1
|
Xuan F, Liu N, Zhang BX, Wen WX, Wang YC, Zhang HF, Wu XL. High expression and regulatory mechanisms of ANGPT1 and HOXA3 in acute myeloid leukemia. Bull Cancer 2025:S0007-4551(25)00118-3. [PMID: 40107921 DOI: 10.1016/j.bulcan.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Acute Myeloid Leukemia (AML) is a type of leukemia characterized by the malignant clonal proliferation of hematopoietic stem cells in the bone marrow. This study aims to investigate the role of ANGPT1 and HOXA3 in the leukemia cell line KG-1a. METHODS The expression patterns of ANGPT1 and HOXA3 in AML patients were determined by analyzing the TCGA database and clinical samples. Experiments were conducted using the KG-1a cell line, including flow cytometry and SA-β-Gal staining, to knock down ANGPT1 and HOXA3 and evaluate their functions. RESULTS ANGPT1 and HOXA3 were found to be highly expressed in AML patients. Knocking down ANGPT1 and HOXA3 promoted apoptosis and senescence in KG-1a cells by inhibiting proliferation-related genes and upregulating apoptosis-related genes. There is a reciprocal regulatory relationship between ANGPT1 and HOXA3, forming a positive feedback loop. Treatment with ATRA downregulated the expression of HOXA3 and induced apoptosis in KG-1a cells, highlighting the importance of HOXA3 as a therapeutic target in AML. CONCLUSION ANGPT1 and HOXA3 are highly expressed in AML, and knocking them down can promote apoptosis and senescence in leukemia cells. They exhibit a mutual regulatory relationship, forming a positive feedback loop. These findings contribute to a better understanding of the functional roles and regulatory mechanisms of ANGPT1 and HOXA3, and provide new scientific evidence for the treatment and prognosis improvement of AML patients.
Collapse
Affiliation(s)
- Fan Xuan
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Liu
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bao-Xi Zhang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wen-Xiao Wen
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yong-Cai Wang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hui-Feng Zhang
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiao-Li Wu
- Department of Pediatrics Hematology-Oncology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Wang L, Huang X, Xu S, An Y, Lv X, Zhu W, Xu S, Tu Y, Chen S, Lv Q, Zheng P. Fused in silico and bioactivity evaluation method for drug discovery: T001-10027877 was identified as an antiproliferative agent that targets EGFR T790M/C797S/L858R and EGFR T790M/L858R. BMC Chem 2024; 18:159. [PMID: 39192294 DOI: 10.1186/s13065-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Facing the significant challenge of overcoming drug resistance in cancer treatment, particularly resistance caused by mutations in epidermal growth factor receptor (EGFR), the aim of our study was to identify potent EGFR inhibitors effective against the T790M/C797S/L858R mutant, a key player in resistance mechanisms. METHODS Our integrated in silico approach harnessed machine learning, virtual screening, and activity evaluation techniques to screen 5105 compounds from three libraries, aiming to find candidates capable of overcoming the resistance conferred by the T790M and C797S mutations within EGFR. This methodical process narrowed the search down to six promising compounds for further examination. RESULTS Kinase assays identified three compounds to which the T790M/C797S/L858R mutant exhibited increased sensitivity compared to the T790M/L858R mutant, highlighting the potential efficacy of these compounds against resistance mechanisms. Among them, T001-10027877 exhibited dual inhibitory effects, with IC50 values of 4.34 µM against EGFRT790M/C797S/L858R and 1.27 µM against EGFRT790M/L858R. Further investigations into the antiproliferative effects in H1975, A549, H460 and Ba/F3-EGFRL858/T790M/C797S cancer cells revealed that T001-10027877 was the most potent anticancer agent among the tested compounds. Additionally, the induction of H1975 cell apoptosis and cell cycle arrest by T001-10027877 were confirmed, elucidating its mechanism of action. CONCLUSIONS This study highlights the efficacy of combining computational techniques with bioactivity assessments in the quest for novel antiproliferative agents targeting complex EGFR mutations. In particular, T001-10027877 has great potential for overcoming EGFR-mediated resistance and merits further in vivo exploration. Our findings contribute valuable insights into the development of next-generation anticancer therapies, demonstrating the power of an integrated drug discovery approach.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yuanbiao Tu
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Shuhui Chen
- Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, P. R. China.
| | - Qiaoli Lv
- Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, 330029, P. R. China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
3
|
Buckley DN, Tew BY, Gooden C, Salhia B. A comprehensive analysis of minimally differentially methylated regions common to pediatric and adult solid tumors. NPJ Precis Oncol 2024; 8:125. [PMID: 38824198 PMCID: PMC11144230 DOI: 10.1038/s41698-024-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2024] [Indexed: 06/03/2024] Open
Abstract
Cancer is the second most common cause of death in children aged 1-14 years in the United States, with 11,000 new cases and 1200 deaths annually. Pediatric cancers typically have lower mutational burden compared to adult-onset cancers, however, the epigenomes in pediatric cancer are highly altered, with widespread DNA methylation changes. The rarity of pediatric cancers poses a significant challenge to developing cancer-type specific biomarkers for diagnosis, prognosis, or treatment monitoring. In the current study, we explored the potential of a DNA methylation profile common across various pediatric cancers. To do this, we conducted whole genome bisulfite sequencing (WGBS) on 31 recurrent pediatric tumor tissues, 13 normal tissues, and 20 plasma cell-free (cf)DNA samples, representing 11 different pediatric cancer types. We defined minimal focal regions that were differentially methylated across samples in the multiple cancer types which we termed minimally differentially methylated regions (mDMRs). These methylation changes were also observed in 506 pediatric and 5691 adult cancer samples accessed from publicly available databases, and in 44 pediatric cancer samples we analyzed using a targeted hybridization probe capture assay. Finally, we found that these methylation changes were detectable in cfDNA and could serve as potential cfDNA methylation biomarkers for early detection or minimal residual disease.
Collapse
Affiliation(s)
- David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
5
|
Yan XX, Guo N, Ru SW, Wang ZY, Sui HJ, Xu YS, Yao ZD. The deficiency of 5-methylcytosine (5mC) and its ramification in the occurrence and prognosis of colon cancer. Medicine (Baltimore) 2023; 102:e34860. [PMID: 37653838 PMCID: PMC10470721 DOI: 10.1097/md.0000000000034860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
The incidence and mortality of colon cancer are increasing, and effective biomarkers for its diagnosis are limited. 5-methylcytosine (5mC), a vital DNA methylation marker, plays important roles in gene expression, genomic imprinting, and transposon inhibition. This study aimed to identify the predictors of colon cancer prognosis and lay the foundation for research on therapeutic targets by detecting the levels of 5mC, 5-hydroxymethylcytosine (5hmC), 5-formyl cytosine (5fC), and 5-carboxylcytosine (5caC) in colon cancer and adjacent non-tumor tissues. A tissue microarray including 100 colon cancer tissue samples and 60 adjacent non-tumor tissue samples was used. The expression levels of 5mC and its ramifications were assessed by immunohistochemistry. According to the expression levels, patients were divided into moderately positive and strongly positive groups, and the correlation between clinicopathological characteristics and methylation marks was assessed using 2-sided chi-square tests. The prognostic values of 5mC, 5hmC, 5fC, and 5caC were tested using Kaplan-Meier analyses. Compared with adjacent non-tumor tissues, the overall levels of DNA methylation were lower in colon carcinoma lesions. However, the clinical parameters were not significantly associated with these methylation markers, except for 5hmC, which was associated with the age of cancer patients (P value = .043). Kaplan-Meier analysis disclosed that moderate positive group had a significantly shorter disease specific survival than strong positive group for patients with different levels of 5mC (65.2 vs 95.2 months, P = .014) and 5hmC (71.2 vs 97.5 months, P = .045). 5mC and its ramifications (5hmC, 5fC, and 5caC) can serve as biomarkers for colon cancer. 5mC and 5hmC are stable predictors and therapeutic targets in colon cancer. However, further understanding of its function will help to reveal the complex tumorigenic process and identify new therapeutic strategies.
