1
|
Ma M, Jin C, Dong Q. Intratumoral Heterogeneity and Immune Microenvironment in Hepatoblastoma Revealed by Single-Cell RNA Sequencing. J Cell Mol Med 2025; 29:e70482. [PMID: 40099956 PMCID: PMC11915626 DOI: 10.1111/jcmm.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatoblastoma (HB) is a common paediatric liver malignancy characterised by significant intratumoral heterogeneity and a complex tumour microenvironment (TME). Using single-cell RNA sequencing (scRNA-seq), we analysed 43,592 cells from three tumour regions and adjacent normal tissue of an HB patient. Our study revealed distinct cellular compositions and varying degrees of malignancy across different tumour regions, with the T1 region showing the highest malignancy and overexpression of HMGB2 and TOP2A. Survival analysis demonstrated that high HMGB2 expression is associated with poor prognosis and increased recurrence, suggesting its potential as a prognostic marker. Additionally, we identified a diverse immune microenvironment enriched with regulatory T cells (Tregs) and CD8+ effector memory T cells (Tem), indicating potential immune evasion mechanisms. Notably, CTLA-4 and PD-1 were highly expressed in Tregs and Tem cells, highlighting their potential as immunotherapy targets. Myeloid cells, including Kupffer cells and dendritic cells, also exhibited distinct functional roles in different tumour regions. This study provides the first comprehensive single-cell atlas of HB, revealing critical insights into its intratumoral heterogeneity and immune microenvironment. Our findings not only advance the understanding of HB biology but also offer new directions for precision medicine, including the development of targeted therapies and immunotherapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mingdi Ma
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chen Jin
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qian Dong
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Shandong Key Laboratory of Digital Medicine and Computer Assisted SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
2
|
Zhou T, Niu Y, Li Y. Advances in research on malignant tumors and targeted agents for TOP2A (Review). Mol Med Rep 2025; 31:50. [PMID: 39670307 DOI: 10.3892/mmr.2024.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
The DNA topoisomerase isoform topoisomerase IIα (TOP2A) is essential for the condensation and segregation of cellular mitotic chromosomes and the structural maintenance. It has been demonstrated that TOP2A is highly expressed in various malignancies, including lung adenocarcinoma (LUAD), hepatocellular carcinoma (HCC) and breast cancer (BC), associating with poor prognosis and aggressive tumor behavior. Additionally, TOP2A has emerged as a promising target for cancer therapy, with widespread clinical application of associated chemotherapeutic agents. The present study explored the impact of TOP2A on malignant tumor growth and the advancements in research on its targeted drugs. The fundamental mechanisms of TOP2A have been detailed, its specific roles in tumor cells are analyzed, and its potential as a biomarker for tumor prognosis and therapeutic targeting is highlighted. Additionally, the present review compiles findings from the latest clinical trials of relevant targeted agents, information on newly developed inhibitors, and discusses future research directions and clinical application strategies in cancer therapy, aiming to propose novel ideas and methods.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yiting Niu
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yanjun Li
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
3
|
Zhang K, Zheng X, Sun Y, Feng X, Wu X, Liu W, Gao C, Yan Y, Tian W, Wang Y. TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation. Cancer Biol Ther 2024; 25:2325126. [PMID: 38445610 PMCID: PMC10936659 DOI: 10.1080/15384047.2024.2325126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Ovarian cancer (OC) is a form of gynecological malignancy that is associated with worse patient outcomes than any other cancer of the female reproductive tract. Topoisomerase II α (TOP2A) is commonly regarded as an oncogene that is associated with malignant disease progression in a variety of cancers, its mechanistic functions in OC have yet to be firmly established. We explored the role of TOP2A in OC through online databases, clinical samples, in vitro and in vivo experiments. And initial analyses of public databases revealed high OC-related TOP2A expression in patient samples that was related to poorer prognosis. This was confirmed by clinical samples in which TOP2A expression was elevated in OC relative to healthy tissue. Kaplan-Meier analyses further suggested that higher TOP2A expression levels were correlated with worse prognosis in OC patients. In vitro, TOP2A knockdown resulted in the inhibition of OC cell proliferation, with cells entering G1 phase arrest and undergoing consequent apoptotic death. In rescue assays, TOP2A was confirmed to regulate cell proliferation and cell cycle through AKT/mTOR pathway activity. Mouse model experiments further affirmed the key role that TOP2A plays as a driver of OC cell proliferation. These data provide strong evidence supporting TOP2A as an oncogenic mediator and prognostic biomarker related to OC progression and poor outcomes. At the mechanistic level, TOP2A can control tumor cell growth via AKT/mTOR pathway modulation. These preliminary results provide a foundation for future research seeking to explore the utility of TOP2A inhibitor-based combination treatment regimens in platinum-resistant recurrent OC patients.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiqing Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Feng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xirong Wu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Wu R, Su Y, Liao J, Shen J, Ma Y, Gao W, Dong Z, Dai Y, Yao K, Ge J. Exome Sequencing Identified Susceptible Genes for High Residual Risks in Early-Onset Coronary Atherosclerotic Disease. Clin Cardiol 2024; 47:e70066. [PMID: 39673281 PMCID: PMC11645474 DOI: 10.1002/clc.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024] Open
Abstract
AIMS Despite the tremendous improvement in therapeutic medication and intervention for coronary atherosclerotic disease (CAD), residual risks remain. Exome sequencing enables identification of rare variants and susceptibility genes for residual risks of early-onset coronary atherosclerotic disease (EOCAD) with well-controlled conventional risk factors. METHODS We performed whole-exome sequencing of subjects who had no conventional risk factors, defined as higher body mass index, smoking, hypertension and dyslipidemia, screened from 1950 patients with EOCAD (age ≤ 45 years, at least 50% stenosis of coronary artery by angiography), and selected control subjects from 1006 elder (age ≥ 65 years) with < 30% coronary stenosis. Gene-based association analysis and clinical phenotypic comparison were conducted. RESULTS Subjects without defined conventional risk factors accounted for 4.72% of young patients. Totally, 6 genes might be associated with residual risk of EOCAD, namely CABP1 (OR = 22.19, p = 0.02), HLA-E (OR = 22.19, p = 0.02), TOE1 (OR = 33.6, p = 0.002), HPSE2 (OR = 11.1, p = 0.04), CHST14 (OR = 22.19, p = 0.02) as well as KLHL8 (OR = 22.19, p = 0.02). Phenotypic analysis displayed the levels of low-density lipoprotein cholesterol in carriers of mutations from CABP1, HLA-E, TOE1, and HPSE2 were significantly elevated compared to noncarriers. Notably, extracellular matrix-associated CHST14 and fibrinogen-associated KLHL8 both displayed possible correlation with increased neutrophil proportion and decreased monocyte percentage (both p < 0.05), exerting potential effects on the residual inflammatory risks of EOCAD. CONCLUSION The study identified six genes related to dyslipidemia and inflammation pathways with potential association with residual risk of EOCAD, which will contribute to precision-based prevention in these patients. TRIAL REGISTRATION The GRAND study was registered at www. CLINICALTRIALS gov on July 14, 2015, and the registry number is NCT02496858.
Collapse
Affiliation(s)
- Runda Wu
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Ya Su
- Department of CardiologyZhongshan Hospital, Qingpu BranchShanghaiP.R. China
| | - Jianquan Liao
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Juan Shen
- Institute of Metagenomics, Qingdao‐Europe Advanced Institute for Life Sciences, BGI ResearchQingdaoP.R. China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Wei Gao
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Zheng Dong
- Department of CardiologyNanjing Drum Tower HospitalNanjingP.R. China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Kang Yao
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
| | - Junbo Ge
- Department of Cardiology, Zhongshan HospitalFudan UniversityShanghaiP.R. China
- Shanghai Institute of Cardiovascular DiseaseShanghaiP.R. China
- NHC Key Laboratory of Viral Heart Diseases (Fudan University)ShanghaiP.R. China
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesBeijingP.R. China
- National Clinical Research Center for Interventional MedicineShanghaiP.R. China
| |
Collapse
|
5
|
Yang Y, Liu S, Xiao X. TOP2A Promotes Proliferation, Migration, and Inflammatory Response in M5-Treated Keratinocytes by Binding CTBP1 to Activate Wnt/β-Catenin Signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01620-2. [PMID: 39565516 DOI: 10.1007/s12013-024-01620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Psoriasis is a chronic cutaneous disease, affecting a significant portion of the global population. Topoisomerase II alpha (TOP2A) is upregulated in psoriasis samples, but the precise molecular mechanism remains unclear. We aimed to clarify the biological contribution of TOP2A in psoriasis progression. An in vitro psoriasis model was established on M5-induced keratinocytes (HaCaT cells) to simulate the psoriasis-like alterations. Following TOP2A knockdown without or with c terminal binding protein 1 (CTBP1) overexpression, CCK-8 and EDU staining were employed to analyze the viability and proliferation of HaCaT cells under M5 conditions. The capacities of HaCaT cell migration and invasion were examined with wound healing- and transwell assays. RT-qPCR and immunoblotting were adopted for evaluation of the inflammation and differentiation of M5-stimualted HaCaT cells. Additionally, the binding between TOP2A and CTBP1 was predicated using bioinformatics tools and detected by Co-IP. Finally, the expression of proteins in Wnt/β-catenin signaling was analyzed with the application of immunoblotting. Results suggested that TOP2A was upregulated in psoriasis skin lesions and M5-induced HaCaT cells. Interference with TOP2A attenuated the proliferation, migration, invasion, and inflammatory response in M5-treated HaCaT cells. In particular, TOP2A bound to CTBP1 and upregulated CTBP1 expression in HaCaT cells. Remarkably, CTBP1 upregulation blocked the impacts of TOP2A depletion on the biological behaviors of M5-treated HaCaT cells. Besides, TOP2A deficiency upregulated DKK1 expression as well as downregulated Wnt1, β-catenin, and c-Myc expression in HaCaT cells exposed to M5, which was restored by further CTBP1 overexpression. In summary, TOP2A binds CTBP1 to activate Wnt/β-catenin signaling, thereby promoting the progression of psoriasis.
