but no difference was observed between patients and controls. We also observed a strong association between MK and FGF2 levels (P=0.0001) in NF1 patients and controls. In conclusion, we point out MK and FGF2 as biomarkers for plexiform neurofibroma in NF1 patients. As both growth factors are estrogen-responsive genes and neurofibromin is a co-repressor of estrogen receptor alpha activity, we suggest that the increased serum levels of MK and FGF2 observed in NF1 patients might be due to estradiol hypersensitivity.
Collapse
Affiliation(s)
- Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital1011 Lausanne, Switzerland
- Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de LeónLeón 24071, Spain
| | - Ana M Cieza Rivera
- Research Group in Gen-Environmental and Health Interactions (GIIGAS)-Institute of Biomedicine (IBIOMED), Universidad de LeónLeón, Spain
| | - Octavio M Rivero Lezcano
- Research Group in Gen-Environmental and Health Interactions (GIIGAS)-Institute of Biomedicine (IBIOMED), Universidad de LeónLeón, Spain
- Unit of Investigation, Hospital of LeónLeón, Spain
- Institute of Biomedical Research of Salamanca (IBSAL)Spain
| | | | | | - Cristina Diez Tascón
- Research Group in Gen-Environmental and Health Interactions (GIIGAS)-Institute of Biomedicine (IBIOMED), Universidad de LeónLeón, Spain
| | - Tania Fernández-Villa
- Research Group in Gen-Environmental and Health Interactions (GIIGAS)-Institute of Biomedicine (IBIOMED), Universidad de LeónLeón, Spain
| | - Vicente Martín
- Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de LeónLeón 24071, Spain
- Research Group in Gen-Environmental and Health Interactions (GIIGAS)-Institute of Biomedicine (IBIOMED), Universidad de LeónLeón, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP)Madrid, Spain
| |
Collapse
|
9
|
Effects of Coculture Fibroblasts and Vascular Endothelial Cells on Proliferation and Osteogenesis of Adipose Stem Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6288695. [PMID: 35069787 PMCID: PMC8776444 DOI: 10.1155/2022/6288695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Background The development of tissue engineering provides a new method for the clinical treatment of bone defects, but the problems of slow formation and slow vascularization of tissue engineered bone have always existed. Studies have shown that the combined culture system of vascular endothelial cells and adipose stem cells is superior to single cell in repairing bone defects. With the excellent proliferation ability, secretion of synthetic collagen and a variety of regulatory factors and fibroblasts can differentiate into osteoblasts and have the potential to be excellent seed cells involved in tissue engineering bone construction. Objective To investigate the effects of combined culture of fibroblasts, vascular endothelial cells, and adipose stem cells on proliferation and osteogenic differentiation of adipose stem cells. Methods The cells were divided into 4 groups: adipose stem cell group, adipose stem cell+vascular endothelial cell coculture group, adipose stem cell+fibroblast coculture group, and adipose stem cell+vascular endothelial cell+fibroblast coculture group. The morphological changes of the cells were observed under an inverted microscope. After 1, 3, 5, 7, and 9 days of coculture, the proliferation of adipose stem cells in each group was detected by a CCK-8 method and the growth curve was plotted. Adipose stem cells in each group were stained with alizarin red and alkaline phosphatase at days 7, 14, 21, and 28. At the third week of coculture, Western blot was used to detect the expression level of bone morphogenetic protein 2 of adipose stem cells in each group. Results and Conclusions. (1) After 14 days of culture, some cells in the adipose stem cell+vascular endothelial cell+fibroblast coculture group fused into clumps and distributed in nests, while the adipose stem cells in the adipose stem cell group had a single cell morphology and no cell clusters were observed. (2) The cell growth curves were basically the same in each group, and the absorbance value increased gradually. The absorbance value of the adipocyte+vascular endothelial cell+fibroblast coculture group was the highest, followed by the adipocyte+fibroblast coculture group and then the adipocyte+fibroblast coculture group. (3) Alizarin red staining showed negative reaction in each group on the 7th day, and a small number of red positive cells gradually appeared in each group as time went on. On the 28th day, red positive cells were found in all groups, and most of them were in the coculture group of adipose stem cells+vascular endothelial cells+fibroblasts, showing red focal. The coculture group of adipose stem cells+vascular endothelial cells and adipose stem cells+fibroblasts was less, and the adipose stem cell group was the least. On day 28 of alkaline phosphatase staining, cells in each group had red positive particles, and the adipose stem cell+vascular endothelial cell+fibroblast coculture group and adipose stem cell+fibroblast coculture group had the most, followed by the adipose stem cell+vascular endothelial cell coculture group and then the adipose stem cell group. (4) Bone morphogenetic protein 2 was expressed in all groups, especially in adipose stem cell+fibroblast coculture group and adipose stem cell+vascular endothelial cell+ fibroblast coculture group. (5) Fibroblast could promote adipose stem cell osteogenic differentiation better than vascular endothelial cells, but the proliferation effect was not as good as vascular endothelial cells. The coculture system of fibroblast combined with vascular endothelial cells and adipose stem cells promoted the proliferation of adipose stem cells and the rapid and efficient differentiation of adipose stem cells into osteoblasts.