Collapse
Affiliation(s)
- Xin-Xin Yan
- Department of Geriatric, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, P. R. China
| | - Na Guo
- Department of Geriatric, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, P. R. China
| | - Song-Wei Ru
- Department of Geriatric, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, P. R. China
| | - Zhi-Yuan Wang
- Department of Thoracic Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, P. R. China
| | - Hai-Juan Sui
- Department of Pharmacology, Jinzhou Medical University, Liaoning, P. R. China
| | - Yin-Shi Xu
- Outpatient Department, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, P. R. China
| | - Zhen-Dan Yao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| |
Collapse
|
6
|
Surendran H, Palaniyandi T, Natarajan S, Hari R, Viwanathan S, Baskar G, Abdul Wahab MR, Ravi M, Rajendran BK. Role of homeobox d10 gene targeted signaling pathways in cancers. Pathol Res Pract 2023; 248:154643. [PMID: 37406379 DOI: 10.1016/j.prp.2023.154643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Homeobox D10 (HOXD10) is a transcription factor from the homeobox gene family that controls cell differentiation and morphogenesis throughout development.Due to their functional interaction, changes in HOXD10 gene expression might induce tumors. This narrative review focuses on how and why the dysregulation in the signaling pathways linked with HOXD10 contributes to the metastatic development of cancer. Organ development and tissue homeostasis need highly conserved homeotic transcription factors from homeobox (HOX) genes. Their dysregulation disrupts regulatory molecule action, causing tumors. The HOXD10 gene is upregulated in breast, gastric, hepatocellular, colorectal, bladder, cholangiocellular carcinoma and prostate cancer. Tumor signaling pathways are affected by HOXD10 gene expression changes. This study examines HOXD10-associated signaling pathway dysregulation, which may alter metastatic cancer signaling. In addition, the theoretical foundations that alter HOXD10-mediated therapeutic resistance in malignancies has been presented. New cancer therapy methods will be simpler to develop with the newly discovered knowledge. This review showed that HOXD10 may be a tumor suppressor gene and a new cancer treatment target signaling pathway.
Collapse
Affiliation(s)
- Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamilnadu, India.
| | - Sudhakar Natarajan
- Department of Virology and Biotechnology, ICMR - National institute for Research in Tuberculosis (NIRT), Chetpet, Chennai 600031 Tamil Nadu, India
| | - Rajeswary Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Sandhiya Viwanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai 600095 Tamil Nadu, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116 Tamil Nadu, India
| | | |
Collapse
|
7
|
Zheng ZQ, Yuan GQ, Zhang GG, Nie QQ, Wang Z. Development and validation of a predictive model in diagnosis and prognosis of primary glioblastoma patients based on Homeobox A family. Discov Oncol 2023; 14:108. [PMID: 37351805 DOI: 10.1007/s12672-023-00726-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Homeobox A (HOXA) family is involved in the development of malignancies as either tumor suppressors or oncogenes. However, their roles in glioblastoma (GBM) and clinical significance have not been fully elucidated. METHODS HOXA mutation and expressions in pan-cancers were investigated using GSCA and Oncomine, which in GBM were validated by cBioPortal, Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas (TCGA) datasets. Kaplan-Meier analyses were conducted to determine prognostic values of HOXAs at genetic and mRNA levels. Diagnostic roles of HOXAs in tumor classification were explored by GlioVis and R software. Independent prognostic HOXAs were identified using Cox survival analyses, the least absolute shrinkage and selection operator (LASSO) regression, quantitative real-time PCR, and immunohistochemical staining. A HOXAs-based nomogram survival prediction model was developed and evaluated using Kaplan-Meier analysis, time-dependent Area Under Curve, calibration plots, and Decision Curve Analysis in training and validation cohorts. RESULTS HOXAs were highly mutated and overexpressed in pan-cancers, especially in CGGA and TCGA GBM datasets. Genetic alteration and mRNA expression of HOXAs were both found to be prognostic. Specific HOXAs could distinguish IDH mutation (HOXA1-7, HOXA9, HOXA13) and molecular GBM subtypes (HOXA1-2, HOXA9-11, HOXA13). HOXA1/2/3/10 were confirmed to be independent prognostic members, with high expressions validated in clinical GBM tissues. The HOXAs-based nomogram model exhibited good prediction performance and net benefits for patients in training and validation cohorts. CONCLUSION HOXA family has diagnostic values, and the HOXAs-based nomogram model is effective in survival prediction, providing a novel approach to support the treatment of GBM patients.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gui-Qiang Yuan
- Beijing Neurosurgical Institute & Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Capital Medical University, Beijing, China
| | - Guo-Guo Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qian-Qian Nie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
8
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
9
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
10
|
Martinou E, Falgari G, Bagwan I, Angelidi AM. A Systematic Review on HOX Genes as Potential Biomarkers in Colorectal Cancer: An Emerging Role of HOXB9. Int J Mol Sci 2021; 22:13429. [PMID: 34948228 PMCID: PMC8707253 DOI: 10.3390/ijms222413429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence shows that Homeobox (HOX) genes are important in carcinogenesis, and their dysregulation has been linked with metastatic potential and poor prognosis. This review (PROSPERO-CRD42020190953) aims to systematically investigate the role of HOX genes as biomarkers in CRC and the impact of their modulation on tumour growth and progression. The MEDLINE, EMBASE, Web of Science and Cochrane databases were searched for eligible studies exploring two research questions: (a) the clinicopathological and prognostic significance of HOX dysregulation in patients with CRC and (b) the functional role of HOX genes in CRC progression. Twenty-five studies enrolling 3003 CRC patients, showed that aberrant expression of HOX proteins was significantly related to tumour depth, nodal invasion, distant metastases, advanced stage and poor prognosis. A post-hoc meta-analysis on HOXB9 showed that its overexpression was significantly associated with the presence of distant metastases (pooled OR 4.14, 95% CI 1.64-10.43, I2 = 0%, p = 0.003). Twenty-two preclinical studies showed that HOX proteins are crucially related to tumour growth and metastatic potential by affecting cell proliferation and altering the expression of epithelial-mesenchymal transition modulators. In conclusion, HOX proteins may play vital roles in CRC progression and are associated with overall survival. HOXB9 may be a critical transcription factor in CRC.
Collapse
Affiliation(s)
- Eirini Martinou
- Hepatobiliary and Pancreatic Surgery Department, Royal Surrey County Hospital, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Giulia Falgari
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Izhar Bagwan
- Department of Histopathology and Molecular Biology, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
11
|
Induction of HOXA3 by PRRSV inhibits IFN-I response through negatively regulation of HO-1 transcription. J Virol 2021; 96:e0186321. [PMID: 34851144 DOI: 10.1128/jvi.01863-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFN-I) play a key role in the host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating type I interferons (IFN-I) production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that deficiency of HOXA3 promoted the HO-1-IRF3 interaction, and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, leads the pork industry worldwide to significant economic losses. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 to the virus field for the first time and provides new insights into PRRSV immune evasion mechanism.
Collapse
|
12
|
Wilmerding A, Bouteille L, Rinaldi L, Caruso N, Graba Y, Delfini MC. HOXB8 Counteracts MAPK/ERK Oncogenic Signaling in a Chicken Embryo Model of Neoplasia. Int J Mol Sci 2021; 22:8911. [PMID: 34445617 PMCID: PMC8396257 DOI: 10.3390/ijms22168911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
HOX transcription factors are members of an evolutionarily conserved family of proteins required for the establishment of the anteroposterior body axis during bilaterian development. Although they are often deregulated in cancers, the molecular mechanisms by which they act as oncogenes or tumor suppressor genes are only partially understood. Since the MAPK/ERK signaling pathway is deregulated in most cancers, we aimed at apprehending if and how the Hox proteins interact with ERK oncogenicity. Using an in vivo neoplasia model in the chicken embryo consisting in the overactivation of the ERK1/2 kinases in the trunk neural tube, we analyzed the consequences of the HOXB8 gain of function at the morphological and transcriptional levels. We found that HOXB8 acts as a tumor suppressor, counteracting ERK-induced neoplasia. The HOXB8 tumor suppressor function relies on a large reversion of the oncogenic transcriptome induced by ERK. In addition to showing that the HOXB8 protein controls the transcriptional responsiveness to ERK oncogenic signaling, our study identified new downstream targets of ERK oncogenic activation in an in vivo context that could provide clues for therapeutic strategies.