Collapse
Affiliation(s)
- Yuanwen Yang
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Shumei Liu
- Medical Cosmetology Department, Shenzhen Jiarong Comprehensive Outpatient Department, Shenzhen, Guangdong, China
| | - Xia Xiao
- Medical Record Room of Shanxi Traditional Chinese Medicine Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Li GG, Chu XF, Xing YM, Xue X, Ihtisham B, Liang XF, Xu JX, Mi Y, Zheng PY. Baicalin Prevents Colon Cancer by Suppressing CDKN2A Protein Expression. Chin J Integr Med 2024; 30:1007-1017. [PMID: 38941045 DOI: 10.1007/s11655-024-4109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To observe the therapeutic effects and underlying mechanism of baicalin against colon cancer. METHODS The effects of baicalin on the proliferation and growth of colon cancer cells MC38 and CT26. WT were observed and predicted potential molecular targets of baicalin for colon cancer therapy were studied by network pharmacology. Furthermore, molecular docking and drug affinity responsive target stability (DARTS) analysis were performed to confirm the interaction between potential targets and baicalin. Finally, the mechanisms predicted by in silico analyses were experimentally verified in-vitro and in-vivo. RESULTS Baicalin significantly inhibited proliferation, invasion, migration, and induced apoptosis in MC38 and CT26 cells (all P<0.01). Additionally, baicalin caused cell cycle arrest at the S phase, while the G0/G1 phase was detected in the tiny portion of the cells. Subsequent network pharmacology analysis identified 6 therapeutic targets associated with baicalin, which potentially affect various pathways including 39 biological processes and 99 signaling pathways. In addition, molecular docking and DARTS predicted the potential binding of baicalin with cyclin dependent kinase inhibitor 2A (CDKN2A), protein kinase B (AKT), caspase 3, and mitogen-activated protein kinase (MAPK). In vitro, the expressions of CDKN2A, MAPK, and p-AKT were suppressed by baicalin in MC38 and CT26 cells. In vivo, baicalin significantly reduced the tumor size and weight (all P<0.01) in the colon cancer mouse model via inactivating p-AKT, CDKN2A, cyclin dependent kinase 4, cyclin dependent kinase 2, interleukin-1, tumor necrosis factor α, and activating caspase 3 and mouse double minute 2 homolog signaling (all P<0.05). CONCLUSION Baicalin suppressed the CDKN2A protein level to prevent colon cancer and could be used as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Gang-Gang Li
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xiu-Feng Chu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ya-Min Xing
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Bukhari Ihtisham
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xin-Feng Liang
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ji-Xuan Xu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Peng-Yuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China.
| |
Collapse
|
7
|
Liu G, Lin W, Zhang K, Chen K, Niu G, Zhu Y, Liu Y, Li P, Li Z, An Y. Elucidating the prognostic and therapeutic significance of TOP2A in various malignancies. Cancer Genet 2024; 288-289:68-81. [PMID: 39454521 DOI: 10.1016/j.cancergen.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Topoisomerase IIα (TOP2A) is a crucial enzyme that plays a vital role in DNA replication and transcription mechanisms. Dysregulated expression of TOP2A has been associated with various malignancies, including hepatocellular carcinoma, prostate cancer, colon cancer, lung cancer and breast cancer. In this review, we summarized the prognostic relevances of TOP2A in various types of cancer. The increased expression of TOP2A has been linked to resistance to therapy and reduced survival rates. Therefore, evaluating TOP2A levels could assist in identifying patients who may derive advantages from molecular targeted therapy. The amplification of TOP2A has been linked to a positive response to chemotherapy regimens that contain anthracycline. Nevertheless, the overexpression of TOP2A also indicates a heightened likelihood of disease recurrence and unfavorable prognosis. The prognostic significance of TOP2A has been extensively studied in various types of cancer. The increased expression of TOP2A is associated with poor clinical outcomes, indicating its potential as a valuable biomarker for assessing risk and stratifying treatment in these malignancies. However, further investigation is needed to elucidate the underlying mechanisms by which TOP2A influences cancer progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Wenlong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kangxu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guanglin Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Maawadh RM, Xu C, Ahmed R, Mushtaq N. Predicting Survival Among Colorectal Cancer Patients: Development and Validation of Polygenic Survival Score. Clin Exp Gastroenterol 2024; 17:317-329. [PMID: 39431218 PMCID: PMC11488504 DOI: 10.2147/ceg.s464324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose Colorectal cancer is the second leading cause of cancer-related death in the United States. A multi-omics approach has contributed in identifying various cancer-specific mutations, epigenetic alterations, and cells response to chemotherapy. This study aimed to determine the factors associated with colorectal cancer survival and develop and validate a polygenic survival scoring system (PSS) using a multi-omics approach. Patients and Methods Data were obtained from the Cancer Genome Atlas (TCGA). Colon Adenocarcinoma (TCGA-COAD) data were used to develop a survival prediction model and PSS, whereas rectal adenocarcinoma (TCGA-READ) data were used to validate the PSS. Cox proportional hazards regression analysis was conducted to examine the association between the demographic characteristics, clinical variables, and mRNA gene expression. Results Overall accuracy of PSS was also evaluated. The median overall survival for TCGA-COAD patients was 7 years and for TCGA-READ patients was 5 years. The multivariate Cox proportional hazards model identified age, cancer stage, and expression of nine genes as predictors of colon cancer survival. Based on the median PSS of 0.38, 48% of TCGA-COAD patients had high mortality risk. Patients in the low risk group had significantly higher 5-year survival rates than those in the high group (p <0.0001). The PSS demonstrated a high overall accuracy in predicting colorectal cancer survival. Conclusion This study integrated clinical and transcriptome data to identify survival predictors in patients with colorectal cancer. PSS is an accurate and valid measure for estimating colorectal cancer survival. Thus, it can serve as an important tool for future colorectal cancer research.
Collapse
Affiliation(s)
- Rawan M Maawadh
- Clinical Laboratory Science Department, Prince Sultan Military College of Health Science, Dammam, Saudi Arabia
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rizwan Ahmed
- Department of General Medicine, Federal Government Polyclinic Hospital, Islamabad, Pakistan
| | - Nasir Mushtaq
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Family and Community Medicine, OU-TU School of Community Medicine, University of Oklahoma, Tulsa, OK, USA
| |
Collapse
|
9
|
Priyamvada P, Ashok G, Mathpal S, Anbarasu A, Ramaiah S. Marine Compound-Carpatamide D as a Potential Inhibitor Against TOP2A and Its Mutant D1021Y in Colorectal Cancer: Insights from DFT, MEP and Molecular Dynamics Simulation. Mol Biotechnol 2024:10.1007/s12033-024-01265-9. [PMID: 39264528 DOI: 10.1007/s12033-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Cheng X, Wei Y, Deng L, Dong H, Wei H, Xie C, Tuo Y, Chen M, Qin H, Cao Y. Expression and biological significance of topoisomerase II α (TOP2A) in oral squamous cell carcinoma. Discov Oncol 2024; 15:423. [PMID: 39254737 PMCID: PMC11387568 DOI: 10.1007/s12672-024-01295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Topoisomerase II α(TOP2A) is usually highly expressed in rapidly proliferating cells, and its expression is regulated by cell cycle. The relationship between TOP2A and oral squamous cell carcinoma (OSCC) needs further study. METHODS TOP2A immunoreactivity was analyzed using immunohistochemical (IHC) staining analysis in specimens from 20 OSCC patients. Based on the high-throughput sequencing and gene microarray database, the expression of TOP2A mRNA in OSCC was calculated and its ability to identify OSCC tissues was evaluated by diagnostic analysis. CRISPR screen was used to select the genes necessary for OSCC cell growth, and the gene set was analyzed for function enrichment. Single-cell RNA sequencing analysis was conducted to evaluate the expression level of TOP2A mRNA in OSCC cells. RESULTS Compared with normal oral tissues, the expression of TOP2A protein was up-regulated in OSCC tissues. A total of 1240 OSCC and 428 non-OSCC oral tissue samples were included based on high-throughput dataset retrieval, and it was confirmed that TOP2A mRNA was highly expressed in OSCC tissues [SMD = 1.51 (95% CI 0.94-2.07), sROC AUC = 0.96 (95% CI 0.94-0.98)]. As an essential gene for OSCC cell growth, single-cell RNA sequencing data also confirmed that TOP2A mRNA expression was up-regulated in OSCC cells. CONCLUSION The up-regulation of TOP2A may play a pivotal role in OSCC.
Collapse
Affiliation(s)
- Xujie Cheng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yuxing Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Limei Deng
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Dong
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Huiping Wei
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Cheng Xie
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yangjuan Tuo
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Meiyu Chen
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Qin
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yong Cao
- Department of Oral and Maxillofacial Surgery, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
11
|
Han J, Zhao B, Han X, Sun T, Yue M, Hou M, Wu J, Tu M, An Y. Comprehensive Analysis of a Six-Gene Signature Predicting Survival and Immune Infiltration of Liposarcoma Patients and Deciphering Its Therapeutic Significance. Int J Mol Sci 2024; 25:7792. [PMID: 39063036 PMCID: PMC11277418 DOI: 10.3390/ijms25147792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND As a common soft tissue sarcoma, liposarcoma (LPS) is a heterogeneous malignant tumor derived from adipose tissue. Due to the high risk of metastasis and recurrence, the prognosis of LPS remains unfavorable. To improve clinical treatment, a robust risk prediction model is essential to evaluate the prognosis of LPS patients. METHODS By comprehensive analysis of data derived from GEO datasets, differentially expressed genes (DEGs) were obtained. Univariate and Lasso Cox regressions were subsequently employed to reveal distant recurrence-free survival (DRFS)-associated DEGs and develop a prognostic gene signature, which was assessed by Kaplan-Meier survival and ROC curve. GSEA and immune infiltration analyses were conducted to illuminate molecular mechanisms and immune correlations of this model in LPS progression. Furthermore, a correlation analysis was involved to decipher the therapeutic significance of this model for LPS. RESULTS A six-gene signature was developed to predict DRFS of LPS patients and showed higher precision performance in more aggressive LPS subtypes. Then, a nomogram was further established for clinical application based on this risk model. Via GSEA, the high-risk group was significantly enriched in cell cycle-related pathways. In the LPS microenvironment, neutrophils, memory B cells and resting mast cells exhibited significant differences in cell abundance between high-risk and low-risk patients. Moreover, this model was significantly correlated with therapeutic targets. CONCLUSION A prognostic six-gene signature was developed and significantly associated with cell cycle pathways and therapeutic target genes, which could provide new insights into risk assessment of LPS progression and therapeutic strategies for LPS patients to improve their prognosis.
