1
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
3
|
de Almeida Schneider R, Barros Terraciano P, Zanon P, Quandt L, Zanini Gotardi DH, Alves Garcez TN, Santi L, Beys da Silva WO, Sereno Montenegro I, Yates J, Almeida Guimarães J, Pandolfi Passos E, Berger M. Mechanisms involved in the cytoprotective effects of Lonomia obliqua venom on human endometrial stromal cells. Toxicon 2024; 240:107630. [PMID: 38342412 DOI: 10.1016/j.toxicon.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The pathophysiology of recurrent pregnancy loss (RPL) involves deficiencies in the proliferation and migration capacities of endometrial stromal cells (hESCs), which impair embryo implantation and development. Since animal venoms are rich source of bioactive molecules, we aimed to characterize the cytoprotective effects of Lonomia obliqua venom on hESCs. hESCs were isolated from endometrial biopsies and the mechanisms of L. obliqua venomous secretions on cell viability, proliferation and migration were characterized. Venom components were identified by chromatography and proteomic analyses. L. obliqua venom induced hESC proliferation, viability and migration in a dose-dependent manner, both in the presence and absence of serum. By ion-exchange chromatography, one fraction enriched in cytoprotective components and devoid of hemotoxins was obtained. Venom proteome identified at least six protein classes with potential cytoprotective properties (hemolins, lipocalins, hemocyannins, antiviral proteins, antimicrobial peptides, and protease inhibitors). L. obliqua venom protected hESCs from oxidative insult. Cytoprotection was also related to nitric oxide and PKC-ERK-activation and down-regulation of cAMP-PKA-dependent pathways that control cell proliferation. L. obliqua venom-induced hESC viability, proliferation and migration occurs mainly by protecting against oxidative damage and activating ERK. Thus, L. obliqua venom components are promising pharmacological tools to understand the underlying mechanisms of hESC deficiency in RPL.
Collapse
Affiliation(s)
- Raquel de Almeida Schneider
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Debora Helena Zanini Gotardi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys da Silva
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivan Sereno Montenegro
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jorge Almeida Guimarães
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Galgaro BC, Beckenkamp LR, Naasani LIS, Wink MR. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Hum Cell 2023; 36:2247-2258. [PMID: 37535223 DOI: 10.1007/s13577-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have unique biological properties and play important functions, which make them attractive tools for cell-based therapies. The basic mechanisms of these cells are not fully understood. However, the adenosinergic pathway contributes to the main effects attributed to MSCs. Adenosine is a highly immunosuppressive molecule and exerts a central role in inflammation by neutralizing the proinflammatory ATP influence. This nucleoside is produced by purinergic signaling, an important physiological pathway for MSCs, which involves proliferation, migration, differentiation, and apoptosis. Therefore, in this study, we analyzed the extracellular AMP hydrolysis and consequent adenosine production, as well as the expression of CD73 and adenosine receptors on the cell surface of MSCs isolated from different human tissues: dermis (D-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). All cells confirmed their multipotent capacity by adipogenic, osteogenic, and chondrogenic differentiation, as well as the expression of cell surface markers including CD44 + , CD105 + , and CD90 + . All MSCs expressed similar levels of CD73 and CD26 without a statistical difference among the different tissues, whereas ADA expression was lower in AD-MSCs. In addition, A1R and A3R mRNA levels were higher in D-MSCs and AD-MSCs, respectively. Enzymatic assay showed that AD-MSCs have the highest hydrolysis rate of AMP, leading to increased amount of adenosine production. Moreover, despite all MSCs completely hydrolyze extracellular AMP generating adenosine, the pattern of nucleosides metabolism was different. Therefore, although MSCs share certain characteristics as the multilineage potential and immunophenotype, they show different adenosinergic profiles according to tissue origin.