Collapse
Affiliation(s)
- Axelle Wilmerding
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Lauranne Bouteille
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Lucrezia Rinaldi
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
- Beth Israel Deaconess Medical Center, Department of Medicine and the Cancer Center, Division of Hematology, Harvard Initiative of RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Caruso
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Yacine Graba
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Marie-Claire Delfini
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| |
Collapse
|
13
|
Legoff L, D'Cruz SC, Lebosq M, Gely-Pernot A, Bouchekhchoukha K, Monfort C, Kernanec PY, Tevosian S, Multigner L, Smagulova F. Developmental exposure to chlordecone induces transgenerational effects in somatic prostate tissue which are associated with epigenetic histone trimethylation changes. ENVIRONMENT INTERNATIONAL 2021; 152:106472. [PMID: 33711761 DOI: 10.1016/j.envint.2021.106472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlordecone (CD), also known as Kepone, is an organochlorine insecticide that has been used in banana crops in the French West Indies. Due to long-term contamination of soils and water, the population is still exposed to CD. Exposure to CD in adulthood is associated with an increased risk of prostate cancer (PCa). OBJECTIVES We examined the transgenerational effects of CD on murine prostate tissue. METHODS We exposed pregnant Swiss mice to CD. The prostates from directly exposed (F1) and non-exposed (F3) male progeny were analyzed. We used immunofluorescence, RNA-seq and ChIP-seq techniques for the comprehensive analyses of chromatin states in prostate. RESULTS We observed an increased prostatic intraepithelial neoplasia phenotype (PIN) in both F1 and F3 generations. Transcriptomic analysis in CD-derived F1 and F3 prostate using RNA-seq revealed that 970 genes in F1 and 218 in F3 genes were differentially expressed. The differentially expressed genes in both datasets could be clustered accordingly to common biological processes, "cell differentiation", "developmental process", "regulating of signaling", suggesting that in both generations similar processes were perturbed. We detected that in both datasets several Hox genes were upregulated; in F1, the expression was detected mainly in Hoxb and Hoxd, and in F3, in Hoxa family genes. Using a larger number of biological replicates and RT-qPCR we showed that genes implicated in testosterone synthesis (Akr1b3, Cyp11a1, Cyp17a1, Srd5a1) were dramatically upregulated in PIN samples; Cyp19a1, converting testosterone to estradiol was elevated as well. We found a dramatic increase in Esr2 expression both in F1 and F3 prostates containing PIN. The PIN-containing samples have a strong increase in expression of self-renewal-related genes (Nanog, Tbx3, Sox2, Sox3, Rb1). We observed changes in liver, F1 CD-exposed males have an increased expression of genes related to DNA repair, matrix collagen and inflammation related pathways in F1 but not in F3 adult CD-derived liver. The changes in RNA transcription were associated with epigenetic changes. Specifically, we found a global increase in H3K4 trimethylation (H3K4me3) and a decrease in H3K27 trimethylation (H3K27me3) in prostate of F1 mice. ChIP-seq analysis showed that 129 regions in F1 and 240 in F3 acquired altered H3K4me3 occupancy in CD-derived prostate, including highest increase at several promoters of Hoxa family genes in both datasets. The alteration in H3K4me3 in both generations overlap 73 genes including genes involved in proliferation regulation, Tbx2, Stat3, Stat5a, Pou2f3 and homeobox genes Hoxa13, Hoxa9. CONCLUSIONS Our data suggest that developmental exposure to CD leads to epigenetic changes in prostate tissue. The PIN containing samples showed evidence of implication in hormonal pathway and self-renewal gene expression that have the capacity to promote neoplasia in CD-exposed mice.
Collapse
Affiliation(s)
- Louis Legoff
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Morgane Lebosq
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Aurore Gely-Pernot
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Katia Bouchekhchoukha
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Pierre-Yves Kernanec
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences, Box 100144, 1333 Center Drive, 32610 Gainesville, FL, USA.
| | - Luc Multigner
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
14
|
Cui M, Zhao Y, Zhang Z, Zhao Y, Han S, Wang R, Ding D, Fang X. IL-8, MSPa, MIF, FGF-9, ANG-2 and AgRP collection were identified for the diagnosis of colorectal cancer based on the support vector machine model. Cell Cycle 2021; 20:781-791. [PMID: 33779485 PMCID: PMC8098075 DOI: 10.1080/15384101.2021.1903208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer, and the early detection of CRC is essential to improve the survival rate of patients. To identify diagnostic markers for colorectal cancer (CRC) by screening differentially expressed proteins (DEPs) in CRC. The DEPs were initially obtained from 12 CRC samples and 12 healthy control samples, and verification analysis was performed in another 34 CRC samples and 34 normal controls. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment with DEPs was analyzed by the R package clusterProfiler (Version 3.2.11), and the DEP-associated protein-protein interaction (PPI) network was created from the STRING database. Additionally, Support Vector Machine (SVM) model prediction and survival analyses were conducted on the key DEPs. Preliminary screening and functional analysis showed that the DEPs mainly overrepresented in pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, Rap1, Ras, and MAPK signaling pathways. The key DEPs, including AgRP, ANG-2, Dtk, EOT3, FGF-4, FGF-9, HCC-4, IL-16, IL-8, MIF, MSPa, TECK, TPO, TRAIL R3, and VEGF-D, were used to construct a custom chip. The drug-gene interaction network suggested that TPO was a key drug target. ROC curve showed the SVM diagnostic model with the DEPs IL-8, MSPa, MIF, FGF-9, ANG-2, and AgRP had better diagnostic performance with an AUC of 0.933. Survival analysis showed the expression of FGF9, TPO, TRAIL R3, Dtk, TECK and FGF4 were associated with prognosis. This study revealed the important serum proteins in the pathogenesis of CRC, which might serve as useful and noninvasive predictors for the diagnosis of CRC.
Collapse
Affiliation(s)
- Mingfu Cui
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yanan Zhao
- Department of Oncology and Hematology Surgery, China-Japan Union Hospital, Changchun, Jilin Province, China
| | - Zuocong Zhang
- Department of Colorectal Surgery, Jilin Province People’s Hospital, Changchun, Jilin Province, China
| | - Yang Zhao
- Anorectal Surgery, Siping Central People’s Hospital, Jilin University, Siping, Jilin Province, China
| | - Songyun Han
- Emergency Department, Tonghua Central Hospital, Jilin University, Tonghua, Jilin Province, China
| | - Ruijie Wang
- Department of Gastrointestinal Surgery, Shengli Oilfield Central Hospital, Dongying, Jilin Province, China
| | - Dayong Ding
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Liu G, Liu Z, Sun X, Xia X, Liu Y, Liu L. Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Front Cell Dev Biol 2021; 9:649168. [PMID: 33816499 PMCID: PMC8012915 DOI: 10.3389/fcell.2021.649168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenhao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiong Xia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhang Y, Li Y, Zhang J, Qi X, Cui Y, Yin K, Lin H. Cadmium induced inflammation and apoptosis of porcine epididymis via activating RAF1/MEK/ERK and NF-κB pathways. Toxicol Appl Pharmacol 2021; 415:115449. [PMID: 33577919 DOI: 10.1016/j.taap.2021.115449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) was a serious heavy metal pollutant. Cd exposure will cause damage to reproductive organs. It was largely unknown whether Cd exposure caused inflammation and apoptosis in epididymis. In this study, we established models of Cd exposure in swine, and the apoptotic level of epididymis was detected by in situ TUNEL fluorescence staining assay, the results showed that Cd exposure significantly increased TUNEL-apoptosis index. Furthermore, the results of qRT-PCR and Western blot showed that Cd activated the proto-oncogenic serine/threonine kinase-1 (RAF1)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signal pathway (RAF1/MEK/ERK) and led to the subsequent up-regulation of the nuclear factor-κB (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), caused inflammation in epididymis. NF-κB inflammation pathway also mediated the tumor protein P53 (P53) and indirectly activated the Cytochrome c (Cytc), B-cell lymphoma-2 (Bcl-2), Bcl-2-Associated X protein (Bax), Caspase 3, Caspase 9. In summary, we believed that the RAF1/MEK/ERK pathway came into play in the apoptosis of epididymal tissues exposed to Cd by activating the NF-κB Inflammation pathway, followed by activation of the mitochondrial apoptotic pathway. This study provides more abundant data for exploring the reproductive toxicity of Cd.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Yin
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Chang XN, Shang FM, Jiang HY, Chen C, Zhao ZY, Deng SH, Fan J, Dong XC, Yang M, Li Y, Cai KL, Liu L, Liu HL, Nie X. Clinicopathological Features and Prognostic Value of KRAS/NRAS/BRAF Mutations in Colorectal Cancer Patients of Central China. Curr Med Sci 2021; 41:118-126. [PMID: 33582915 DOI: 10.1007/s11596-021-2326-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
The incidence of colorectal cancer (CRC) is increasing in China, with high mortality. Here, we aimed to evaluate the latest clinicopathological features and prognostic value of the KRAS/NRAS/BRAF mutation status in CRC patients in Central China. The clinical data of 1549 CRC patients with stage I-IV disease diagnosed at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology from 2015 to 2017 were collected and analyzed retrospectively. KRAS/NRAS/BRAF mutations were detected by real-time quantitative polymerase chain reaction (q-PCR) in 410 CRC patients, with mutation frequencies of KRAS, NRAS and BRAF of 47.56%, 2.93% and 4.15%, respectively. The gene mutation status and clinicopathological characteristics of 410 patients with CRC who underwent qPCR were analyzed. The KRAS and BRAF gene mutations were related to the pathological differentiation and number of metastatic lymph nodes. The BRAF gene mutation was also associated with cancer thrombosis in blood vessels. Cox regression analysis showed that there was no statistically significant difference in the overall survival (OS) between patients with KRAS, NRAS mutants and wild-type CRC patients, while the BRAF gene mutation was negatively correlated with the OS rate of CRC patients. It is suggested that the BRAF gene mutation may be an independent risk factor for the prognosis of CRC.