Collapse
Affiliation(s)
- Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Priyamvada P, Ramaiah S. Potential Signature Therapeutic Biomarkers TOP2A, MAD2L1, and CDK1 in Colorectal Cancer: A Systems Biomedicine-Based Approach. Biochem Genet 2024; 62:2166-2194. [PMID: 37884851 DOI: 10.1007/s10528-023-10544-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Colorectal cancer is the third deadliest and fourth most diagnosed cancer. It is heterogeneously driven by varied mutations and mutagens, and thus, it is challenging for targeted therapy. The rapid advancement of high-throughput technology presents considerable opportunities for discovering new colon cancer biomarkers. In the present study, we have explored and identified the biomarkers based on molecular interactions. We curated cancer datasets that were not micro-dissected and performed gene expression analysis. The protein-protein interactions were curated, and a network was constructed for the up-regulated genes. The hub genes were analyzed using 12 different topological parameters. The correlation analysis selected TOP2A, CDK1, CCNB1, AURKA, and MAD2L1 as hub genes. Further, survival analysis was performed to determine the effectiveness of the hub gene on the patient's survival rate. Our findings explore various transcription factors such as E2F4, FOXM1, E2F6, MAX, and SIN3A, along with kinases CSNK2A1, MAPK14, CDK1, CDK4, and CDK2, as potential molecular signatures and aid researchers in understanding the pathophysiological mechanisms underlying CRC development and thus providing novel therapeutic and diagnostic recourse. Furthermore, investigating miRNAs, we focused on hsa-miR-215-5p, hsa-miR-192-5p, and hsa-miR-193b-3p due to their observed impact on a diverse set of colorectal cancer genes. Thereby, the current approach brings into light CRC- related genes at the RNA and protein levels that can potentially act as novel biomarkers opening doors to diagnostic and treatment purposes.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Chen JF, Wu SW, Shi ZM, Qu YJ, Ding MR, Hu B. Mechanisms of Actinidia chinensis Planch in treating colon cancer based on the integration of network pharmacology, molecular docking, and experimental verification. Hereditas 2023; 160:39. [PMID: 38102686 PMCID: PMC10722835 DOI: 10.1186/s41065-023-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND As an anticancer Chinese herbal medicine, the effective components and mechanism of Actinidia chinensis Planch (ACP, Tengligen) in the treatment of colon cancer are still unclear. In the present study, the integration of network pharmacology, molecular docking, and cell experiments was employed to study the effective mechanism of ACP against colon cancer. METHODS The Venn diagram and STRING database were used to construct the protein-protein interaction network (PPI) of ACP-colon cancer, and further topological analysis was used to obtain the key target genes of ACP in colon cancer. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to visualize the related functions and pathways. Molecular docking between key targets and compounds was determined using software such as AutoDockTools. Finally, the effect of ACP on CT26 cells was observed in vitro. RESULTS The study identified 40 ACP-colon key targets, including CASP3, CDK2, GSK3B, and PIK3R1. GO and KEGG enrichment analyses found that these genes were involved in 211 biological processes and 92 pathways, among which pathways in cancer, PI3K-Akt, p53, and cell cycle might be the main pathways of ACP against colon cancer. Molecular docking verified that the key components of ACP could stably bind to the corresponding targets. The experimental results showed that ACP could inhibit proliferation, induce apoptosis, and downregulate the phosphorylation of PIK3R1, Akt, and GSK3B in CT26 cells. CONCLUSION ACP is an anti-colon cancer herb with multiple components, and involvement of multiple target genes and signaling pathways. ACP can significantly inhibit proliferation and induce apoptosis of colon cancer cells, which may be closely related to the regulation of PI3K/AKT/GSK3B signal transduction.
Collapse
Affiliation(s)
- Jin-Fang Chen
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Shi-Wei Wu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zi-Man Shi
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
14
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
16
|
Jia W, Liu X, Zhang Z. Role of TOP2A and CDC6 in liver cancer. Medicine (Baltimore) 2023; 102:e35604. [PMID: 37861550 PMCID: PMC10589547 DOI: 10.1097/md.0000000000035604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality worldwide, which is characterized by aggressive growth and metastasis. However, the relationship between TOP2A and CDC6 and HCC remains unclear. GSE121248 and GSE101728 profiles for liver cancer were downloaded from the gene expression omnibus database generated using GPL21047and GPL570. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis. Gene expression heat map was drawn and survival analysis was performed. Comparative toxicogenomics database analysis were performed to find the disease most related to the core gene. TargetScan was used to screen miRNAs regulating central DEGs. 885 DEGs were identified. According to gene ontology analysis, they were mainly enriched in organic acid metabolism process, metabolic pathway, p53 signal pathway and PPAR signal pathway. The enrichment items are similar to the GOKEGG enrichment items of differentially expressed genes, mainly in the process of organic acid metabolism, p53 signal pathway and PPAR signal pathway. In the enrichment project of metascape, gene ontology has PIDPLK1 pathway, mitotic cell cycle, tumor retinoblastoma gene. The construction and analysis of protein-protein interaction network obtained 10 core genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1), and found that these core genes were highly expressed in tumor tissues and low in normal tissues. Comparative toxicogenomics database analysis showed that 10 genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1) were related to necrosis, inflammation, HCC, liver cirrhosis, and adenoid cystic carcinoma. TOP2A and CDC6 are highly expressed in liver cancer, which may become molecular targets for early diagnosis and precise treatment.
Collapse
Affiliation(s)
- Wei Jia
- Department of Digestive, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Badachu Xixia Village, Shijingshan District, Beijing, P.R. China
| | - Xiang Liu
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhilei Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
17
|
Hailati S, Talihati Z, Abudurousuli K, Han MY, Nuer M, Khan N, Maihemuti N, Simayi J, Dilimulati D, Nueraihemaiti N, Zhou W. Exploring the hub genes and mechanisms of Daphne altaica treating esophageal squamous cell carcinoma based on network pharmacology and bioinformatics analysis. J Cancer Res Clin Oncol 2023; 149:8467-8481. [PMID: 37087696 DOI: 10.1007/s00432-023-04797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC), is a frequent digestive tract malignant carcinoma with a high fatality rate. Daphne altaica (D. altaica), a medicinal plant that is frequently employed in Kazakh traditional medicine, and which has traditionally been used to cure cancer and respiratory conditions, but research on the mechanism is lacking. Therefore, we examined and verified the hub genes and mechanism of D. altaica treating ESCC. METHODS Active compounds and targets of D. altaica were screened by databases such as TCMSP, and ESCC targets were screened by databases such as GeneCards and constructed the compound-target network and PPI network. Meantime, data sets between tissues and adjacent non-cancerous tissues from GEO database (GSE100942, GPL570) were analyzed to obtain DEGs using the limma package in R. Hub genes were validated using data from the Kaplan-Meier plotter database, TIMER2.0 and GEPIA2 databases. Finally, AutoDock software was used to predict the binding sites through molecular docking. RESULTS In total, 830 compound targets were obtained from TCMSP and other databases. In addition, 17,710 disease targets were acquired based on GeneCards and other databases. In addition, we constructed the compound-target network and PPI network. Then, 127 DEGs were observed (82 up-regulated and 45 down-regulated genes). Hub genes were screened including TOP2A, NUF2, CDKN2A, BCHE, and NEK2, and had been validated with the help of several publicly available databases. Finally, molecular docking results showed more stable binding between five hub genes and active compounds. CONCLUSIONS In the present study, five hub genes were screened and validated, and potential mechanisms of action were predicted, which could provide a theoretical understanding of the treatment of ESCC with D. altaica.
Collapse
Affiliation(s)
- Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Ziruo Talihati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Kayisaier Abudurousuli
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Meng Yuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Muhadaisi Nuer
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nawaz Khan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Jimilihan Simayi
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China.
| |
Collapse
|
18
|
Du X, Li X, Zhang B, Hao Z, Gao Y, Jiang X, Yang Z, Chen Y. The clinicopathological significance of TOP2A expression in malignant peritoneal mesothelioma. Ann Diagn Pathol 2023; 65:152155. [PMID: 37172528 DOI: 10.1016/j.anndiagpath.2023.152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with a high mortality rate and extremely poor prognosis. TOP2A expression is associated with cell proliferation and cell cycle progression. We aimed to demonstrate the expression profile of TOP2A in MPM and its correlation with clinicopathological features. METHODS Clinicopathological information from 100 MPM cases was collected at Beijing Shijitan Hospital, Capital Medical University. Immunohistochemistry (IHC) was performed to evaluate TOP2A levels. The associations between TOP2A levels and clinicopathological features or prognosis were analyzed. Clinical follow-up data were reviewed to determine correlations among the pathological prognostic factors using the Kaplan-Meier estimator and univariate/multivariate Cox proportional hazards regression models. RESULTS Among the 100 MPM patients, there were 48 males and 52 females, with a median age of 54 years (range: 24-72 years). The cutoff curve was used to find the boundary value of the TOP2A-positive rate. TOP2A positive rate ≥ 11.97 % accounted for 48 % in tumor tissue. The TOP2A-positive rate was not associated with sex, age, asbestos exposure, peritoneal carcinomatosis index (PCI) score, or completeness of cytoreduction (CC) score in MPM. Univariate analysis revealed survival-related pathological parameters, including asbestos exposure, CA125, histological type, PCI score, CC score, Ki-67 index, and TOP2A positive rate. Multivariate analysis identified that asbestos exposure history, PCI score, Ki-67 proliferation index and TOP2A positive rate in tissue are independent prognostic factors. CONCLUSIONS High expression of TOP2A is linked to better prognosis of MPM.