Collapse
Affiliation(s)
- Bruna Campos Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liliana I Sous Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
5
|
Pizzato SB, Terraciano PB, Zanon P, Kuhl CP, Alves Garcez TN, Passos EP, Tirloni L, Berger M. Estrogen depletion modulates aortic prothrombotic signaling in normotensive and spontaneously hypertensive female rats. Mol Cell Endocrinol 2023; 561:111827. [PMID: 36494014 PMCID: PMC9812894 DOI: 10.1016/j.mce.2022.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
AIM In this study, we investigated how platelets and aorta contribute to the creation and maintenance of a prothrombotic state in an experimental model of postmenopausal hypertension in ovariectomized rats. METHODS Bilateral ovariectomy was performed in both 14-week-old female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The animals were kept in phytoestrogen free diet. Vascular parameters, platelet, coagulation and aortic prothrombotic functions and mechanisms were assessed. RESULTS Exacerbated platelet aggregation was observed in both SHR and WKY animals after ovariectomy. The mechanism was related to aortic COX2 downregulation and reduction in AMP, ADP, and ATP hydrolysis in serum and platelets. A procoagulant potential was observed in plasma from ovariectomized rats and this was confirmed by kallikrein and factor Xa generation in aortic rings. Aortic rings derived from ovariectomized SHR presented a greater thrombin generation capacity compared to equivalent rings from WKY animals. The mechanism involved tissue factor and PAR-1 upregulation as well as an increase in extrinsic coagulation and fibrinolysis markers in aorta and platelets. Aortic smooth muscle cells pre-treated with a plasma pool derived from estrogen-depleted animals developed a procoagulant profile with tissue factor upregulation. This procoagulant profile was dependent on inflammatory signalling, since NFκB inhibition attenuated the procoagulant activity and tissue factor expression. CONCLUSIONS A prothrombotic phenotype was observed in both WKY and SHR ovariectomized rats being associated with platelet hyperreactivity and tissue factor upregulation in aorta and platelets. The mechanism involves proinflammatory signalling that supports greater thrombin generation in aorta and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Sabrina Beal Pizzato
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
6
|
Naasani LIS, Azevedo JG, Sévigny J, Franco de Oliveira T, Maria-Engler SS, Wink MR. Epidermal melanocytes metabolize extracellular nucleotides by purinergic enzymes. Biochem Cell Biol 2023. [PMID: 36657128 DOI: 10.1139/bcb-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients. The expression of purinergic enzymes was confirmed by mRNA and flow cytometry. Among the ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5´-nucleotidase were the ectoenzymes with higher expressions. The hydrolysis rate for ATP, ADP, and AMP was low in comparison to other primary cells already investigated. The amount of ATP in the culture medium was increased after a scratch wound and decreased to basal levels in 48 h, while the NTPDase1 and P2X7 expressions increased. Therefore, it is possible to suggest that after cell injury, the ATP released by hEM into the extracellular space will be hydrolyzed by ectonucleotidases as the NTPDase1 that will control the levels of nucleotides in the skin micro-environment.
Collapse
Affiliation(s)
- Liliana Ivet Sous Naasani
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Jéssica Gonçalves Azevedo
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC G1V 4G2, Canada
| | - Tiago Franco de Oliveira
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Silvya Stuchi Maria-Engler
- Skin Biology and Melanoma Lab, Department of Clinical Chemistry & Toxicology, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brasil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| |
Collapse
|
7
|
Naasani LIS, Pretto L, Zanatelli C, Paim TC, Souza AFD, Pase PF, Fernandes MDC, Sévigny J, Wink MR. Bioscaffold developed with decellularized human amniotic membrane seeded with mesenchymal stromal cells: assessment of efficacy and safety profiles in a second-degree burn preclinical model. Biofabrication 2022; 15. [PMID: 36327453 DOI: 10.1088/1758-5090/ac9ff4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Therapies to deep burn injuries remain a global challenge. Human amniotic membrane (hAM) is a biomaterial that has been increasingly explored by the field of regenerative medicine. A decellularized hAM (DhAM) can be used as scaffold for mesenchymal stromal cells (MSCs) to grow without the loss of their stemness potential, allowing its application as cell therapy for wound healing. In this work, we associated DhAM with adipose-derived MSCs (DhAM + AD-MSCs), as a therapy strategy for second-degree burns in a preclinical model. Animals with induced second-degree burns were divided into