Collapse
Affiliation(s)
- Xiao-Na Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fu-Mei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Yu Jiang
- Department of Epidemiology and Biostatistics, the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe-Yan Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng-He Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Chuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai-Lin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Zhao J, Li X, Fu L, Zhang N, Yang J, Cai J. lncRNA LIFR‑AS1 inhibits gastric carcinoma cell proliferation, migration and invasion by sponging miR‑4698. Mol Med Rep 2021; 23:153. [PMID: 33355363 PMCID: PMC7789130 DOI: 10.3892/mmr.2020.11792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
The vital functions of long non‑coding (lnc)RNAs have been verified in gastric carcinoma (GC). However, as a novel cancer‑related lncRNA, the influence of leukemia inhibitory factor receptor antisense RNA 1 (LIFR‑AS1) in GC cell biological behaviors remains unreported. The present study explored the biological effects of lncRNA LIFR‑AS1 on GC progression. Reverse transcription‑quantitative PCR was performed to examine lncRNA LIFR‑AS1 expression in GC tissues and cells. Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine incorporation, cell wound healing and Transwell invasion assays were used to assess the functions of lncRNA LIFR‑AS1 in GC cell proliferation, migration and invasion. Additionally, associations among lncRNA LIFR‑AS1, microRNA (miR)‑4698 and microtubule‑associated tumor suppressor 1 (MTUS1) were investigated via bioinformatics software and a luciferase reporter system. In addition, western blotting was used to examine the expression of MEK and ERK. Decreased lncRNA LIFR‑AS1 expression was observed in GC tissues and cells. Upregulated lncRNA LIFR‑AS1 inhibited GC cell proliferation, migration and invasion. Upregulated miR‑4698 and downregulated MTUS1 were identified in GC tissues and cells. The inhibitory interaction between lncRNA LIFR‑AS1 and miR‑4698 was confirmed. Additionally, MTUS1 was predicted as a target gene of miR‑4698 positively regulated by lncRNA LIFR‑AS1. The MEK/ERK pathway was inhibited by lncRNA LIFR‑AS1 via regulating MTUS1. These findings revealed the inhibitory functions of lncRNA LIFR‑AS1 in GC cell proliferation, migration and invasion. The process was mediated via miR‑4698, MTUS1 and the MEK/ERK pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhao
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Department of General Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xiaoning Li
- Department of General Surgery, Baoding First Central Hospital, Baoding, Hebei 071000, P.R. China
| | - Liping Fu
- Department of General Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Na Zhang
- Department of Radiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jiaping Yang
- Department of General Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
19
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
20
|
Santoni D, Pignotti D, Vergni D. A genome-wide study on differential methylation in different cancers using TCGA database. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death Dis 2020; 11:917. [PMID: 33100331 PMCID: PMC7585938 DOI: 10.1038/s41419-020-03120-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.
Collapse
|
22
|
Prediction of genome-wide effects of single nucleotide variants on transcription factor binding. Sci Rep 2020; 10:17632. [PMID: 33077858 PMCID: PMC7572467 DOI: 10.1038/s41598-020-74793-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated ‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.
Collapse
|
23
|
Wang X, Shi D, Zhao D, Hu D. Aberrant Methylation and Differential Expression of SLC2A1, TNS4, GAPDH, ATP8A2, and CASZ1 Are Associated with the Prognosis of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1807089. [PMID: 33029490 PMCID: PMC7532994 DOI: 10.1155/2020/1807089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer is one of the leading triggers for cancer death worldwide. In this study, the relationship of the aberrantly methylated and differentially expressed genes in lung adenocarcinoma (LUAD) with cancer prognosis was investigated, and 5 feature genes were identified eventually. Specifically, we firstly downloaded the LUAD-related mRNA expression profile (including 57 normal tissue samples and 464 LUAD tissue samples) and Methy450 expression data (including 32 normal tissue samples and 373 LUAD tissue samples) from the TCGA database. The package "limma" was used to screen differentially expressed genes and aberrantly methylated genes, which were intersected for identifying the hypermethylated downregulated genes (DGs Hyper) and the hypomethylated upregulated genes (UGs Hypo). GO annotation and KEGG pathway enrichment analysis were further performed, and it was found that these DGs Hyper and UGs Hypo were predominantly activated in the biological processes and signaling pathways such as the regulation of vasculature development, DNA-binding transcription activator activity, and Ras signaling pathway, indicating that these genes play a vital role in the initiation and progression of LUAD. Additionally, univariate and multivariate Cox regression analyses were conducted to find the genes significantly associated with LUAD prognosis. Five genes including SLC2A1, TNS4, GAPDH, ATP8A2, and CASZ1 were identified, with the former three highly expressed and the latter two poorly expressed in LUAD, indicating poor prognosis of LUAD patients as judged by survival analysis.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pneumology, The First People's Hospital of Fuyang, Fuyang, China
| | - Dongming Shi
- Department of Pneumology, The First People's Hospital of Fuyang, Fuyang, China
| | - Dejun Zhao
- Department of Pneumology, The First People's Hospital of Fuyang, Fuyang, China
| | - Danping Hu
- Department of Pneumology, The First People's Hospital of Fuyang, Fuyang, China
| |
Collapse
|
24
|
Gu Y, Gu J, Shen K, Zhou H, Hao J, Li F, Yu H, Chen Y, Li J, Li Y, Liang H, Dong Y. HOXA13 promotes colon cancer progression through β-catenin-dependent WNT pathway. Exp Cell Res 2020; 395:112238. [PMID: 32822724 DOI: 10.1016/j.yexcr.2020.112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Human class I homeobox A13 (HOXA13) was initially identified as a transcription factor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of HOXA13 in colon cancer development and progression are still unknown. In this study, we found that HOXA13 was highly expressed in colon cancer tissues, and its expression was associated with histological grade, T stage, N stage and tumour size. In vitro studies showed that HOXA13 promoted colon cancer cell proliferation, migration and invasion. Bioinformatics analysis revealed that HOXA13 expression was positively correlated with the WNT signalling pathway. In vitro studies showed that HOXA13 promoted the malignant phenotype of colon cancer cells by facilitating the nuclear translocation of β-Catenin. Moreover, XAV939, an inhibitor of β-Catenin, reversed the HOXA13-mediated effects on invasion and proliferation of colon cancer cells. In vivo studies further verified that HOXA13 promoted tumour formation through the Wnt/β-Catenin pathway. Collectively, these results suggest that HOXA13 is a potential oncogene that functions by promoting the nuclear translocation of β-Catenin, thereby maintaining the proliferation and metastasis of colon cancer.
Collapse
Affiliation(s)
- Yan Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jun Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Kaicheng Shen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hongxu Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jie Hao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Fu Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, 610072, China
| | - Yueqi Chen
- Department of Orthopaedic, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Yifei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| | - Yan Dong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
25
|
Li Y, Cheng Y, Zhang M, He X, Kong L, Zhou K, Zhou Y, Li L, Tian H, Song X, Cui Y. A New Compound with Increased Antitumor Activity by Cotargeting MEK and Pim-1. iScience 2020; 23:101254. [PMID: 32585592 PMCID: PMC7322072 DOI: 10.1016/j.isci.2020.101254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Feedback circuits are one of the major causes underlying tumor resistance. Thus, compounds that target one oncogenic pathway with simultaneously blocking its compensatory pathway will be of great value for cancer treatment. Here, we develop a new MEK inhibitor designated as KZ-02 that exhibits unexpectedly higher cytotoxicity than its starting compound AZD6244, a well-known MEK inhibitor, in colorectal cancer (CRC). Subsequent kinase selectivity study identified Pim-1 as an additional cellular target for KZ-02. Further studies showed that AZD6244 and Pim-1 1 (a Pim-1 inhibitor) have a synergistic effect on CRC suppression. Mechanistic study revealed that MEK inhibition by AZD6244 leads to increased Pim-1 expression, which could be a general mechanism behind the compromised cell-killing activity of MEK inhibitors. KZ-02, despite increasing Pim-1 mRNA expression, simultaneously promotes Pim-1 proteasomal degradation. Therefore, we uncover a new MEK inhibitor KZ-02 with significantly enhanced antitumor activity by co-targeting MEK and Pim-1.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, 7 Raoping Road, Shantou, Guangdong 515031, China
| | - Ying Cheng
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Maoqi Zhang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, 7 Raoping Road, Shantou, Guangdong 515031, China
| | - Xiaoli He
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Kong
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, 7 Raoping Road, Shantou, Guangdong 515031, China
| | - Kexiang Zhou
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, 7 Raoping Road, Shantou, Guangdong 515031, China
| | - Yunfu Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongqi Tian
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China.