Collapse
Affiliation(s)
- Xuemei Du
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Xinbao Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Bingdong Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zechen Hao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510030, China
| | - Ying Gao
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xi Jiang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhiran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yizhi Chen
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
19
|
Ong KH, Lai HY, Sun DP, Chen TJ, Huang SKH, Tian YF, Chou CL, Shiue YL, Chan TC, Li CF, Kuo YH. Prognostic Significance of DNA Topoisomerase II Alpha (TOP2A) in Cholangiocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:75. [PMID: 37114547 DOI: 10.31083/j.fbl2804075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with an increasing incidence worldwide. Although radiation therapy has improved the therapeutic efficiency of CCA treatment, differential expression of genes among cholangiocarcinoma subtypes has been revealed through precise sequencing. However, no specific molecular therapeutic targets or biomarkers have been figured out for use in precision medicine, and the exact mechanism by which antitumorigenic effects occur is still unclear. Therefore, it is necessary to conduct further studies on the development and mechanisms associated with CCA. METHODS We examined the clinical data and pathological features of patients with cholangiocarcinomas. We investigated the associations between DNA Topoisomerase II Alpha (TOP2A) expression and patient outcomes, such as metastasis-free survival (MFS) and disease-specific survival (DSS), as well as clinical characteristics and pathological results. RESULTS TOP2A expression was shown to be upregulated in CCA tissue sections by immunohistochemistry staining and data mining. Moreover, we observed that the TOP2A expression correlated with clinical features, such as the primary tumor stage, histological variants, and patients with hepatitis. Furthermore, high expression of TOP2A was associated with worse survival outcomes in terms of the overall survival (p < 0.0001), disease-specific survival (p < 0.0001), and metastasis-free survival (p < 0.0001) compared with patients in the low TOP2A expression group. This indicates that a high level of TOP2A expression is related to an unfavorable prognosis. CONCLUSIONS Our results show that TOP2A is highly expressed in CCA tissues, and its upregulation is correlated with the primary disease stage and poor prognosis significantly. Consequently, TOP2A is a prognostic biomarker and a novel therapeutic target for the treatment of CCA.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, China Medical University, 404333 Taichung, Taiwan
| | - Ding-Ping Sun
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, 711 Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, 717 Tainan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, 710 Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 704 Tainan, Taiwan
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Department of Medical Research, Chi Mei Medical Center, 710 Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 704 Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, 710 Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, 71004 Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, 71710 Tainan, Taiwan
| |
Collapse
|
20
|
He Q, Liu C, Wang X, Rong K, Zhu M, Duan L, Zheng P, Mi Y. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front Pharmacol 2023; 14:1102581. [PMID: 36874006 PMCID: PMC9975159 DOI: 10.3389/fphar.2023.1102581] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Objective: Curcumin is a plant polyphenol extracted from the Chinese herb turmeric. It was found that curcumin has good anti-cancer properties in a variety of cancers, but the exact mechanism is not clear. Based on the network pharmacology and molecular docking to deeply investigate the molecular mechanism of curcumin for the treatment of colon cancer, it provides a new research direction for the treatment of colon cancer. Methods: Curcumin-related targets were collected using PharmMapper, SwissTargetPrediction, Targetnet and SuperPred. Colon cancer related targets were obtained using OMIM, DisGeNET, GeneCards and GEO databases. Drug-disease intersection targets were obtained via Venny 2.1.0. GO and KEGG enrichment analysis of drug-disease common targets were performed using DAVID. Construct PPI network graphs of intersecting targets using STRING database as well as Cytoscape 3.9.0 and filter core targets. Molecular docking via AutoDockTools 1.5.7. The core targets were further analyzed by GEPIA, HPA, cBioPortal and TIMER databases. Results: A total of 73 potential targets of curcumin for the treatment of colon cancer were obtained. GO function enrichment analysis yielded 256 entries, including BP(Biological Progress):166, CC(celluar component):36 and MF(Molecular Function):54. The KEGG pathway enrichment analysis yielded 34 signaling pathways, mainly involved in Metabolic pathways, Nucleotide metabolism, Nitrogen metabolism, Drug metabolism - other enzymes, Pathways in cancer,PI3K-Akt signaling pathway, etc. CDK2, HSP90AA1, AURKB, CCNA2, TYMS, CHEK1, AURKA, DNMT1, TOP2A, and TK1 were identified as core targets by Cytoscape 3.9.0. Molecular docking results showed that the binding energies of curcumin to the core targets were all less than 0 kJ-mol-1, suggesting that curcumin binds spontaneously to the core targets. These results were further validated in terms of mRNA expression levels, protein expression levels and immune infiltration. Conclusion: Based on network pharmacology and molecular docking initially revealed that curcumin exerts its therapeutic effects on colon cancer with multi-target, multi-pathway. Curcumin may exert anticancer effects by binding to core targets. Curcumin may interfere with colon cancer cell proliferation and apoptosis by regulating signal transduction pathways such as PI3K-Akt signaling pathway,IL-17 signaling pathway, Cell cycle. This will deepen and enrich our understanding of the potential mechanism of curcumin against colon cancer and provide a theoretical basis for subsequent studies.
Collapse
Affiliation(s)
- Qingmin He
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaohan Wang
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kang Rong
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyang Zhu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liying Duan
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Chen Y, Yu Y, Lv M, Shi Q, Li X. E2F1-mediated up-regulation of TOP2A promotes viability, migration, and invasion, and inhibits apoptosis of gastric cancer cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Wang M, Fu X, Wang W, Zhang Y, Jiang Z, Gu Y, Chu M, Shao Y, Li S. Comprehensive bioinformatics analysis confirms RBMS3 as the central candidate biological target for ovarian cancer. Med Eng Phys 2022; 110:103883. [PMID: 36075788 DOI: 10.1016/j.medengphy.2022.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Ovarian cancer (OC) is one of the most lethal malignancies in the female reproductive system. To find genes related to cancer progression targeting specific biological factors for targeted therapy, bioinformatics technology has been widely used. To screen the prognostic gene markers of OC by bioinformatics and explore their potential molecular biological mechanisms. Two data sets related to OC, GSE54388, and GSE119056, were rooted in the open comprehensive gene expression database (GEO). To correct the background of the data, standardize and screen differentially expressed genes (DEGs) using the R software limma package. The selected DEGs were enriched by Gene Ontology (GO) and through DAVID online database. Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis and protein-protein interaction network (PPI-network) map were constructed by STRING online database and Cytoscape software. Combined with the TCGA database, univariate and multivariate COX regression were used to screen prognostic genes. QRT-PCR was used to verify DEGs in clinical tissue samples. Eventually, the function of RBMS3 on the viability, migration, invasion, and apoptosis of OC cells was tested through functional experiments in vitro. 352 common DEGs were screened from GSE54388 and GSE119056 data sets. Survival analysis showed that MEIS2, TSTA3, CNTN1, RBMS3, and TRA2A were considered to be connected with the prognosis of OC. We discover that the expression level of RBMS3 was positively connected with the overall survival (OS) rate of sufferers with OC. The level of RBMS3 in OC tissues was markedly lower than that in neighboring structures and the outcomes of the GEPIA database were consistent with those of the qRT-PCR experiment. Through gene transfection technology it was found that overexpression of RBMS3 in OC cells substantially suppressed the vitality, migration, and invasion of OC cells and raised the rates of apoptosis in the OC cells. In this experiment, we distinguish 5 genes that may participate in the prognosis of OC and showed the key genes and pathways related to OC. It is speculated that RBMS3, a tumor suppressor gene, can be applied as a potential biological marker for the treatment of OC, gene expression summary, and prognosis.
Collapse
Affiliation(s)
- Mei Wang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China.
| | - Xiangjun Fu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Wei Wang
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Yuan Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Zhenyi Jiang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Yan Gu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Menglong Chu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Yanting Shao
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China
| | - Shuqin Li
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China; Wannan Medical College, Wuhu 241002, Anhui, China.
| |
Collapse
|
23
|
Dastjerdi S, Haghparast A, Amroabadi JM, Dolatabadi NF, Mirzaei S, Zamani A, Hashemi M, Mahdevar M, Ghaedi K. Elevated CDK5R1 expression associated with poor prognosis, proliferation, and drug resistance in colorectal and breast malignancies: CDK5R1 as an oncogene in cancers. Chem Biol Interact 2022; 368:110190. [PMID: 36162454 DOI: 10.1016/j.cbi.2022.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Studies have shown that the CDK5R1 gene could have a part in some types of cancer. This study sought to examine the relationship between CDK5R1 expression and prognosis and medication resistance in 13 commonly occurring cancers. METHOD The cancer genome atlas data and clinical data were utilized to assess the role of CDK5R1 in malignancies. The expression data of 13 cancers were also integrated and used for the co-expression network. The relationship between CDK5R1 expression and drug resistance and sensitivity was evaluated using pharmacogenomics data. The colorectal cancer (CRC) and breast cancer (BC) were used to confirm the results through the RT-qPCR method. RESULTS With the exception of gastric cancer, all common malignancies showed an increase in CDK5R1 expression. Also, outcomes of sensitivity and specificity showed that CDK5R1 level could be a really good potential biomarker. Additionally, CDK5R1 expression was higher in CRC and BC samples compared to adjacent normal, according to RT-qPCR data. In six types of tumors and combined data, a poor prognosis was associated with increased CDK5R1 expression. The CDK5R1-associated genes were connected to the primary oncogenic pathways in cancer cells, according to the co-expression network. Also, CDK5R1 level was significantly linked to the resistance and sensitivity of several chemotherapy drugs and caused the highest resistance to cyclophosphamide. CONCLUSION CDK5R1 expression is upregulated in 12 prevalent cancers and can play an oncogenic role. Also, this gene's expression could be used as a biomarker to predict patient survival and medication resistance.
Collapse
Affiliation(s)
- Shaghayegh Dastjerdi
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
24
|
MC180295 Inhibited Epstein–Barr Virus-Associated Gastric Carcinoma Cell Growth by Suppressing DNA Repair and the Cell Cycle. Int J Mol Sci 2022; 23:ijms231810597. [PMID: 36142506 PMCID: PMC9500863 DOI: 10.3390/ijms231810597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
DNA methylation of both viral and host DNA is one of the major mechanisms involved in the development of Epstein–Barr virus-associated gastric carcinoma (EBVaGC); thus, epigenetic treatment using demethylating agents would seem to be promising. We have verified the effect of MC180295, which was discovered by screening for demethylating agents. MC180295 inhibited cell growth of the EBVaGC cell lines YCCEL1 and SNU719 in a dose-dependent manner. In a cell cycle analysis, growth arrest and apoptosis were observed in both YCCEL1 and SNU719 cells treated with MC180295. MKN28 cells infected with EBV were sensitive to MC180295 and showed more significant inhibition of cell growth compared to controls without EBV infection. Serial analysis of gene expression analysis showed the expression of genes belonging to the role of BRCA1 in DNA damage response and cell cycle control chromosomal replication to be significantly reduced after MC180295 treatment. We confirmed with quantitative PCR that the expression levels of BRCA2, FANCM, RAD51, TOP2A, and CDC45 were significantly decreased by MC180295. LMP1 and BZLF1 are EBV genes with expression that is epigenetically regulated, and MC180295 could up-regulate their expression. In conclusion, MC180295 inhibited the growth of EBVaGC cells by suppressing DNA repair and the cell cycle.
Collapse
|
25
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
26
|
Oncogenic role and potential regulatory mechanism of topoisomerase IIα in a pan-cancer analysis. Sci Rep 2022; 12:11161. [PMID: 35778520 PMCID: PMC9249858 DOI: 10.1038/s41598-022-15205-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Topoisomerase IIα (TOP2A) plays an oncogenic role in multiple tumor types. However, no pan-cancer analysis about the function and the upstream molecular mechanism of TOP2A is available. For the first time, we analyzed potential oncogenic roles of TOP2A in 33 cancer types via The Cancer Genome Atlas (TCGA) database. Overexpression of TOP2A was existed in almost all cancer types, and related to poor prognosis and advanced pathological stages in most cases. Besides, the high frequency of TOP2A genetic alterations was observed in several cancer types, and related to prognosis in some cases. Moreover, we conduct upstream miRNAs and lncRNAs of TOP2A to establish ceRNA networks in kidney renal clear cell carcinoma (SNHG3-miR-139-5p), kidney renal papillary cell carcinoma (TMEM147-AS1/N4BP2L2-IT2/THUMPD3-AS1/ERICD/TTN-AS1/SH3BP5-AS1/THRB-IT1/SNHG3/NEAT1-miR-139-5p), liver hepatocellular carcinoma (SNHG3/THUMPD3-AS1/NUTM2B-AS1/NUTM2A-AS1-miR-139-5p and SNHG6/GSEC/SNHG1/SNHG14/LINC00265/MIR3142HG-miR-101-3p) and lung adenocarcinoma (TYMSOS/HELLPAR/SNHG1/GSEC/SNHG6-miR-101-3p). TOP2A expression was generally positively correlated with cancer associated fibroblasts, M0 and M1 macrophages in most cancer types. Furthermore, TOP2A was positively associated with expression of immune checkpoints (CD274, CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT) in most cancer types. Our first TOP2A pan-cancer study contributes to understanding the prognostic roles, immunological roles and potential upstream molecular mechanism of TOP2A in different cancers.