four groups: control, which consists of a non-adherent gauze; a synthetic commercial dressing as the positive control (Control+); DhAM; and DhAM plus rat AD-MSCs (DhAM + AD-MSCs), followed by detailed and long term analysis (5 weeks). The macroscopical analysis showed the healing improvement in the wound area after the DhAM + AD-MSC treatment. Histological analysis also showed no alteration in the animal organs and a regular epithelial progression in comparison to the control. This observation was also confirmed by the analysis of suprabasal layers in the neoepidermis with CK10, showing a stratified and differentiated epithelium, when compared to Control and Control+. A strong CD73 (ecto-5'-nucleotidase) labeling was observed in the first 2 weeks postburn in dermis and epidermis. The expression in dermis was stronger in the second week in the middle of the wound, when comparing the Control+ with DhAM + AD-MSCs (p= 0.0238). In the epidermis the expression of CD73 was increased in all regions when compared to the control. This data suggests the involvement of this protein on wound healing. A low CD11b labeling was observed in DhAM + AD-MSCs treatment group mainly in the last treatment week, in comparison to Control and Control+ (p< 0.0001), which indicates a reduction in the inflammatory process. MSCs through CD73 can release high concentrations of adenosine, an immunosuppressive molecule, suggesting that this could be the mechanism by which the inflammation was better modulated in the DhAM + AD-MSCs group. The results obtained with this preclinical model confirm the effectiveness and safety of this low-cost and highly available dressing for future clinical application as a therapy for burn treatments.
Collapse
Affiliation(s)
- Liliana Ivet Sous Naasani
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Aline Francielle Damo Souza
- Banco de Tecidos Humanos-Pele Dr. Roberto Corrêa Chem, Hospital Irmandade da Santa Casa de Misericórdia de Porto Alegre-ISCMPA, Porto Alegre, RS, Brazil
| | - Pablo Fagundes Pase
- Cirurgia Plástica-Hospital de Pronto Socorro e Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Marilda Da Cruz Fernandes
- Departamento de Ciências Básicas da Saúde, Laboratório de Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Bertoni APS, Manfroi PDA, Tomedi J, Assis-Brasil BM, de Souza Meyer EL, Furlanetto TW. The gene expression of GPER1 is low in fresh samples of papillary thyroid carcinoma (PTC), and in silico analysis. Mol Cell Endocrinol 2021; 535:111397. [PMID: 34273443 DOI: 10.1016/j.mce.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Papillary thyroid cancer (PTC), whose incidence has been increasing in the last years, occurs more frequently in women. Experimental studies suggested that estrogen could be an important risk factor for the higher female incidence. In fact, it has been demonstrated that 17β-estradiol (E2) could increase proliferation and dedifferentiation in thyroid follicular cells. Genomic estrogen responses are typically mediated through classical estrogen receptors, the α and β isoforms, which have been described in normal and abnormal human thyroid tissue. Nevertheless, effects mediated through G protein estrogen receptor 1 (GPR30/GPER/GPER1), described in some thyroid cancer cell lines, could be partially responsible for the regulation of growth in normal cells. In this study, GPER1 gene and protein expression are described in non-malignant and in papillary thyroid cancer (PTC), as well as its association with clinical features of patients with PTC. The GPER1 expression was lower in PTC as compared to paired non-malignant thyroid tissues in fresh samples of PTC and in silico analysis of GEO and TCGA databases. In PTC cases of TCGA database, low GPER1 mRNA expression was independently associated with metastatic lymph nodes, female gender, and BRAF mutation. Besides, GPER1 mRNA levels were positively correlated with mRNA levels of thyroid differentiation genes. These results support the hypothesis that GPER1 have a role in PTC tumorigenesis and might be a potential target for its therapy. Further studies are needed to determine the functionality of these receptors in normal and diseased thyroid.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Patrícia de Araujo Manfroi
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Joelson Tomedi
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Brazil
| | | | | | - Tania Weber Furlanetto
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
10
|
Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2021; 16:776-791. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- L R Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - D M S da Fontoura
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - V G Korb
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - R P de Campos
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G R Onzi
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - I C Iser