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yukun Cui
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, 7 Raoping Road, Shantou, Guangdong 515031, China.
| |
Collapse
|
26
|
Bondos SE, Geraldo Mendes G, Jons A. Context-dependent HOX transcription factor function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:225-262. [PMID: 32828467 DOI: 10.1016/bs.pmbts.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, HOX transcription factors determine the fate of developing tissues to generate diverse organs and appendages. The power of these proteins is striking: mis-expressing a HOX protein causes homeotic transformation of one body part into another. During development, HOX proteins interpret their cellular context through protein interactions, alternative splicing, and post-translational modifications to regulate cell proliferation, cell death, cell migration, cell differentiation, and angiogenesis. Although mutation and/or mis-expression of HOX proteins during development can be lethal, changes in HOX proteins that do not pattern vital organs can result in survivable malformations. In adults, mutation and/or mis-expression of HOX proteins disrupts their gene regulatory networks, deregulating cell behaviors and leading to arthritis and cancer. On the molecular level, HOX proteins are composed of DNA binding homeodomain, and large regions of unstructured, or intrinsically disordered, protein sequence. The primary roles of HOX proteins in arthritis and cancer suggest that mutations associated with these diseases in both the structured and disordered regions of HOX proteins can have substantial functional effects. These insights lead to new questions critical for understanding and manipulating HOX function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States.
| | - Gabriela Geraldo Mendes
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Amanda Jons
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
27
|
Cui Y, Yan M, Zhang C, Xue J, Zhang Q, Ma S, Guan F, Cao W. Comprehensive analysis of the HOXA gene family identifies HOXA13 as a novel oncogenic gene in kidney renal clear cell carcinoma. J Cancer Res Clin Oncol 2020; 146:1993-2006. [PMID: 32444962 DOI: 10.1007/s00432-020-03259-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Kidney renal clear cell carcinoma (KIRC) is one of the most common lethal cancers in the human urogenital system. As members of the Homeobox (HOX) family, Homeobox-A (HOXA) cluster genes have been reported to be involved in the development of many cancer types. However, the expression and clinical significance of HOXA genes in KIRC remain largely unknown. MATERIALS AND METHODS In this study, we comprehensively analyzed the mRNA expression and prognostic values of HOXA genes in KIRC using The Cancer Genome Atlas (TCGA) analysis databases online. Colony formation assay, flow cytometry and Western blot were used to detect cell proliferation, apoptosis, cell cycle, and protein level of the indicated gene. RESULTS We found that the HOXA genes were differentially expressed in KIRC tissues when compared with normal tissues. The expression of HOXA4 and HOXA13 were significantly up-regulated, while HOXA7 and HOXA11 were down-regulated in KIRC. High mRNA levels of HOXA2, HOXA3 and HOXA13, and low level of HOXA7 predicted poor overall survival (OS) of KIRC patients. High mRNA level of HOXA13 further indicated a poor disease-free survival (DFS) of KIRC patients. Functionally, knockdown of HOXA13 significantly suppressed cell proliferation of KIRC in vitro, increased the protein level of p53 and decreased the protein level of cyclin D1 in KIRC cells. Over-expression of HOXA13 had the opposite effects on KIRC cells. CONCLUSION Collectively, our findings suggest that HOXA13 functions as a novel oncogene in KIRC and may be a potential biomarker for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, China.
| |
Collapse
|
28
|
Xia H, Liu Y, Wang Z, Zhang W, Qi M, Qi B, Jiang X. Long Noncoding RNA HOTAIRM1 Maintains Tumorigenicity of Glioblastoma Stem-Like Cells Through Regulation of HOX Gene Expression. Neurotherapeutics 2020; 17:754-764. [PMID: 31691127 PMCID: PMC7283434 DOI: 10.1007/s13311-019-00799-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Noncoding RNAs regulate transcription of gene expression and play an important role in the pathogenesis of glioblastomas. These tumors are heterogeneous with some glioma stem cells (GSCs) that are highly tumorigenic subpopulations of cells contributing to recurrence and treatment resistance. In this study, GSCs were established by neurosphere cultures of primary glioblastoma cells and validated by the expression of GSC marker CD133. The expression of the long noncoding RNA HOTAIRM1 was detected using real-time quantitative reverse transcription PCR (qRT-PCR). The role of HOTAIRM1 in the proliferation, apoptosis, stemness, and tumorigenicity of GSCs was investigated by soft agar colony formation, flow cytometry, TUNEL analysis, sphere formation, and in vivo xenograft models through silencing of HOTAIRM1. The expression of HOTAIRM1 and the neighboring HOX genes were analyzed by qRT-PCR in different grades of gliomas and nontumor tissues. We found that HOTAIRM1 is significantly elevated in GSCs. The silencing of HOTAIRM1 significantly impairs the proliferation, apoptosis, self-renewal, tumorigenesis of GSCs. In addition, HOTAIRM1 is significantly upregulated in gliomas and associated with tumor grade and patient survival. HOTAIRM1 neighboring genes, HOXA1, HOXA2, and HOXA3, are also significantly upregulated in gliomas and correlate with the expression of HOTAIRM1. Among them, HOXA2 and HOXA3 were identified as being upregulated in GSCs and contributed to the self-renewal of these stem cells. Taken together, our results demonstrate that HOTAIRM1 plays a critical role in the self-renewal of GSCs. These data also suggest that overexpression of HOTAIRM1 can be a negative prognostic factor for patient survival in malignant glioma and may be a promising potential therapeutic target.
Collapse
Affiliation(s)
- Hongping Xia
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
- Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
- Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yinhua Liu
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Zhichun Wang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Min Qi
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Bin Qi
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
29
|
Liu J, Guo Y, Cao J. Matrine triggers colon cancer cell apoptosis and G0/G1 cell cycle arrest via mediation of microRNA-22. Phytother Res 2020; 34:1619-1628. [PMID: 32072698 DOI: 10.1002/ptr.6626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Matrine (MAT) is an alkaloid in the dried roots of Sophora flavescens. The antitumor activity has been testified in colon cancer. Howbeit, the latent mechanism is still indistinct. The research probed the antitumor mechanism of MAT in colon cancer cells. MAT (0.25, 0.5, 0.75, 1, and 1.25 mM) was utilized to stimulate SW480 and SW620 cells for 24, 48, and 72 hr. Cell viability, apoptosis, cell cycle, and the correlative proteins were assessed via Cell Counting Kit-8, flow cytometry, and Western blot. microRNA-22 (miR-22) in MAT-treated or miR-22-silenced cells was estimated via real-time quantitative polymerase chain reaction. The functions of miR-22 inhibition were reassessed. Western blot was conducted for quantifying β-catenin, MEK, and ERK. Luciferase reporter assay was done for confirming the targeting relationship between miR-22 and ERBB3 or MECOM. MAT prohibited cell viability, accelerated apoptosis, and triggered cells cycle stagnation at G0/G1 phase. Additionally, miR-22 was elevated by MAT; meanwhile, the influences of MAT were all inverted by miR-22 inhibitor. MAT enhanced the expression of miR-22, thereby obstructing Wnt/β-catenin and MEK/ERK pathways. miR-22 had a potential to target mRNA 3'UTR of ERBB3 and MECOM. These discoveries manifested that MAT could evoke colon cancer cell apoptosis and G0/G1 cell cycle arrest via elevating miR-22.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Gastroenterology, Jining No.1 People's Hospital, Jining 272011, China.,Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Yazhuo Guo
- Department of Pharmacy, Jining No.1 People's Hospital, Jining 272011, China
| | - Jing Cao
- Department of Gastroenterology, Jining No.1 People's Hospital, Jining 272011, China
| |
Collapse
|
30
|
Ge XJ, Jiang JY, Wang M, Li MY, Zheng LM, Feng ZX, Liu L. Cetuximab enhances the efficiency of irinotecan through simultaneously inhibiting the MAPK signaling and ABCG2 in colorectal cancer cells. Pathol Res Pract 2019; 216:152798. [PMID: 31889589 DOI: 10.1016/j.prp.2019.152798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The present study sought to investigate the combined effects of cetuximab and irinotecan on colorectal cancer cells as well as the mechanisms underlying their anti-cancer effects. MATERIAL AND METHODS High performance liquid chromatography, Hoechst staining assay, and western blotting analysis were used to detect intracellular drug concentrations, cell apoptosis, and protein expression in the presence of cetuximab, irinotecan, and the combination of both. RESULTS Cetuximab was found to increase intracellular concentrations of irinotecan as well as cytotoxicity by inhibiting the epidermal growth factor receptor and, by extension, the downstream RAS-RAF-MEK-ERK signaling pathway. Cetuximab therefore induced apoptosis and improved the effect of irinotecan in colorectal cancer cells. It was also shown that cetuximab inhibited the drug efflux activity of ABCG2. In combination with irinotecan, cetuximab can both significantly induce cell apoptosis by inhibiting the RAS-RAF-MEK-ERK signaling pathway and improve the effects of irinotecan by decreasing drug efflux through the inhibition of ABCG2. CONCLUSION These features contribute to its anti-cancer potential.