Collapse
|
10
|
Bryant EM, Richardson R, Graham BM. The Association Between Salivary FGF2 and Physiological and Psychological Components of the Human Stress Response. CHRONIC STRESS 2022; 6:24705470221114787. [PMID: 35874911 PMCID: PMC9297468 DOI: 10.1177/24705470221114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Background Fibroblast Growth Factor 2 (FGF2) is a neurotrophic protein that has been implicated as a biomarker for anxiety and depressive disorders, which comprise a significant component of the global burden of disease. Research using rodents has indicated that FGF2 is part of the stress response, but whether this translates to humans has yet to be investigated. In this study, we aimed to explore the potential role of FGF2 in the human stress response by examining its association with physiological and psychological processes during and following the Trier Social Stress Test (TSST). Methods Participants in the active stress experiment (N = 87) underwent the TSST, provided saliva samples to obtain levels of cortisol and FGF2, and reported on post-event rumination related to the TSST task over the following week. Participants in the no-stress experiment (N = 25) provided saliva samples for measurement of FGF2 and cortisol across a corresponding time period. Results Salivary FGF2 levels changed after the TSST and were associated with the pattern of change in salivary cortisol. Cortisol responses in the active stress condition were blunted in females (relative to males), however, sex did not interact with any other effect. FGF2 reactivity (ie, the magnitude of change over time) was not correlated with cortisol reactivity. Lower FGF2 reactivity following the TSST, but not overall FGF2 levels, or cortisol, was associated with higher fear of negative evaluation, repetitive negative thinking and post-event processing, as well as repetitive negative thinking in the week following the TSST. Participants in the no-stress experiment showed a decrease in cortisol, yet no change in their FGF2 levels. Conclusion These findings suggest that FGF2 is involved in the human stress response and higher levels of FGF2 reactivity may be associated with protective cognitive processes following stress exposure.
Collapse
Affiliation(s)
- Emma M. Bryant
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| | - Rick Richardson
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| | - Bronwyn M. Graham
- University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Kuhn LT, Peng T, Gronowicz G, Hurley MM. Endogenous FGF-2 levels impact FGF-2/BMP-2 growth factor delivery dosing in aged murine calvarial bone defects. J Biomed Mater Res A 2021; 109:2545-2555. [PMID: 34173706 PMCID: PMC9943554 DOI: 10.1002/jbm.a.37249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Bone repair in elderly mice has been shown to be improved or negatively impacted by supplementing the highly osteogenic bone morphogenetic protein-2 (BMP-2) with fibroblast growth factor-2 (FGF-2). To better predict the outcome of FGF-2 supplementation, we investigated whether endogenous levels of FGF-2 play a role in optimal dosing of FGF-2 for augmenting BMP-2 activity in elderly mice. In vivo calvarial bone defect studies in Fgf2 knockout mice with wildtype controls were conducted with the growth factors delivered in a highly localized manner from a biomimetic calcium phosphate/polyelectrolyte multilayer coating applied to a bone graft substitute. Endogenous FGF-2 levels were measured in old mice versus young and found to decrease with age. Optimal dosing for improving bone defect repair correlated with levels of endogenous FGF-2, with a larger dose of FGF-2 required to have a positive effect on bone healing in the Fgf2 knockout mice. The same dose in wildtype old mice, with higher levels of FGF-2, promoted chondrogenesis and increased osteoclast activity. The results suggest a personalized medicine approach, based on a knowledge of endogenous levels of FGF-2, should guide FGF-2 supplementation in order to avoid provoking excessive bone resorption and cartilage formation, both of which inhibited calvarial bone repair.