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - A P S Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - J Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC, G1V 4G2, Canada
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
11
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Vedovatto S, Facchini JC, Batista RK, Paim TC, Lionzo MIZ, Wink MR. Development of chitosan, gelatin and liposome film and analysis of its biocompatibility in vitro. Int J Biol Macromol 2020; 160:750-757. [PMID: 32479938 DOI: 10.1016/j.ijbiomac.2020.05.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023]
Abstract
A film of chitosan, gelatin and liposome has been designed for dermatological applications. Several adaptations were required throughout development to facilitate in vitro analysis, physicochemical characterization and biocompatibility evaluation. The final version of the film was characterized by differential scanning calorimetry, evaluation of swelling and scanning electron microscopy. The biocompatibility of the film was assessed by investigating cellular parameters of three types of human cells by direct contact or through films extracts: I) primary culture of adipose-derived mesenchymal stromal cells (ADCSs) and melanoma cell lines were used to test cell adhesion and morphology by direct cell culture on the material; II) ADSCs and immortalized keratinocytes were used in cell viability assay using different films extracts. The film showed physicochemical characteristics that favored cellular input, being suitable for in vitro analysis, which allowed its biocompatible characteristics such as the absence of toxicity to be verified without causing significant morphological changes in ADSCs and melanoma cell line. Altogether, these results suggest that the material has a potential application for drug delivery and promotion of skin tissue repair and is therefore worthwhile for further investigations using preclinical models to cover dermal lesions.
Collapse
Affiliation(s)
- Samlai Vedovatto
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jordano C Facchini
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raquel K Batista
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Thaís C Paim
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Ismenia Z Lionzo
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
14
|
Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR. Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 2020; 256:117862. [PMID: 32473244 DOI: 10.1016/j.lfs.2020.117862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências UFRGS, Porto Alegre, RS, Brazil
| | | | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, UFCSPA, Porto Alegre, RS, Brazil; Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Sous Naasani LI, Damo Souza AF, Rodrigues C, Vedovatto S, Azevedo JG, Santin Bertoni AP, Da Cruz Fernandes M, Buchner S, Wink MR. Decellularized human amniotic membrane associated with adipose derived mesenchymal stromal cells as a bioscaffold: Physical, histological and molecular analysis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Rodrigues C, Naasani LIS, Zanatelli C, Paim TC, Azevedo JG, de Lima JC, da Cruz Fernandes M, Buchner S, Wink MR. Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109781. [DOI: 10.1016/j.msec.2019.109781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
17
|
The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signal 2019; 15:225-236. [PMID: 31123897 DOI: 10.1007/s11302-019-09656-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.
Collapse
|
18
|
Bertoni APS, Bracco PA, de Campos RP, Lutz BS, Assis-Brasil BM, Meyer ELDS, Saffi J, Braganhol E, Furlanetto TW, Wink MR. Activity of ecto-5'-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Mol Cell Endocrinol 2019; 479:54-60. [PMID: 30184475 DOI: 10.1016/j.mce.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
The incidence of papillary thyroid carcinoma (PTC) has been increasing, which raised the interest in its molecular pathways. Although the high expression of ecto-5'-nucleotidase (NT5E) gene expression and NT5E enzymatic activity in several types of cancer is associated with tumor progression, its role in PTC remains unknown. Here, we investigated the AMP hydrolysis in human normal thyroid cells and PTC cells, in primary culture, and the association of NT5E expression with clinical aspects of PTC patients. AMPase activity was higher in thyroid cells isolated from PTC, as compared to normal thyroid (P = 0.0063). Significant correlation was observed between AMPase activity and NT5E levels in primary thyroid cell cultures (r = 0.655, P = 0.029). NT5E expression was higher in PTC than in the adjacent non-malignant thyroid tissue (P = 0.0065) and were positively associated with metastatic lymph nodes (P = 0.0007), risk of recurrence (P = 0.0033), tumor size (P = 0.049), and nodular hyperplasia in the adjacent thyroid parenchyma, when compared to normal thyroid or lymphocytic thyroiditis (P = 0.0146). After adjusting for potential confounders, the malignant/non-malignant paired expression ratio of NT5E mRNA was independently associated with metastatic lymph nodes (P = 0.0005), and tumor size (P=0.0005). In addition, the analysis of PTC described in the TCGA database also showed an association between higher expression of NT5E and metastatic lymph nodes, and tumor microinvasion. These results support the hypothesis that NT5E have a role in PTC microenvironment and might be a potential target for PTC therapy.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Paula Andreghetto Bracco