Collapse
Affiliation(s)
- Xiao-Jun Ge
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, 563003, China.
| | - Jun-Yao Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, 563003, China
| | - Mei Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, 563003, China
| | - Mei-Yong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, 563003, China
| | - Li-Mei Zheng
- Department of Dermatology, Affiliated Hospital of Zun Yi Medical University, Zun Yi, Guizhou, 563003, China
| | - Zhong-Xin Feng
- Department of Hematology, Affiliated Hospital of Zun Yi Medical University, Zun Yi, Guizhou, 563003, China
| | - Lan Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, 563003, China
| |
Collapse
|
31
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
32
|
Li B, Zhu FC, Yu SX, Liu SJ, Li BY. Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Colon Cancer. Cancer Biother Radiopharm 2019; 35:50-57. [PMID: 31657617 DOI: 10.1089/cbr.2019.3045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Kinesin family member 22 (KIF22) is known as a regulator of cell mitosis and cellular vesicle transport. The alterations of KIF22 are associated with a series of tumors; however, its possible role in the progression of colon cancer is still unclear. Materials and Methods: This retrospective research collected 82 paired tissues with colon cancer. KIF22 protein and mRNA expression levels were detected by immunohistochemistry assays and Immunoblot assays, respectively. Short hairpin RNA (shRNA) plasmids were used to suppress the expression of KIF22 in HCT116 and HT29 cells, and the silencing efficiencies of shRNA plasmids targeted KIF22 were detected by quantitative PCR assays and immunoblot assays. In addition, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays and xenograft tumor growth assays were performed to observe cell proliferation in vitro and in vivo. Results: In human colon cancer tissues, the expression level of KIF22 was increased and correlated with clinical pathological features, including tumor stage and clinical stage (p = 0.034, and p = 0.015, respectively). Suppression of KIF22 inhibited cell proliferation and xenograft tumor growth. Conclusion: KIF22 might play an important role in the regulation of cell proliferation in colon cancer and might therefore serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Department of Anorectal Surgery, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Feng-Chi Zhu
- Department of Anorectal Surgery, Baoding Second Hospital, Baoding, China
| | - Su-Xiang Yu
- Department of Pathology, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Sheng-Jia Liu
- Medical Record Room, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Bao-Yu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Yang X, Zheng YT, Rong W. Sevoflurane induces apoptosis and inhibits the growth and motility of colon cancer in vitro and in vivo via inactivating Ras/Raf/MEK/ERK signaling. Life Sci 2019; 239:116916. [PMID: 31626792 DOI: 10.1016/j.lfs.2019.116916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
AIMS To investigate the effects of sevoflurane on proliferation, cell cycle, apoptosis, autophagy, invasion and epithelial-mesenchymal transition of colon cancer cell line SW480, and to explore its possible mechanism. MATERIALS AND METHODS SW480 and SW620 cells were treated with a mixture of 95% O2+5% CO2 containing different concentrations of sevoflurane (1.7% SAV, 3.4% SAV and 5.1% SAV) for 6 h. Meanwhile, we performed a rescue experiment by treating cells with the ERK pathway activator LM22B-10 prior to treatment of cells with 5.1% sevoflurane。 KEY FINDINGS: High concentration (5.1%) of sevoflurane significantly inhibited the proliferation and invasion of cells, causing G0/G1 phase arrest and promoted apoptosis and autophagy. 5.1% sevoflurane can participate in the regulation of EMT by regulating the expression of E-cadherin, Vimentin and N-cadherin proteins. LM22B-10 promoted proliferation and invasion of cancer cells and inhibited apoptosis and autophagy, while 5.1% sevoflurane could reverse the effect of LM22B-10 on the biological characteristics of cells. Sevoflurane can significantly inhibit tumor growth in SW480 cells transplanted nude mice. Moreover, 5.1% sevoflurane significantly increased the expression of p-Raf, p-MEK1/2, and p-ERK1/2 in SW480 cells and tumor tissues without affecting p-JNK and p-p38 proteins, meanwhile, 5.1% sevoflurane can inhibit the activation of ERK signaling pathway by LM22B-10 in vitro and in vivo. SIGNIFICANCE Sevoflurane can inhibit the proliferation and invasion of colon cancer cells, induce apoptosis and autophagy, and participate in the regulation of epithelial-mesenchymal transition, which may be related to its inhibition of the ERK signaling pathway.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Anesthesiology, Weihai Central Hospital, Weihai, 264400, Shandong, China
| | - Yao-Tun Zheng
- Department of Anesthesiology, Weihai Central Hospital, Weihai, 264400, Shandong, China
| | - Wei Rong
- Department of Anesthesiology, Weihai Central Hospital, Weihai, 264400, Shandong, China.
| |
Collapse
|
34
|
Lin S, Zhang R, An X, Li Z, Fang C, Pan B, Chen W, Xu G, Han W. LncRNA HOXA-AS3 confers cisplatin resistance by interacting with HOXA3 in non-small-cell lung carcinoma cells. Oncogenesis 2019; 8:60. [PMID: 31615976 PMCID: PMC6794325 DOI: 10.1038/s41389-019-0170-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have indicated that the aberrant expression of long noncoding RNAs (lncRNAs) is responsible for drug resistance, which represents a substantial obstacle for cancer therapy. In the present study, we aimed to investigate the role of the lncRNA HOXA-AS3 in drug resistance and elucidate its underlying mechanisms in non-small-cell lung carcinoma (NSCLC) cells. The role of HOXA-AS3 in drug resistance was demonstrated by the cell counting kit-8 assay (CCK-8), ethynyldeoxyuridine (EDU) assay, and flow cytometry analysis. Tumor xenografts in nude mice were established to evaluate the antitumor effects of HOXA-AS3 knockdown in vivo. Western blotting and quantitative real-time PCR were used to evaluate protein and RNA expression. RNA pull-down assays, mass spectrometry, and RNA immunoprecipitation were performed to confirm the molecular mechanism of HOXA-AS3 in the cisplatin resistance of NSCLC cells. We found that HOXA-AS3 levels increased with cisplatin treatment and knockdown of HOXA-AS3 enhance the efficacy of cisplatin in vitro and in vivo. Mechanistic investigations showed that HOXA-AS3 conferred cisplatin resistance by down-regulating homeobox A3 (HOXA3) expression. Moreover, HOXA-AS3 was demonstrated to interact with both the mRNA and protein forms of HOXA3. In addition, HOXA3 knockdown increased cisplatin resistance and induced epithelial-mesenchymal transition (EMT). Taken together, our findings suggested that additional research into HOXA-AS3 might provide a better understanding of the mechanisms of drug resistance and promote the development of a novel and efficient strategy to treat NSCLC.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhang
- Department of Internal medicine, Hangzhou Wuyunshan Sanatorium, the Affiliated Hangzhou First People's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxia An
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhoubin Li
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Fang
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Pan
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key laboratory of cancer prevention and therapy combining traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310012, China
| | - Guodong Xu
- Department of Cardiovascular Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, China
| | - Weili Han
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Huang M, Tailor J, Zhen Q, Gillmor AH, Miller ML, Weishaupt H, Chen J, Zheng T, Nash EK, McHenry LK, An Z, Ye F, Takashima Y, Clarke J, Ayetey H, Cavalli FMG, Luu B, Moriarity BS, Ilkhanizadeh S, Chavez L, Yu C, Kurian KM, Magnaldo T, Sevenet N, Koch P, Pollard SM, Dirks P, Snyder MP, Largaespada DA, Cho YJ, Phillips JJ, Swartling FJ, Morrissy AS, Kool M, Pfister SM, Taylor MD, Smith A, Weiss WA. Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell 2019; 25:433-446.e7. [PMID: 31204176 PMCID: PMC6731167 DOI: 10.1016/j.stem.2019.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.