Collapse
|
27
|
Identification of gene signatures for COAD using feature selection and Bayesian network approaches. Sci Rep 2022; 12:8761. [PMID: 35610288 PMCID: PMC9130243 DOI: 10.1038/s41598-022-12780-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The combination of TCGA and GTEx databases will provide more comprehensive information for characterizing the human genome in health and disease, especially for underlying the cancer genetic alterations. Here we analyzed the gene expression profile of COAD in both tumor samples from TCGA and normal colon tissues from GTEx. Using the SNR-PPFS feature selection algorithms, we discovered a 38 gene signatures that performed well in distinguishing COAD tumors from normal samples. Bayesian network of the 38 genes revealed that DEGs with similar expression patterns or functions interacted more closely. We identified 14 up-DEGs that were significantly correlated with tumor stages. Cox regression analysis demonstrated that tumor stage, STMN4 and FAM135B dysregulation were independent prognostic factors for COAD survival outcomes. Overall, this study indicates that using feature selection approaches to select key gene signatures from high-dimensional datasets can be an effective way for studying cancer genomic characteristics.
Collapse
|
28
|
Li Z, Fang J, Chen S, Liu H, Zhou J, Huang J, Liu S, Peng Y. A Risk Model Developed Based on Necroptosis Predicts Overall Survival for Hepatocellular Carcinoma and Identification of Possible Therapeutic Drugs. Front Immunol 2022; 13:870264. [PMID: 35422802 PMCID: PMC9001936 DOI: 10.3389/fimmu.2022.870264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background Necroptosis is a form of regulatory cell death (RCD) that attracts and activates immune cells, resulting in pro-tumor or anti-tumor effects. The purpose of this study was to investigate genes associated with necroptosis, to construct a risk score for predicting overall survival in patients with hepatocellular carcinoma, and to find potentially effective drugs. Methods The three algorithms ssGSEA, EPIC, and ESTIMATE were used to quantify the immune cell infiltration of the samples, differentially expressed genes (DEGs) analysis, and weighted gene co-expression network analysis were used to screen necroptosis related genes. Variables were screened according to random survival forest analysis, and combinations with significant p-values and a low number of genes were defined as prognostic signatures by using log-rank test after gene combination. Based on the sensitivity data of PRISM and CTRP2.0 datasets, we predicted the potential therapeutic agents for high-NRS patients. Results Seven genes such as TOP2A were used to define necroptosis-related risk score (NRS). The prognostic value of risk score was further validated, where high NRS was identified as a poor prognostic factor and tended to have higher grades of histologic grade, pathologic stage, T stage, BCLC, CLIP, and higher AFP. Higher NRS was also negatively correlated with the abundance of DCs, Neutrophils, Th17 cells, Macrophages, Endothelial, and positively correlated with Th2 cells. Necroptosis is often accompanied by the release of multiple cytokines, and we found that some cytokines were significantly correlated with both NRS and immune cells, suggesting that necroptosis may affect the infiltration of immune cells through cytokines. In addition, we found that TP53 mutations were more common in samples with high NRS, and these mutations may be associated with changes in NRS. Patients with high NRS may be more sensitive to gemcitabine, and gemcitabine may be an effective drug to improve the prognosis of patients with high NRS, which may play a role by inhibiting the expression of TOP2A. Conclusions We constructed a necroptosis-related scoring model to predict OS in HCC patients, and NRS was associated with immune response, TP53 mutation, and poor clinical classification in HCC patients. In addition, gemcitabine may be an effective drug for high-NRS patients.
Collapse
Affiliation(s)
- Zedong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyu Fang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiangsheng Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sushun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Wang X, Bajpai AK, Gu Q, Centeno A, Starlard-Davenport A, Prins P, Xu F, Lu L. A systems genetics approach delineates the role of Bcl2 in leukemia pathogenesis. Leuk Res 2022; 114:106804. [PMID: 35182904 PMCID: PMC9272521 DOI: 10.1016/j.leukres.2022.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 01/11/2023]
Abstract
Leukemia is a group of malignancies of the blood forming tissues, and is characterized by the uncontrolled proliferation of blood cells. In the United States, it accounts for approximately 3.5% and 4% of all cancer-related incidences and mortalities, respectively. The current study aimed to explore the role of Bcl2 and associated genes in leukemia pathogenesis using a systems genetics approach. The transcriptome data from BXD Recombinant Inbred (RI) mice was analyzed to identify the expression of Bcl2 in myeloid cells. eQTL mapping was performed to select the potential chromosomal region and subsequently identify the candidate gene modulating the expression of Bcl2. Furthermore, gene enrichment and protein-protein interaction (PPI) analyses of the Bcl2-coexpressed genes were performed to demonstrate the role of Bcl2 in leukemia pathogenesis. The Bcl2-coexpressed genes were found to be enriched in various hematopoietic system related functions, and multiple pathways related to signaling, immune response, and cancer. The PPI network analysis demonstrated direct interaction of hematopoietic function related genes, such as Bag3, Bak1, Bcl2l11, Bmf, Mapk9, Myc, Ppp2r5c, and Ppp3ca with Bcl2. The eQTL mapping identified a 4.5 Mb genomic region on chromosome 11, potentially regulating the expression of Bcl2. A multi-criteria filtering process identified Top2a, among the genes located in the mapped locus, as the best candidate upstream regulator for Bcl2 expression variation. Hence, the current study provides better insights into the role of Bcl2 in leukemia pathogenesis and demonstrates the significance of our approach in gaining new knowledge on leukemia. Furthermore, our findings from the PPI network analysis and eQTL mapping provide supporting evidence of leukemia-associated genes, which can be further explored for their functional importance in leukemia. DATA AVAILABILITY: The myeloid cell transcriptomic data of the BXD mice used in this study can be accessed through our GeneNetwork (http://www.genenetwork.org) with the accession number of GN144.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qingqing Gu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Arthur Centeno
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pjotr Prins
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China.
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
30
|
Yin J, Che G, Jiang K, Zhou Z, Wu L, Xu M, Liu J, Yan S. Ciclopirox Olamine Exerts Tumor-Suppressor Effects via Topoisomerase II Alpha in Lung Adenocarcinoma. Front Oncol 2022; 12:791916. [PMID: 35251970 PMCID: PMC8894728 DOI: 10.3389/fonc.2022.791916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Globally, lung cancer is one of the most malignant tumors, of which lung adenocarcinoma (LUAD) is the most common subtype, with a particularly poor prognosis. Ciclopirox olamine (CPX) is an antifungal drug and was recently identified as a potential antitumor agent. However, how CPX and its mechanism of action function during LUAD remain unclear. Methods The effects of CPX on cell proliferation, cell cycle, reactive oxygen species (ROS) levels, and apoptosis were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, western blotting, flow cytometry assays, and immunohistochemistry. Global gene expression levels were compared between control and CPX-treated LUAD cells. A LUAD xenograft mouse model was used to evaluate the potential in vivo effects of CPX. Results We observed that CPX displayed strong antitumorigenic properties in LUAD cells, inhibited LUAD proliferation, induced ROS production, caused DNA damage, and activated the ATR-CHK1-P53 pathway. Topoisomerase II alpha (TOP2A) is overexpressed in LUAD and associated with a poor prognosis. By analyzing differentially expressed genes (DEGs), TOP2A was significantly down-regulated in CPX-treated LUAD cells. Furthermore, CPX treatment substantially inhibited in vivo LUAD xenograft growth without toxicity or side effects to the hematological system and internal organs. Conclusions Collectively, for the first time, we showed that CPX exerted tumor-suppressor effects in LUAD via TOP2A, suggesting CPX could potentially function as a promising chemotherapeutic for LUAD treatment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Medical Oncology, Peking University Cancer Hospital, Beijing, China
| | - Jian Liu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| |
Collapse
|
31
|
Meng J, Wei Y, Deng Q, Li L, Li X. Study on the expression of TOP2A in hepatocellular carcinoma and its relationship with patient prognosis. Cancer Cell Int 2022; 22:29. [PMID: 35033076 PMCID: PMC8761301 DOI: 10.1186/s12935-021-02439-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. However, the molecular mechanism of HCC formation remains to be explored and studied. Objective To investigate the expression of TOP2A in hepatocellular carcinoma (HCC) and its prognosis. Methods The data set of hepatocellular carcinoma was downloaded from GEO database for differential gene analysis, and hub gene was identified by Cytoscape. GEPIA was used to verify the expression of HUB gene and evaluate its prognostic value. Then TOP2A was selected as the research object of this paper by combining literature and clinical sample results. Firstly, TIMER database was used to study TOP2A, and the differential expression of TOP2A gene between normal tissues and cancer tissues was analyzed, as well as the correlation between TOP2A gene expression and immune infiltration of HCC cells. Then, the expression of top2a-related antibodies was analyzed using the Human Protein Atlas database, and the differential expression of TOP2A was verified by immunohistochemistry. Then, SRTING database and Cytoscape were used to establish PPI network for TOP2A and protein–protein interaction analysis was performed. The Oncomine database and cBioPortal were used to express and identify TOP2A mutation-related analyses. The expression differences of TOP2A gene were identified by LinkedOmics, and the GO and KEGG pathways were analyzed in combination with related genes. Finally, Kaplan–Meier survival analysis was performed to analyze the clinical and prognosis of HCC patients. Results TOP2A may be a new biomarker and therapeutic target for hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02439-0.
Collapse
Affiliation(s)
- Jiali Meng
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanchao Wei
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qing Deng
- Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Li
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaolong Li
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Key Laboratory of Longevity and Agingrelated Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
32
|
Niu L, Gao C, Li Y. Identification of potential core genes in colorectal carcinoma and key genes in colorectal cancer liver metastasis using bioinformatics analysis. Sci Rep 2021; 11:23938. [PMID: 34907282 PMCID: PMC8671463 DOI: 10.1038/s41598-021-03395-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most prevalent malignant tumors worldwide. Meanwhile, the majority of CRC related deaths results from liver metastasis. Gene expression profile of CRC patients with liver Metastasis was identified using 4 datasets. The data was analyzed using GEO2R tool. GO and KEGG pathway analysis were performed. PPI network of the DEGs between 1 and 2 gene sets was also constructed. The set 1 is named between primary CRC tissues and metastatic CRC tissues. The set 2 is named between primary CRC tissues and normal tissues. Finally, the prognostic value of hub genes was also analyzed. 35 DEGs (set 1) and 142 DEGs (set 2) were identified between CRC liver metastatic cancer patients. The PPI network was constructed using the top 10 set 1 hub genes which included AHSG, SERPINC1, FGA, F2, CP, ITIH2, APOA2, HPX, PLG, HRG and set 2 hub genes which included TIMP1, CXCL1, COL1A2, MMP1, AURKA, UBE2C, CXCL12, TOP2A, ALDH1A1 and PRKACB. Therefore, ITIH2 might represent the potential core gene for colon cancer liver metastasis. COL1A2 behaves as a key gene in colorectal carcinoma.