- Programa de Pós-Graduação em Epidemiologia e Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Paschoal de Campos
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | | | | | - Jenifer Saffi
- DCBS e Laboratório de Genética Toxicológica, UFCSPA, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
19
|
Roszek K, Wujak M. How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol 2018; 234:320-334. [PMID: 30078187 DOI: 10.1002/jcp.26904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wujak
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
20
|
Netsch P, Elvers-Hornung S, Uhlig S, Klüter H, Huck V, Kirschhöfer F, Brenner-Weiß G, Janetzko K, Solz H, Wuchter P, Bugert P, Bieback K. Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine. Stem Cell Res Ther 2018; 9:184. [PMID: 29973267 PMCID: PMC6033237 DOI: 10.1186/s13287-018-0936-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are promising cell therapy candidates. Clinical application is considered safe. However, minor side effects have included thromboembolism and instant blood-mediated inflammatory reactions suggesting an effect of MSC infusion on hemostasis. Previous studies focusing on plasmatic coagulation as a secondary hemostasis step detected both procoagulatory and anticoagulatory activities of MSCs. We now focus on primary hemostasis and analyzed whether MSCs can promote or inhibit platelet activation. Methods Effects of MSCs and MSC supernatant on platelet activation and function were studied using flow cytometry and further platelet function analyses. MSCs from bone marrow (BM), lipoaspirate (LA) and cord blood (CB) were compared to human umbilical vein endothelial cells or HeLa tumor cells as inhibitory or activating cells, respectively. Results BM-MSCs and LA-MSCs inhibited activation and aggregation of stimulated platelets independent of the agonist used. This inhibitory effect was confirmed in diagnostic point-of-care platelet function analyses in platelet-rich plasma and whole blood. Using inhibitors of the CD39–CD73–adenosine axis, we showed that adenosine produced by CD73 ectonucleotidase activity was largely responsible for the LA-MSC and BM-MSC platelet inhibitory action. With CB-MSCs, batch-dependent responses were obvious, with some batches exerting inhibition and others lacking this effect. Conclusions Studies focusing on plasmatic coagulation suggested both procoagulatory and anticoagulatory activities of MSCs. We now show that MSCs can, dependent on their tissue origin, inhibit platelet activation involving adenosine converted from adenosine monophosphate by CD73 ectonucleotidase activity. These data may have strong implications for safety and risk/benefit assessment regarding MSCs from different tissue sources and may help to explain the tissue protective mode of action of MSCs. The adenosinergic pathway emerges as a key mechanism by which MSCs exert hemostatic and immunomodulatory functions. Electronic supplementary material The online version of this article (10.1186/s13287-018-0936-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Netsch
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - S Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - S Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany.,Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - H Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - V Huck
- Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - G Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - K Janetzko
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - H Solz
- Mannheim Clinic for Plastic Surgery, Mannheim, Germany
| | - P Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - P Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - K Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany.
| |
Collapse
|
21
|
Comparison of Human Denuded Amniotic Membrane and Porcine Small Intestine Submucosa as Scaffolds for Limbal Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:744-754. [DOI: 10.1007/s12015-018-9819-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells. CANCER MICROENVIRONMENT 2018; 11:61-70. [PMID: 29455338 DOI: 10.1007/s12307-018-0206-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/05/2018] [Indexed: 01/18/2023]
Abstract
The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.
Collapse
|