Collapse
Affiliation(s)
- Liisa T Kuhn
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Peng
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gloria Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Marja M Hurley
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
13
|
Li J, Song S, Li X, Zhu J, Li W, Du B, Guo Y, Xi X, Han R. Down-Regulation of Fibroblast Growth Factor 2 (FGF2) Contributes to the Premature Senescence of Mouse Embryonic Fibroblast. Med Sci Monit 2020; 26:e920520. [PMID: 32188838 PMCID: PMC7104787 DOI: 10.12659/msm.920520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Freshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs. Material/Methods Primary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco’s Modified Eagle Medium for 9 passages. SA-β-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium. Results The senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs. Conclusions The premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.
Collapse
Affiliation(s)
- Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Shuo Song
- Department of Science and Education, Shenzhen Samii Medical Center, Shenzhen, Guangdong, China (mainland)
| | - Xingchao Li
- Department of Pediatric Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Jing Zhu
- Department of Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Wenjuan Li
- Department of Pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Boyu Du
- Department of Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Yang Guo
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Xueyan Xi
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Rongfei Han
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Department of Laboratory Medicine, Suizhou Central Hospital, Suizhou, Hubei, China (mainland)
| |
Collapse
|
14
|
Jung JS, Volk C, Marga C, Navarrete Santos A, Jung M, Rujescu D, Navarrete Santos A. Adipose-Derived Stem/Stromal Cells Recapitulate Aging Biomarkers and Show Reduced Stem Cell Plasticity Affecting Their Adipogenic Differentiation Capacity. Cell Reprogram 2019; 21:187-199. [PMID: 31298565 DOI: 10.1089/cell.2019.0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stromal mesenchymal stem cells (MSCs) have the capability to self-renew and can differentiate into multiple cell types of the mesoderm germ layer, but their properties are affected by molecular aging mechanisms. MSCs can be obtained from adipose tissue termed as adipose-derived stem/stromal cells (ASCs) representing a promising tool for studying age-related diseases in detail. ASCs from young (16 weeks) and old (>108 weeks) rabbits were successfully isolated and propagated. ASCs showed the typical morphology and stained positive for CD105, Vimentin, Collagenase 1A, and negative for CD14, CD90, and CD73, demonstrating their mesenchymal origin. ASCs expressed MSC markers, including MYC, KLF4, CHD1, REST, and KAT6A, whereas pluripotency-related genes, such as NANOG, OCT4, and SOX2, were not expressed. Aged ASCs showed altered protein and mRNA levels of APOE, ATG7, FGF2, PTEN, and SIRT1. Adipogenic differentiation of old visceral ASCs was significantly decreased compared with young visceral ASCs. We successfully established rabbit ASC cultures representing an in vitro model for the analysis of stem cell aging mechanisms. ASCs, obtained from old female rabbits, showed age- and source-specific alteration due to aging of the donor. Stem cell plasticity was altered with age as shown by reduced adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Juliane-Susanne Jung
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Christin Volk
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Christina Marga
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Alexander Navarrete Santos
- 2Center for Medical Basic Research, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Matthias Jung
- 3Department of Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Dan Rujescu
- 3Department of Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Anne Navarrete Santos
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| |
Collapse
|
15
|
Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019; 203:96-110. [PMID: 29980291 PMCID: PMC6733253 DOI: 10.1016/j.biomaterials.2018.06.026] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Bone has well documented natural healing capacity that normally is sufficient to repair fractures and other common injuries. However, the properties of bone change throughout life, and aging is accompanied by increased incidence of bone diseases and compromised fracture healing capacity, which necessitate effective therapies capable of enhancing bone regeneration. The therapeutic potential of adult mesenchymal stem cells (MSCs) for bone repair has been long proposed and examined. Actions of MSCs may include direct differentiation to become bone cells, attraction and recruitment of other cells, or creation of a regenerative environment via production of trophic growth factors. With systemic aging, MSCs also undergo functional decline, which has been well investigated in a number of recent studies. In this review, we first describe the changes in MSCs during aging and discuss how these alterations can affect bone regeneration. We next review current research findings on bone tissue engineering, which is considered a promising and viable therapeutic solution for structural and functional restoration of bone. In particular, the importance of MSCs and bioscaffolds is highlighted. Finally, potential approaches for the prevention of MSC aging and the rejuvenation of aged MSC are discussed.