Collapse
Affiliation(s)
- Lipeng Niu
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ce Gao
- Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China
| | - Yang Li
- Shihua Residential District Community Health Service Center, 12th Xiangzhou Road, Jinshan District, Shanghai, 201500, Shanghai, China.
| |
Collapse
|
33
|
Dong Y, Sun X, Zhang K, He X, Zhang Q, Song H, Xu M, Lu H, Ren R. Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by regulating Snail expression. Bioengineered 2021; 12:12967-12979. [PMID: 34939898 PMCID: PMC8810028 DOI: 10.1080/21655979.2021.2012069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
Type IIA topoisomerase (TOP2A) is upregulated in hepatocellular carcinoma (HCC) and its expression is positively correlated with poor prognosis. However, the underlying molecular mechanism of this connection are poorly understood. Hence, the present work aimed to examine the possible mechanisms which may be useful in identifying a potential therapeutic strategy. The differential expression of TOP2A mRNA in HCC as compared with adjacent normal tissue was analyzed using the Oncomine database. The expression levels of TOP2A in HCC specimens and cell lines were assessed by Western blot and RT-qPCR. Stable cell lines were generated to knockdown or overexpress TOP2A, and then cell growth, migration, and invasion were analyzed. Furthermore, this study examined epithelial-mesenchymal transition (EMT) as well as the activation of related pathways. Additionally, the correlation between TOP2A levels and E-cadherin/Snail expression was determined in 72 HCC specimens. Higher expression levels of TOP2A were observed in HCC in Oncomine datasets, and the results were verified using 40 pairs of HCC specimens and peritumoral tissues. TOP2A expression levels were remarkably elevated in cells with great metastatic capacity. In addition, HCC cell growth, migration, and invasion were suppressed after TOP2A knockdown in MHCC97H cells (MHCC97H-shRNA-TOP2A), while these capabilities were promoted in TOP2A-overexpressing Hep3B cells (Hep3B-TOP2A). Furthermore, EMT was inhibited in MHCC97H-shRNA-TOP2A cells, but induced in Hep3B-TOP2A cells. The induction of EMT by TOP2A was shown to be mediated by Snail, as TOP2A promoted Snail expression through the p-ERK1/2/p-SMAD2 signaling pathway. TOP2A level showed a negative correlation with E-cadherin, whereas a positive correlation with that of vimentin and Snail in human HCC specimens by immunohistochemistry analyses. Kaplan-Meier survival curves revealed that TOP2A upregulation showed a positive correlation with poor prognosis patients. Taken together, TOP2A possibly enhances the metastasis of HCC by promoting EMT through the mediation of the p-ERK1/2/p-SMAD2/Snail pathway. This indicates that TOP2A maybe a potential factor to predict the prognosis of HCC.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Xiangyin Sun
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Kong Zhang
- Department of Intensive-care Unit, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Xinjia He
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Qian Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Hao Song
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| |
Collapse
|
34
|
Zhou Y, Li J, Yang X, Song Y, Li H. Rhophilin rho GTPase binding protein 1-antisense RNA 1 (RHPN1-AS1) promotes ovarian carcinogenesis by sponging microRNA-485-5p and releasing DNA topoisomerase II alpha ( TOP2A). Bioengineered 2021; 12:12003-12022. [PMID: 34787052 PMCID: PMC8810118 DOI: 10.1080/21655979.2021.2002494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 10/29/2022] Open
Abstract
Ovarian cancer (OC) is the most common and lethal gynecological cancer worldwide. Long non-coding RNAs (lncRNAs) and sponging microRNAs (miRNAs) serve as key regulators in the biological processes of OC. We sought to evaluate the effect of the RHPN1-AS1-miR-485-5p-DNA topoisomerase II alpha (TOP2A) axis in regulating OC progression. RHPN1-AS1, miR-485-5p, and TOP2A levels in OC tissues and cells were determined by RT-qPCR. The interaction of RHPN1-AS1/miR-485-5p/TOP2A was assessed using luciferase, RNA immunoprecipitation, and RNA pull-down assays. RHPN1-AS1 silencing allowed us to explore its biological function by measuring cell viability, proliferation, migration, invasion, and apoptosis in OC cells. In vivo experiments were performed to verify the in vitro findings. We found that the RHPN1-AS1 and TOP2A levels were significantly enhanced, whereas the miR-485-5p levels were reduced in OC tissues and cells. RHPN1-AS1 silencing attenuated cell growth, facilitated apoptosis in OC cells, and inhibited tumor growth in vivo. Notably, RHPN1-AS1 negatively regulating miR-485-5p promoted the TOP2A expression in OC cells. In conclusion, RHPN1-AS1 sponging miR-485-5p accelerated the progression of OC by elevating TOP2A expression, which makes it a promising target for the treatment of OC patients.
Collapse
Affiliation(s)
- Yi Zhou
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Xiaoxin Yang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yu Song
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
35
|
Yadav UP, Ansari AJ, Arora S, Joshi G, Singh T, Kaur H, Dogra N, Kumar R, Kumar S, Sawant DM, Singh S. Design, synthesis and anticancer activity of 2-arylimidazo[1,2-a]pyridinyl-3-amines. Bioorg Chem 2021; 118:105464. [PMID: 34785441 DOI: 10.1016/j.bioorg.2021.105464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
A series of imido-heterocycle compounds were designed, synthesized, characterized, and evaluated for the anticancer potential using breast (MCF-7 and MDA-MB-231), pancreatic (PANC-1), and colon (HCT-116 and HT-29) cancer cell lines and normal cells, while normal cells showed no toxicity. Among the screened compounds, 4h exhibited the best anticancer potential with IC50 values ranging from 1 to 5.5 μM. Compound 4h caused G2/M phase arrest and apoptosis in all the cell lines except MDA-MB-231 mammosphere formation was inhibited. In-vitro enzyme assay showed selective topoisomerase IIα inhibition by compound 4h, leading to DNA damage as observed by fluorescent staining. Cell signalling studies showed decreased expression of cell cycle promoting related proteins while apoptotic proteins were upregulated. Interestingly MDA-MB-231 cells showed only cytostatic effects upon treatment with compound 4h due to defective p53 status. Toxicity study using overexpression of dominant-negative mutant p53 in MCF-7 cells (which have wild type functional p53) showed that anticancer potential of compound 4h is positively correlated with p53 expression.
Collapse
Affiliation(s)
- Umesh Prasad Yadav
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India; Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Arshad J Ansari
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Harsimrat Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Nilambra Dogra
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh 160014, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India.
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India.
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
36
|
Zeng P, Hua QH, Gong JY, Shi CJ, Pi XP, Xie X, Zhang R. Neonatal cortical astrocytes possess intrinsic potential in neuronal conversion in defined media. Acta Pharmacol Sin 2021; 42:1757-1768. [PMID: 33547374 PMCID: PMC8563807 DOI: 10.1038/s41401-020-00586-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023]
Abstract
Astrocytes are multifunctional brain cells responsible for maintaining the health and function of the central nervous system. Accumulating evidence suggests that astrocytes might be complementary source across different brain regions to supply new neurons during adult neurogenesis. In this study, we found that neonatal mouse cortical astrocytes can be directly converted into neurons when exposed to neurogenic differentiation culture conditions, with insulin being the most critical component. Detailed comparison studies between mouse cortical astrocytes and neuronal progenitor cells (NPCs) demonstrated the converted neuronal cells originate indeed from the astrocytes rather than NPCs. The neurons derived from mouse cortical astrocytes display typical neuronal morphologies, express neuronal markers and possess typical neuronal electrophysiological properties. More importantly, these neurons can survive and mature in the mouse brain in vivo. Finally, by comparing astrocytes from different brain regions, we found that only cortical astrocytes but not astrocytes from other brain regions such as hippocampus and cerebellum can be converted into neurons under the current condition. Altogether, our findings suggest that neonatal astrocytes from certain brain regions possess intrinsic potential to differentiate/transdifferentiate into neurons which may have clinical relevance in the future.
Collapse
Affiliation(s)
- Peng Zeng
- grid.24516.340000000123704535Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Qiu-hong Hua
- grid.24516.340000000123704535Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jun-yuan Gong
- grid.24516.340000000123704535Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Chang-jie Shi
- grid.24516.340000000123704535Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Xiao-ping Pi
- grid.9227.e0000000119573309CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xin Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ru Zhang
- grid.24516.340000000123704535Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| |
Collapse
|
37
|
Chen G, Yu M, Cao J, Zhao H, Dai Y, Cong Y, Qiao G. Identification of candidate biomarkers correlated with poor prognosis of breast cancer based on bioinformatics analysis. Bioengineered 2021; 12:5149-5161. [PMID: 34384030 PMCID: PMC8806858 DOI: 10.1080/21655979.2021.1960775] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is a malignancy with high incidence among women in the world. This study aims to screen key genes and potential prognostic biomarkers for BC using bioinformatics analysis. Total 58 normal tissues and 203 cancer tissues were collected from three Gene Expression Omnibus (GEO) gene expression profiles, and then the differential expressed genes (DEGs) were identified. Subsequently, the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway were analyzed to investigate the biological function of DEGs. Additionally, hub genes were screened by constructing a protein–protein interaction (PPI) network. Then, we explored the prognostic value and molecular mechanism of these hub genes using Kaplan–Meier (KM) curve and Gene Set Enrichment Analysis (GSEA). As a result, 42 up-regulated and 82 down-regulated DEGs were screened out from GEO datasets. The DEGs were mainly related to cell cycles and cell proliferation by GO and KEGG pathway analysis. Furthermore, 12 hub genes (FN1, AURKA, CCNB1, BUB1B, PRC1, TPX2, NUSAP1, TOP2A, KIF20A, KIF2C, RRM2, ASPM) with a high degree were identified initially, among which, 11 hub genes were significantly correlated with the prognosis of BC patients based on the Kaplan–Meier-plotter. GSEA reviewed that these hub genes correlated with KEGG_CELL_CYCLE and HALLMARK_P53_PATHWAY. In conclusion, this study identified 11 key genes as BC potential prognosis biomarkers on the basis of integrated bioinformatics analysis. This finding will improve our knowledge of the BC progress and mechanisms.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Mingwei Yu
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Yuanping Dai
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Guangxi, P.R. China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| |
Collapse
|
38
|
MiR-599 targeting TOP2A inhibits the malignancy of bladder cancer cells. Biochem Biophys Res Commun 2021; 570:154-161. [PMID: 34284141 DOI: 10.1016/j.bbrc.2021.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent research suggests that many miRNAs influence the development of bladder cancer (BC). However, the function of the miR-599/TOP2A axis in BC cells is still unclear. Our aim was to verify the effect of the miR-599/TOP2A axis on BC progression. METHODS The expression of TOP2A and miR-599 in BC tissues and cells was detected using RT-qPCR. Luciferase assays, RIP assays, and RNA pull-down assays were performed to determine the interaction between miR-599 and TOP2A. CCK-8, flow cytometry-based apoptosis, wound healing, and Transwell assays were utilized to determine the proliferation, migration, invasion and apoptosis of BC cells. RESULTS MiR-599 was significantly downregulated in the BC, and miR-599 overexpression impeded the malignancy of BC cells by regulating proliferation, migration, invasion and apoptosis. TOP2A proved to a downstream target of miR-599 could enhance the tumorigenesis phenotype of BC cells. The experimental results also indicated that miR-599 reversed the oncogenic effects induced by TOP2A. CONCLUSION Our study revealed that miR-599 represses BC tumorigenesis by inhibiting TOP2A.