Collapse
Affiliation(s)
- Miller Huang
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jignesh Tailor
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Institute of Cancer Research, Sutton, London SM2 5NG, UK; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qiqi Zhen
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron H Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Matthew L Miller
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Justin Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tina Zheng
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emily K Nash
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren K McHenry
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhenyi An
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fubaiyang Ye
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yasuhiro Takashima
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - James Clarke
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Harold Ayetey
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Florence M G Cavalli
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Betty Luu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lukas Chavez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Chunying Yu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathreena M Kurian
- Institute of Clinical Neurosciences, Level 1, Learning and Research Building, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Thierry Magnaldo
- Institute for Research on Cancer and Aging, Nice UMR CNRS 7284 INSERM U1081 UNS/UCA, Nice, France
| | - Nicolas Sevenet
- Institut Bergonie & INSERM U1218, Universite de Bordeaux, 229 cours de l'Argonne, 33076 Bordeaux Cedex, France
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim and Hector Institut for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Peter Dirks
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoon Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California, San Francisco, CA 94158, USA
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - A Sorana Morrissy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcel Kool
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Austin Smith
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - William A Weiss
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
36
|
Zhang L, Ding F. Hsa_circ_0008945 promoted breast cancer progression by targeting miR-338-3p. Onco Targets Ther 2019; 12:6577-6589. [PMID: 31496747 PMCID: PMC6701654 DOI: 10.2147/ott.s213994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To detect the expression and function of circ_0008945 in breast cancer (BC) and to explore its potential molecular mechanisms in BC tumorigenesis. MATERIALS AND METHODS We measured expression levels of circ_0008945, miR-338-3p and homeobox A3 (HOXA3) in BC tissue specimens and cells using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). We examined the effects of all three genes on BC cell proliferation using Cell Counting Kit-8 (CCK-8) and colony formation assays. We also performed a Transwell assay to assess the migratory and invasive ability of treated BC cells. BC cell apoptosis was assessed using flow cytometric (FCM) analysis; interaction between miR-338-3p and circ_0008945 or HOXA3 was verified by dual-luciferase reporter assay as well as by ribonucleic-acid (RNA) pulldown. Finally, we used an in vivo tumor growth assay to assess the role of circ_0008945 overexpression in BC tumor growth. RESULTS We found that circ_0008945 expression was significantly increased in both BC tissue specimens and cells. This increase was correlated with poor prognosis in BC patients. Knockdown of circ_0008945 inhibited BC cell proliferation, migration and invasion while promoting BC cell apoptosis in vitro. Overexpression of circ_0008945 remarkably promoted BC tumor growth in vivo. Mechanistically, circ_0008945 acted as a miRNA sponge for miR-338-3p and inhibited its expression in BC cells. Moreover, miR-338-3p targeted and inhibited HOXA3. CONCLUSION We found that circ_0008945 acted as a BC oncogene by physically binding miR-338-3p, which further targeted and regulated HOXA3.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, People’s Hospital of Xinchang County, Xinchang Affiliated Hospital of Wenzhou Medical University, Xinchang, Zhejiang, People’s Republic of China
| | - Fengping Ding
- Department of Pathology, People’s Hospital of Xinchang County, Xinchang Affiliated Hospital of Wenzhou Medical University, Xinchang, Zhejiang, People’s Republic of China
| |
Collapse
|
37
|
Wang L, Sui M, Wang X. miR‑338‑3p suppresses the malignancy of T‑cell lymphoblastic lymphoma by downregulating HOXA3. Mol Med Rep 2019; 20:2127-2134. [PMID: 31322185 PMCID: PMC6691266 DOI: 10.3892/mmr.2019.10451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is an aggressive malignancy with poor prognosis due to frequent relapses. Previous studies have reported an association of the disease with abnormal chromosomal rearrangements, DNA copy number alterations and mutations in critical signaling factors, such as those in the Notch1 pathway; however, the molecular mechanisms underlying the development of the disease remain unclear, limiting the development of novel therapies. In the present study, gene expression was detected by qPCR and western blot analysis. Diagnostic analysis was performed by ROC curve. Cell proliferation, invasion and migration were analyzed by cell proliferation and Transwell assays. Gene interactions were analyzed using luciferase reporter assay. In the present study, it was observed that the expression levels of microRNA-338-3p (miR-338-3p) were reduced in patient lymphoma tissues and a T-LBL cell line. Upregulation of its expression inhibited the migration and proliferation of cultured T-LBL cells. Bioinformatics analysis of putative target mRNAs of miR-338-3p identified a direct binding site in the 3′-untranslated of homeobox A3 (HOXA3). The levels of HOXA3 mRNA and protein were associated with those of miR-338-3p, and overexpression of HOXA3 promoted the malignant phenotype of T-LBL cells. The results suggested that miR-338-3p may suppress the development of T-LBL via the downregulation of oncogenic factors, such as HOXA3. The findings indicated that further investigation into miR-338-3p and the HOXA3 regulatory network may aid the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Minghua Sui
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiuli Wang
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
38
|
Kuo TL, Cheng KH, Chen LT, Hung WC. Deciphering The Potential Role of Hox Genes in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11050734. [PMID: 31137902 PMCID: PMC6562939 DOI: 10.3390/cancers11050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The Hox gene family plays an important role in organogenesis and animal development. Currently, 39 Hox genes that are clustered in four chromosome regions have been identified in humans. Emerging evidence suggests that Hox genes are involved in the development of the pancreas. However, the expression of Hox genes in pancreatic tumor tissues has been investigated in only a few studies. In addition, whether specific Hox genes can promote or suppress cancer metastasis is not clear. In this article, we first review the recent progress in studies on the role of Hox genes in pancreatic cancer. By comparing the expression profiles of pancreatic cancer cells isolated from genetically engineered mice established in our laboratory with three different proliferative and metastatic abilities, we identified novel Hox genes that exhibited tumor-promoting activity in pancreatic cancer. Finally, a potential oncogenic mechanism of the Hox genes was hypothesized.
Collapse
Affiliation(s)
- Tzu-Lei Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
39
|
Chang RX, Cui AL, Dong L, Guan SP, Jiang LY, Miao CX. Overexpression of RASAL1 Indicates Poor Prognosis and Promotes Invasion of Ovarian Cancer. Open Life Sci 2019; 14:133-140. [PMID: 33817145 PMCID: PMC7874762 DOI: 10.1515/biol-2019-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/13/2019] [Indexed: 01/22/2023] Open
Abstract
RAS protein activator like-1 (RASAL1) exists in numerous human tissues and has been commonly demonstrated to act as a tumor suppressor in several cancers. This study aimed to identify the functional characteristics of RASAL1 in ovarian adenocarcinoma and a potential mechanism of action. We analyzed RASAL1 gene expression in ovarian adenocarcinoma samples and normal samples gained from the GEO and Oncomine databases respectively. Then the relationship between RASAL1 expression and overall survival (OS) was assessed using the Kaplan-Meier method. Furthermore, the biological effect of RASAL1 in ovarian adenocarcinoma cell lines was assessed by Quantitative real time-PCR (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blot, wound healing and transwell assay. The statistical analysis showed patients with higher RASAL1 expression correlated with worse OS. The in vitro assays suggested knockdown of RASAL1 could inhibit cell proliferation, cell invasion and migration of ovarian adenocarcinoma. Moreover, the key proteins in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathway were also decreased in ovarian adenocarcinoma cells with RASAL1 silencing. These findings provide promising evidence that RASAL1 may be not only a powerful biomarker but also an effective therapeutic target of ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Rui-Xia Chang
- Department of gynecology, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ai-Ling Cui
- Central Laboratory, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Lu Dong
- Department of Hematological, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Su-Ping Guan
- Department of gynecology, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ling-Yan Jiang
- Department of Information, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Cong-Xiu Miao
- Department of Reproductive heredity, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
- E-mail:
| |
Collapse
|
40
|
Chen MJ, Deng J, Chen C, Hu W, Yuan YC, Xia ZK. LncRNA H19 promotes epithelial mesenchymal transition and metastasis of esophageal cancer via STAT3/EZH2 axis. Int J Biochem Cell Biol 2019; 113:27-36. [PMID: 31102664 DOI: 10.1016/j.biocel.2019.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Long non-coding RNA H19 (lncRNA H19) has been widely reported in esophageal cancer (EC), and previous study had found that lncRNAH19 was up-regulated in EC and promoted cell proliferation and metastasis. However, the mechanism still needs further studied. METHODS Levels of lncRNA H19 were analyzed by qRT-PCR in matched samples from 30 patients. Expression levels of lncRNA H19, let-7, STAT3 and EZH2 were additionally identified by qRT-PCR and western blotting in five EC cell lines. The effects of lncRNA H19 on cell proliferation, migration, invasion and apoptosis in cell lines were performed by MTT assay, colony formation assay, Transwell assay and flow cytometry in vitro, and tumor formation was detected by xenograft nude mice model in vivo. The expression level of STAT3, EZH2, β-catenin, and EMT and metastasis related molecules such as E-cadherin, N-cadherin, Snail-1 and MMP-9 was assessed by qRT-PCR and western blotting. Finally, luciferase reporter assay and RIP assay were used to verify the interaction between lncRNA H19 and let-7c, and their subsequent regulation of STAT3. RESULTS Knockdown of lncRNA H19 repressed cell proliferation, migration and invasion as well as EMT and metastasis via STAT3-EZH2-β-catenin pathway, while lncRNA H19 regulated STAT3 negatively regulated let-7c in EC cell lines. CONCLUSIONS lncRNA H19 facilitates EMT and metastasis of EC through let-7c/STAT3/EZH2/β-catenin axis.