Collapse
Affiliation(s)
- Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Mark T Langhans
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. Gene 2019; 692:79-87. [PMID: 30641220 DOI: 10.1016/j.gene.2018.12.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent cells that can be widely used in stem cell therapy. However, few studies have revealed the potential mechanisms of the changes in aging MSC. MATERIALS AND METHODS In this study, microarray data GSE35955 was downloaded from the Gene Expression Omnibus database. Then limma package in R was used to filtrate differentially expressed genes (DEGs), Transcription factors (TFs) were predicted by DCGL package. After predicting TFs, protein-protein interaction (PPI) network and TF-mediated transcriptional regulation network were constructed. The functional and pathway enrichment analysis of screened DEGs, hub genes and TFs were conducted by the DAVID. RESULTS Totally 156 up-regulated DEGs and 343 down-regulated DEGs were obtained. 6 hub genes (CTNNB1, PPP2R1A, FYN, MAPK1, PIK3C2A and EP300) were obtained from PPI network. 11 TFs (CREB1, CUX1, EGR1, EP300, FOXC1, HSF2, MEF2A, PLAU, SP1, STAT1 and USF1) for DEGs were predicted and 2 highly scored co-expression relationships (EP300-PPP2R1A and STAT1-FOXC1) were acquired from the TF-mediated transcriptional regulation network. CONCLUSIONS The discovery of the hub genes, TFs and pathways might contribute to the understanding of genetic and molecular functions of aging-related changes in MSC. Further validation studies on genes and TFs such as CTNNB1, FYN, PPP2R1A, MAPK1, EP300 and related biological processes and pathways, including adherens junction, DNA damage caused from oxidative stress, attribution of telomere, MSC differentiation and epigenetic regulation, are urgent for clinical prevention and treatment.
Collapse
|
17
|
Shao Z, Wu J, Du G, Song H, Li SH, He S, Li J, Wu J, Weisel RD, Yuan H, Li RK. Young bone marrow Sca-1 cells protect aged retina from ischaemia-reperfusion injury through activation of FGF2. J Cell Mol Med 2018; 22:6176-6189. [PMID: 30255622 PMCID: PMC6237572 DOI: 10.1111/jcmm.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 08/19/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cell apoptosis and optic nerve degeneration are prevalent in aged patients, which may be related to the decrease in bone marrow (BM) stem cell number/function because of the possible cross‐talk between the two organs. This pathological process is accelerated by retinal ischaemia‐reperfusion (I/R) injury. This study investigated whether young BM stem cells can regenerate and repair the aged retina after acute I/R injury. Young BM stem cell antigen 1 positive (Sca‐1+) or Sca‐1− cells were transplanted into lethally irradiated aged recipient mice to generate Sca‐1+ and Sca‐1− chimaeras, respectively. The animals were housed for 3 months to allow the young Sca‐1 cells to repopulate in the BM of aged mice. Retinal I/R was then induced by elevation of intraocular pressure. Better preservation of visual function was found in Sca‐1+ than Sca‐1− chimaeras 7 days after injury. More Sca‐1+ cells homed to the retina than Sca‐1− cells and more cells differentiated into glial and microglial cells in the Sca‐1+ chimaeras. After injury, Sca‐1+ cells in the retina reduced host cellular apoptosis, which was associated with higher expression of fibroblast growth factor 2 (FGF2) in the Sca‐1+ chimaeras. Young Sca‐1+ cells repopulated the stem cells in the aged retina and diminished cellular apoptosis after acute I/R injury through FGF2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Zhengbo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jie Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Guoqing Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Huifang Song
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sheng He