Collapse
|
39
|
Gong MC, Chen WQ, Jin ZQ, Lyu J, Meng LH, Wu HY, Chen FH. Prognostic Value and Significant Pathway Exploration Associated with TOP2A Involved in Papillary Thyroid Cancer. Int J Gen Med 2021; 14:3485-3496. [PMID: 34290523 PMCID: PMC8289466 DOI: 10.2147/ijgm.s316145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Topoisomerase 2-alpha (TOP2A) has been identified as a hub gene that played an important role in the initiation and progression of thyroid carcinoma (THCA). However, the exact function of TOP2A in papillary thyroid cancer (PTC) remained elusive. The current study aimed to evaluate the TOP2A expression, prognosis significance and key signaling pathways involved in PTC. Methods We firstly evaluated the expression of TOP2A in PTC via UALCAN, cBioportal, HPA and LinkdedOmics databases. Genetic alteration of TOP2A in PTC was then explored in cBioportal. Prognostic impacts of TOP2A expression on disease-free survival (DFS) of PTC patients were subsequently evaluated using Kaplan–Meier plotter and Gepia databases. Taking gender, age, cancer stage, T, N and M stages into consideration, we compared survival difference between TOP2A high and low expression groups. KEGG pathway analysis in WebGestalt and GSEA analysis were further performed to reveal the potential TOP2A-associated signaling pathways involved in PTC. Finally, the upstream microRNAs of TOP2A were assessed using DIANA, TargetScan, miRDB and miRWALK database, followed by mechanism exploration of upstream microRNAs. Results 1) The mRNA and protein of TOP2A were highly expressed in PTC tissue compared with normal thyroid tissue. TOP2A expression was associated with patient’s age, N stage and cancer stage (all P<0.05). TOP2A protein was mainly localized to nucleoplasm. 2) Most of samples occurred the missense substitution, and mutation site was located at K1199E. Nucleotide mutations were mainly presented as G>A (35.29%). 3) TOP2A high expression significantly influenced the DFS of PTC patients (P=0.015). Restricted survival analysis showed that TOP2A high expression caused poorer DFS of female patients (P=0.003) and those with age <60 years old (P=0.002), early clinical stage (P=0.012), N0 stage (P=0.002) or M0 stage (P=0.040). 4) Pathway analysis suggested that TOP2A positively participated in the cell cycle, oocyte meiosis and p53 signaling pathways (all P<0.05) involved in thyroid cancer. Conclusion The expression of TOP2A was higher in PTC tissue, which resulted in a worse DFS of patients with PTC. TOP2A might act as an effective therapeutic target for PTC treatment.
Collapse
Affiliation(s)
- Mou-Chun Gong
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Wei-Qing Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Zhao-Qing Jin
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Jia Lyu
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Li-Hao Meng
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Hai-Yan Wu
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Fei-Hua Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China
| |
Collapse
|
40
|
Omori H, Shan Q, Takabatake K, Nakano K, Kawai H, Sukegawa S, Tsujigiwa H, Nagatsuka H. The Origin of Stroma Influences the Biological Characteristics of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13143491. [PMID: 34298705 PMCID: PMC8305380 DOI: 10.3390/cancers13143491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Normal stromal cells play a significant role in the progression of cancers but are poorly investigated in oral squamous cell carcinoma (OSCC). In this study, we found that stromal cells derived from the gingival and periodontal ligament tissues could inhibit differentiation and promote the proliferation, invasion, and migration of OSCC both in vitro and in vivo. Furthermore, microarray data suggested that genes, such as CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, probably play a role in influencing the different effects of gingival stromal tissue cells (G-SCs) and periodontal ligament stromal cells (P-SCs) on the progression of OSCC. Therefore, both G-SCs and P-SCs could promote the progression of OSCC, which could be a potential regulatory mechanism in the progression of OSCC. Abstract Normal stromal cells surrounding the tumor parenchyma, such as the extracellular matrix (ECM), normal fibroblasts, mesenchymal stromal cells, and osteoblasts, play a significant role in the progression of cancers. However, the role of gingival and periodontal ligament tissue-derived stromal cells in OSCC progression is unclear. In this study, the effect of G-SCs and P-SCs on the differentiation, proliferation, invasion, and migration of OSCC cells in vitro was examined by Giemsa staining, Immunofluorescence (IF), (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS), invasion, and migration assays. Furthermore, the effect of G-SCs and P-SCs on the differentiation, proliferation, and bone invasion by OSCC cells in vivo was examined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), and tartrate-resistant acid phosphatase (TRAP) staining, respectively. Finally, microarray data and bioinformatics analyses identified potential genes that caused the different effects of G-SCs and P-SCs on OSCC progression. The results showed that both G-SCs and P-SCs inhibited the differentiation and promoted the proliferation, invasion, and migration of OSCC in vitro and in vivo. In addition, genes, including CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, are probably involved in causing the different effects of G-SCs and P-SCs on OSCC progression. Therefore, as a potential regulatory mechanism, both G-SCs and P-SCs can promote OSCC progression.
Collapse
Affiliation(s)
- Haruka Omori
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
| | - Qiusheng Shan
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
- Correspondence:
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Kagawa 760-0065, Japan
| | - Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8525, Japan; (H.O.); (Q.S.); (K.N.); (H.K.); (S.S.); (H.T.); (H.N.)
| |
Collapse
|
41
|
Wang J, Wang Y, Xu J, Song Q, Shangguan J, Xue M, Wang H, Gan J, Gao W. Global analysis of gene expression signature and diagnostic/prognostic biomarker identification of hepatocellular carcinoma. Sci Prog 2021; 104:368504211029429. [PMID: 34315286 PMCID: PMC10450782 DOI: 10.1177/00368504211029429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. The landscape of HCC's molecular alteration signature has been explored over the last few decades. Even so, more comprehensive research is still needed to improve understanding of tumorigenesis and progression of HCC, as well as to identify potential biomarkers for the malignancy. In this research, a comprehensive bioinformatics analysis was conducted based on the publicly available databases from both the Cancer Genome Atlas (TCGA) program and the gene expression omnibus (GEO) database. R/Bioconductor was used to analyze differentially expressed genes (DEGs) between HCC tumor and normal control (NC) samples, and then a protein-protein interaction (PPI) network of DEGs was established through the STRING platform. Finally, the application of specific candidate genes as diagnostic or prognostic biomarkers of HCC was explored and evaluated by ROC and survival analysis. A total of 310 DEGs were detected in the HCC tumor samples. Thirty-six hub DEGs in the PPI network and 10 candidates of the 36 genes showed significant alterations in tumor expression, including CDKN3, TOP2A, UBE2C, CDC20, PBK, ASPM, KIF20A, NCAPG, CCNB2, CYP3A4. The 10-gene signature had relatively significant effects when distinguishing tumors from normal samples (sensitivity >70%, specificity >70%, AUC >0.8, p < 0.001). Eight candidate genes were negatively correlated with the overall survival rate of the patients (p < 0.05) and were all up-regulated in HCC tumor samples. The age and gender factors had no significant impact on the overall survival rate of HCC patients (p > 0.05), and the TNM stage status factor had a significant negative prognosis correlation (p < 0.05). This research provides evidence for a better understanding of tumorigenesis and progression of HCC and helps to explore candidate targets for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
| | - Jing Xu
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Qiying Song
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Jingbo Shangguan
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Mengju Xue
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Hanghui Wang
- Department of Nursing, School of Medicine, Xi’an International University, Xi’an, China
| | - Jingyi Gan
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, China
| | - Wenjie Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Du Y, Zhang X, Zhang H, Chen Y, Zhu S, Shu J, Pan H. Propofol modulates the proliferation, invasion and migration of bladder cancer cells through the miR‑145‑5p/TOP2A axis. Mol Med Rep 2021; 23:439. [PMID: 33846791 PMCID: PMC8060790 DOI: 10.3892/mmr.2021.12078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propofol‑based anesthesia has been reported to reduce the recurrence and metastasis of a number of cancer types following surgical resection. However, the effects of propofol in bladder cancer (BC) are yet to be fully elucidated. The aim of the present study was to investigate the functions of propofol in BC and their underlying mechanisms. In the study, the expression of microRNA (miR)‑145‑5p in BC tissues and cell lines was evaluated using reverse transcription‑quantitative PCR, and the effects of propofol on BC cells were determined using cell viability, wound healing and Transwell cell invasion assays, bioinformatics analysis, western blotting, immunohistochemistry and in vivo tumor xenograft models. It was found that propofol significantly suppressed the proliferation, migration and invasion of BC cells in vitro. In addition, propofol induced miR‑145‑5p expression in a time‑dependent manner, and miR‑145‑5p knockdown attenuated the inhibitory effects of propofol on the proliferation, migration and invasion of BC cells. Topoisomerase II α (TOP2A) was a direct target of miR‑145‑5p, and silencing TOP2A reversed the effects of miR‑145‑5p knockdown in propofol‑treated cells. Furthermore, propofol suppressed tumor xenograft growth, which was partially attenuated by miR‑145‑5p knockdown. The present study provided novel insight into the advantages of surgical intervention with propofol anesthesia in patients with BC.
Collapse
Affiliation(s)
- Yi Du
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xudong Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yiding Chen
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jinjun Shu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hui Pan
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
43
|
UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis 2021; 12:519. [PMID: 34021129 PMCID: PMC8140095 DOI: 10.1038/s41419-021-03798-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
UPF1 is proved to dysregulate in multiple tumors and influence carcinogenesis. However, the role of UPF1 in oxaliplatin resistance in colorectal cancer (CRC) remains unknown. In our study, UPF1 is upregulated in CRC in mRNA and protein levels and overexpression of UPF1 predicts a poor overall survival (OS) and recurrence-free survival (RFS) in CRC patients and is an independent risk factor for recurrence. UPF1 promotes chemoresistance to oxaliplatin in vitro and in vivo. UPF1-induced oxaliplatin resistance can be associated with interaction between zinc finger of UPF1 and Toprim of TOP2A and increasing phosphorylated TOP2A in a SMG1-dependent manner. Moreover, UPF1 maintains stemness in a TOP2A-dependent manner in CRC. Taken together, UPF1 was overexpressed and predicted a poor prognosis in CRC. UPF1 enhanced chemoresistance to oxaliplatin in CRC, which may result from regulation of TOP2A activity and maintenance of stemness. Our findings could provide a new therapy strategy for chemoresistance to oxaliplatin in CRC patients.