Collapse
Affiliation(s)
- Ming-Jiu Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jie Deng
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha 410005, PR China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Wen Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Yun-Chang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Zhen-Kun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China.
| |
Collapse
|
41
|
Zheng W, Fan W, Feng N, Lu N, Zou H, Gu J, Yuan Y, Liu X, Bai J, Bian J, Liu Z. T he Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091517. [PMID: 31035709 PMCID: PMC6540048 DOI: 10.3390/ijerph16091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.
Collapse
Affiliation(s)
- Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
42
|
Shen LY, Zhou T, Du YB, Shi Q, Chen KN. Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma. Cancer Sci 2019; 110:1735-1745. [PMID: 30844117 PMCID: PMC6501045 DOI: 10.1111/cas.13993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis, which are a family of transcriptional factors involved in determining cell identity during early development, and also dysregulated in many malignancies. Previously, HOXB7, HOXC6 and HOXC8 were found abnormally upregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with normal mucosa and seen as poor prognostic predictors for ESCC patients, and were shown to promote cell proliferation and anti‐apoptosis in ESCC cells. These three HOX members have a high level of functional redundancy, making it difficult to target a single HOX gene. The aim of the present study was to explore whether ESCC cells are sensitive to HXR9 disrupting the interaction between multiple HOX proteins and their cofactor PBX, which is required for HOX functions. ESCC cell lines (KYSE70, KYSE150, KYSE450) were treated with HXR9 or CXR9, and coimmunoprecipitation and immunofluorescent colocalization were carried out to observe HOX/PBX dimer formation. To further investigate whether HXR9 disrupts the HOX pro‐oncogenic function, CCK‐8 assay and colony formation assay were carried out. Apoptosis was assessed by flow cytometry, and tumor growth in vivo was investigated in a xenograft model. RNA‐seq was used to study the transcriptome of HXR9‐treated cells. Results showed that HXR9 blocked HOX/PBX interaction, leading to subsequent transcription alteration of their potential target genes, which are involved in JAK‐signal transducer and activator of transcription (STAT) activation and apoptosis inducement. Meanwhile, HXR9 showed an antitumor phenotype, such as inhibiting cell proliferation, inducing cell apoptosis and significantly retarding tumor growth. Therefore, it is suggested that targeting HOX/PBX may be a novel effective treatment for ESCC.
Collapse
Affiliation(s)
- Lu-Yan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ya-Bing Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ke-Neng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
43
|
Bao Z, Zhu Y, Ge Q, Gu W, Dong X, Bai Y. gwSPIA: Improved Signaling Pathway Impact Analysis With Gene Weights. IEEE ACCESS 2019; 7:69172-69183. [DOI: 10.1109/access.2019.2918150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
TCF7L2 activated HOXA-AS2 decreased the glucocorticoid sensitivity in acute lymphoblastic leukemia through regulating HOXA3/EGFR/Ras/Raf/MEK/ERK pathway. Biomed Pharmacother 2018; 109:1640-1649. [PMID: 30551418 DOI: 10.1016/j.biopha.2018.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by abnormal lymphoblasts accumulation in the bone marrow and blood. Despite great efforts have been made in exploring novel therapeutic method, the prognosis of children with ALL is still unsatisfied. Glucocorticoid (GC) resistance is a great obstacle for the clinical treatment of ALL. Therefore, it is essential to investigate the molecular mechanism underlying the GC resistance. According to previous reports, long noncoding RNAs (lncRNAs) are involved in drug resistance of various human cancers. LncRNA HOXA cluster antisense RNA2 (HOXA-AS2) has been reported in several human malignancies due to its oncogenic property. However, the molecular mechanism of HOXA-AS2 involved in the GC resistance of ALL still needs to be further clarified. At first, we found that lncRNA HOXA-AS2 was highly expressed both in prednisone insensitive ALL cell lines and patient samples. Gain or loss-of-function assays revealed that HOXA-AS2 enhanced GC resistance via promoting cell proliferation and inhibiting cell apoptosis. Furthermore, we validated that HOXA-AS2 upregulated HOXA3, thereby activating EGFR/Ras/Raf/MEK/ERK signaling pathway. Our findings showed that HOXA-AS2 may be a potential therapeutic target for ALL patients with poor GC resistance.
Collapse
|
45
|
Gan BL, He RQ, Zhang Y, Wei DM, Hu XH, Chen G. Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis. Int J Oncol 2018; 53:1557-1579. [PMID: 30066858 PMCID: PMC6086630 DOI: 10.3892/ijo.2018.4508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have indicated that homeobox A3 (HOXA3) functions as a carcinogen in colon cancer and the methylation level of HOXA3 is significantly increased in lung adenocarcinoma (LUAD) tissues. However, at least to the best of our knowledge, few studies to date have been performed on HOXA3 in non-small cell lung cancer (NSCLC). Therefore, further studies on HOXA3 expression in NSCLC and the potential regulatory mechanisms are urgently required. In this study, HOXA3 expression in 55 tissues of cases of NSCLC and corresponding non-lung cancer tissues was detected by reverse transcription-quantitative PCR (RT-qPCR). In addition, the clinical significance of HOXA3 expression in NSCLC was evaluated using the Cancer Genome Atlas (TCGA) database. Bioinformatics analysis was then performed to elucidate the potential molecular mechanisms of action of HOXA3. Furthermore, the potential target microRNAs (miRNAs or miRs) of HOXA3 were predicted using miRWalk2.0. Based on Gene Expression Omnibus (GEO) and TGCA databases, standardized mean difference (SMD) and sROC methods were used for meta-analyses of the expression of potential target miRNAs of HOXA3 in NSCLC to evaluate their association with HOXA3. The results revealed that the HOXA3 expression levels in NSCLC, LUAD and lung squamous cell carcinoma (LUSC) were 0.1130±0.1398, 0.1295±0.16890 and 0.0906±0.0846, respectively. These values were all decreased compared with the normal tissues (0.1877±0.1975, 0.2337±0.2405 and 0.1249±0.0873, respectively, P<0.05). The TCGA database also revealed the low expression trend of HOXA3. The downregulation of HOXA3 may play an important role in the progression and the poor prognosis of LUAD. The TCGA database also suggested that HOXA3 in LUAD and LUSC tissues exhibited certain mutational levels. In addition, the methylation levels in the NSCLC, LUAD and LUSC tissues significantly increased [NSCLC: fold change (FC), 1.3226; P<0.001; LUAD: FC, 1.2712; P<0.001; and LUSC: FC, 1.3786; P<0.001]. According to the analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the co-expression HOXA3 genes were mainly associated with the focal adhesion signalling pathway and the ECM-receptor interaction signalling pathway. Furthermore, the predicted miRNA, miR-372-3p, exhibited a high expression in both the NSCLC and LUAD tissues (P<0.05). On the whole, the findings of this study indicate that low HOXA3 expression may play a certain role in LUAD; however, its association with LUSC still requires further investigation. HOXA3 function may be achieved through different pathways or target miRNAs. However, the specific underlying mechanisms need to be confirmed through various functional studies.
Collapse
Affiliation(s)
- Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
46
|
Öztemur Islakoğlu Y, Noyan S, Gür Dedeoğlu B. hsa-miR-301a- and SOX10-dependent miRNA-TF-mRNA regulatory circuits in breast cancer. Turk J Biol 2018; 42:103-112. [PMID: 30814872 DOI: 10.3906/biy-1708-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the most common cancer among women and the molecular pathways that play main roles in breast cancer regulation are still not completely understood. MicroRNAs (miRNAs) and transcription factors (TFs) are important regulators of gene expression. It is important to unravel the relation of TFs, miRNAs, and their targets within regulatory networks to clarify the processes that cause breast cancer and the progression of it. In this study, mRNA and miRNA expression studies including breast tumors and normal samples were extracted from the GEO microarray database. Two independent mRNA studies and a miRNA study were selected and reanalyzed. Differentially expressed (DE) mRNAs and miRNAs between breast tumor and normal samples were listed by using BRBArray Tools. CircuitsDB2 analysis conducted with DE miRNAs and mRNAs resulted in 3 significant circuits that are SOX10- and hsamiR-301a-dependent. The following significant circuits were characterized and validated bioinformatically by using web-based tools: SOX10→hsa-miR-301a→HOXA3, SOX10→hsa-miR-301a→KIT, and SOX10→hsa-miR-301a→NFIB. It can be concluded that regulatory motifs involving miRNAs and TFs may be useful for understanding breast cancer regulation and for predicting new biomarkers.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University , Ankara , Turkey
| | | |
Collapse
|