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Cardiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Xiao L, Fei Y, Hurley MM. FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation. Bone Rep 2018; 9:136-144. [PMID: 30258857 PMCID: PMC6152810 DOI: 10.1016/j.bonr.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/30/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanisms of the anabolic effect of parathyroid hormone (PTH) in bone are not fully defined. The bone anabolic effects of PTH require fibroblast growth factor 2 (FGF2) as well as Wnt signaling and FGF2 modulates Wnt signaling in osteoblasts. In vivo PTH administration differentially modulated Wnt signaling in bones of wild type (WT) and in mice that Fgf2 was knocked out (Fgf2KO). PTH increased Wnt10b mRNA and protein in WT but not in KO mice. Wnt antagonist SOST mRNA and protein was significantly higher in KO group. However, PTH decreased Sost mRNA significantly in WT as well as in Fgf2KO mice, but to a lesser extent in Fgf2KO. Dickhopf 2 (DKK2) is critical for osteoblast mineralization. PTH increased Dkk2 mRNA in WT mice but the response was impaired in Fgf2KO mice. PTH significantly increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH increased β-catenin expression and Wnt/β-catenin transcriptional activity significantly in WT but not in Fgf2KO mice. These data suggest that the impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling. In vivo PTH administration differentially modulated Wnt signaling in bones of WT and Fgf2KO mice. PTH treatment increased WNT10b and DKK2 expression in WT mice but the increase was blunted in Fgf2KO mice PTH increased Lrp5 mRNA and phosphorylation of Lrp6 in WT but the increase was markedly attenuated in Fgf2KO mice. PTH treatment increased β-catenin protein level and Wnt/β-catenin transcriptional activity in WT but not in Fgf2KO mice The impaired bone anabolic response to PTH in Fgf2KO mice is partially mediated by attenuated Wnt signaling.
Collapse
Affiliation(s)
| | | | - Marja M. Hurley
- Corresponding author at: Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
19
|
Eto S, Goto M, Soga M, Kaneko Y, Uehara Y, Mizuta H, Era T. Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One 2018; 13:e0200790. [PMID: 30044827 PMCID: PMC6059447 DOI: 10.1371/journal.pone.0200790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from adult human tissues are capable of proliferating in vitro and maintaining their multipotency, making them attractive cell sources for regenerative medicine. However, the availability and capability of self-renewal under current preparation regimes are limited. Induced pluripotent stem cells (iPSCs) now offer an alternative, similar cell source to MSCs. Herein, we established new methods for differentiating hiPSCs into MSCs via mesoderm-like and neuroepithelium-like cells. Both derived MSC populations exhibited self-renewal and multipotency, as well as therapeutic potential in mouse models of skin wounds, pressure ulcers, and osteoarthritis. Interestingly, the therapeutic effects differ between the two types of MSCs in the disease models, suggesting that the therapeutic effect depends on the cell origin. Our results provide valuable basic insights for the clinical application of such cells.
Collapse
Affiliation(s)
- Shinya Eto
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mizuki Goto
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
- * E-mail: (TE); (MG)
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yumi Kaneko
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail: (TE); (MG)
| |
Collapse
|
20
|
Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone. Int J Biol Macromol 2018; 109:338-349. [DOI: 10.1016/j.ijbiomac.2017.12.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
|
21
|
Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19010311. [PMID: 29361725 PMCID: PMC5796255 DOI: 10.3390/ijms19010311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).
Collapse
Affiliation(s)
- Karen A Boehme
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| | - Sabine B Schleicher
- Department of Hematology and Oncology, Eberhard Karls University Tuebingen, Children's Hospital, 72076 Tuebingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|