Collapse
|
44
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Wang Y, Wang P, Liu M, Zhang X, Si Q, Yang T, Ye H, Song C, Shi J, Wang K, Wang X, Zhang J, Dai L. Identification of tumor-associated antigens of lung cancer: SEREX combined with bioinformatics analysis. J Immunol Methods 2021; 492:112991. [PMID: 33587914 DOI: 10.1016/j.jim.2021.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study is to identify novel tumor-associated antigens (TAAs) of lung cancer by using serological analysis of recombinant cDNA expression library (SEREX) and bioinformatics analysis as well as to explore their humoral immune response. SEREX and pathway enrichment analysis were used to immunoscreen TAAs of lung cancer and elaborate their function in biological pathways, respectively. Subsequently, the sera level of autoantibodies against the selected TAAs (TOP2A, TRIM37, HSP90AB1, EEF1G and TPP1) was detected by immunoserological analysis to explore the immune response of these antigens. The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) database were applied to explore the mRNA and protein expression level of TOP2A, TRIM37 and HSP90AB1 in tissues, respectively. Seventy positive clones were identified by SEREX which contain 63 different genes, and 35 genes of them have been reported. These 35 genes were mainly related to regulation of different transcription factor and performed enrichment in legionellosis, RNA transport, IL-17 signaling pathway via enrichment analysis. Additionally, the positive rate of autoantibodies against TOP2A, TRIM37 and HSP90AB1 in lung cancer patients were typically higher than normal control (NC; P < 0.05). Moreover, the combination of the autoantibodies against TOP2A, TRIM37 and HSP90AB1 possessed an excellent diagnostic performance with sensitivity of 84% and specificity of 60%. The mRNA expression level of TOP2A was obviously unregulated in squamous cell carcinoma (SCC) tissues and adenocarcinoma (ADC) tissues compared to normal tissues (P < 0.05). In addition, TRIM37 and HSP90AB1 also showed a significant difference between SCC and NC at the mRNA expression level (P < 0.05). This study combining comprehensive autoantibody and gene expression assays has added to the growing list of lung cancer antigens, which may aid the development of diagnostic and immunotherapeutic targets for lung cancer patients.
Collapse
MESH Headings
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/diagnosis
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/immunology
- Adult
- Aged
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Case-Control Studies
- Computational Biology
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/immunology
- Datasets as Topic
- Diagnosis, Differential
- Female
- Gene Expression Profiling
- Gene Library
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/immunology
- Healthy Volunteers
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Male
- Middle Aged
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/immunology
- Sensitivity and Specificity
- Serologic Tests/methods
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/immunology
- Tripeptidyl-Peptidase 1
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Young Adult
Collapse
Affiliation(s)
- Yulin Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Man Liu
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qiufang Si
- BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ting Yang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hua Ye
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunhua Song
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianxiang Shi
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kaijuan Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiao Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianying Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Liping Dai
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
46
|
Jia Z, Zhang Z, Tian Q, Wu H, Xie Y, Li A, Zhang H, Yang Z, Zhang X. Integration of transcriptomics and metabolomics reveals anlotinib-induced cytotoxicity in colon cancer cells. Gene 2021; 786:145625. [PMID: 33798683 DOI: 10.1016/j.gene.2021.145625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mounting evidences suggested that anlotinib exhibits effective anti-tumor activity in various cancer types, such as lung cancer, glioblastoma and medullary thyroid cancer. However, its function in colon cancer remains to be further revealed. METHODS Colon cancer cells (HCT-116) were treated with or without anlotinib. Transcript and metabolite data were generated through RNA sequencing and liquid chromatography-tandem mass spectrometry, respectively. The integrated analysis transcriptomics and metabolomics was conducted using R programs and online tools, including ClusterProfiler R program, GSEA, Prognoscan and Cytoscape. RESULTS We found that differentially expressed genes (DEGs) were mainly involved in metabolic pathways and ribosome pathway. Structural maintenance of chromosome 3 (SMC3), Topoisomerase II alpha (TOP2A) and Glycogen phosphorylase B (PYGB) are the most significant DEGs which bring poor clinical prognosis in colon cancer. The analysis of metabolomics presented that most of the differentially accumulated metabolites (DAMs) were amino acids, such as L-glutamine, DL-serine and aspartic acid. The joint analysis of DEGs and DAMs showed that they were mainly involved in protein digestion and absorption, ABC transporters, central carbon metabolism, choline metabolism and Gap junction. Anlotinib affected protein synthesis and energy supporting of colon cancer cells by regulating amino acid metabolism. CONCLUSIONS Anlotinib has a significant effect on colon cancer in both transcriptome and metabolome. Our research will provide possible targets for colon cancer treatment using anlotinib.
Collapse
Affiliation(s)
- Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Zhi Zhang
- Affliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan 063000, China
| | - Qinqin Tian
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Hongmei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; College of Life Science, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
47
|
Liu R, Wang G, Zhang C, Bai D. A prognostic model for hepatocellular carcinoma based on apoptosis-related genes. World J Surg Oncol 2021; 19:70. [PMID: 33712023 PMCID: PMC7955636 DOI: 10.1186/s12957-021-02175-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results Compared with normal tissues, 43 highly upregulated and 8 downregulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated 2-year or 5-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02175-9.
Collapse
Affiliation(s)
- Renjie Liu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Guifu Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
48
|
Bartha Á, Győrffy B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int J Mol Sci 2021; 22:ijms22052622. [PMID: 33807717 PMCID: PMC7961455 DOI: 10.3390/ijms22052622] [Citation(s) in RCA: 581] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022] Open
Abstract
Genes showing higher expression in either tumor or metastatic tissues can help in better understanding tumor formation and can serve as biomarkers of progression or as potential therapy targets. Our goal was to establish an integrated database using available transcriptome-level datasets and to create a web platform which enables the mining of this database by comparing normal, tumor and metastatic data across all genes in real time. We utilized data generated by either gene arrays from the Gene Expression Omnibus of the National Center for Biotechnology Information (NCBI-GEO) or RNA-seq from The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and The Genotype-Tissue Expression (GTEx) repositories. The altered expression within different platforms was analyzed separately. Statistical significance was computed using Mann–Whitney or Kruskal–Wallis tests. False Discovery Rate (FDR) was computed using the Benjamini–Hochberg method. The entire database contains 56,938 samples, including 33,520 samples from 3180 gene chip-based studies (453 metastatic, 29,376 tumorous and 3691 normal samples), 11,010 samples from TCGA (394 metastatic, 9886 tumorous and 730 normal), 1193 samples from TARGET (1 metastatic, 1180 tumorous and 12 normal) and 11,215 normal samples from GTEx. The most consistently upregulated genes across multiple tumor types were TOP2A (FC = 7.8), SPP1 (FC = 7.0) and CENPA (FC = 6.03), and the most consistently downregulated gene was ADH1B (FC = 0.15). Validation of differential expression using equally sized training and test sets confirmed the reliability of the database in breast, colon, and lung cancer at an FDR below 10%. The online analysis platform enables unrestricted mining of the database and is accessible at TNMplot.com.
Collapse
Affiliation(s)
- Áron Bartha
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary;
- Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary;
- Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: ; Tel.: +3630-514-2822
| |
Collapse
|
49
|
Huang ZG, Sun Y, Chen G, Dang YW, Lu HP, He J, Cheng JW, He ML, Li SH. MiRNA-145-5p expression and prospective molecular mechanisms in the metastasis of prostate cancer. IET Syst Biol 2021; 15:1-13. [PMID: 33527765 PMCID: PMC8675798 DOI: 10.1049/syb2.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The clinicopathological implication and prospective molecular mechanisms of miRNA-145-5p in the metastasis of prostate cancer (PCa) stand unclear. Herein, it is found that miRNA-145-5p expression was remarkably reduced in 131 cases of metastatic PCa than 1371 cases of localised ones, as the standardised mean differences (SMD) was -1.26 and the area under the curve (AUC) was 0.86, based on miRNA-chip and miRNA-sequencing datasets. The potential targets of miRNA-145-5p in metastatic PCa (n = 414) was achieved from the intersection of miRNA-145-5p transfected metastatic PCa cell line data, differential expression of metastatic PCa upregulated genes and online prediction databases. TOP2A was screened as one of the target hub genes by PPI network analysis, which was adversely related to miRNA-145-5p expression in both metastatic PCa (r = -0.504) and primary PCa (r = -0.281). Gene-chip and RNA-sequencing datasets, as well as IHC performed on clinical PCa samples, showed consistent upregulated expression of TOP2A mRNA and protein in PCa compared with non-PCa. The expression of TOP2A mRNA was also significantly higher in metastatic than localised PCa with the SMD being 1.72 and the AUC of sROC being 0.91. In summary, miRNA-145-5p may participate in PCa metastasis by binding TOP2A and be useful as a biomarker for the detection of metastatic PCa.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
50
|
Wei LM, Li XY, Wang ZM, Wang YK, Yao G, Fan JH, Wang XS. Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis. Gland Surg 2021; 10:799-806. [PMID: 33708561 DOI: 10.21037/gs-21-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Triple negative breast cancer (TNBC) is usually aggressive and accompanied by a poor prognosis. The molecular biological mechanism of TNBC pathogenesis is still unclear, and requires more detailed research. The aim of this study was to screen and verify potential biomarkers of TNBC, and provide new clues for the treatment and diagnosis of TNBC. Methods In this work, GSE76250 was downloaded from the Gene Expression Omnibus (GEO) database and included 165 TNBC samples and 33 paired normal breast tissues. The R software and its related software package were used for data processing and analysis. Compared with normal tissues, genes with a false discovery rate (FDR) <0.01 and log fold change (logFC) ≥1 or ≤-1 were identified as differentially expressed genes (DEGs) by limma package. Survival prognoses were analyzed by Kaplan-Meier plotter database. Results In total, 160 up-regulated and 180 down-regulated genes were identified. The biological mechanism of enrichment analysis presented that DEGs were significantly enriched in chromosome segregation, extracellular matrix, and extracellular matrix structural constituent, among others. A total of 8 hub genes (CCNB1, CDK1, TOP2A, MKI67, TTK, CCNA2, BUB1, and PLK1) were identified by the protein-protein interaction network (PPIN) and Cytoscape software. Survival prognosis of these hub genes showed that they were negatively correlated with overall survival. Conclusions The 8 hub genes and pathways that were identified might be involved in tumorigenesis and become new candidate biomarkers for TNBC treatment.
Collapse
Affiliation(s)
- Li-Min Wei
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin-Yang Li
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zi-Ming Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yu-Kun Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ge Yao
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jia-Hao Fan
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin-Shuai Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|