1
|
Fan X, Wang Y, Zhang J, Lin H, Bai Z, Li S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency-Induced Necroptosis in Broiler Veins. Biol Trace Elem Res 2024; 202:1722-1740. [PMID: 37422542 DOI: 10.1007/s12011-023-03756-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.
Collapse
Affiliation(s)
- Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
2
|
Guan W, Chen Y, Fan Y. miR-26a is a Key Therapeutic Target with Enormous Potential in the Diagnosis and Prognosis of Human Disease. Curr Med Chem 2024; 31:2550-2570. [PMID: 38204224 DOI: 10.2174/0109298673271808231116075056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024]
Abstract
MicroRNA-26a (miR-26a) belongs to small non-coding regulatory RNA molecules emerging as fundamental post-transcriptional regulators inhibiting gene expression that plays vital roles in various processes of human diseases such as depression, renal ischemia and reperfusion injury, liver injury and some refractory cancer. In this review, we expound on the results of studies about miR-26a with emphasis on its function in animal models or in vitro cell culture to simulate the most common human disease in the clinic. Furthermore, we also illustrate the underlying mechanisms of miR-26a in strengthening the antitumor activity of antineoplastic drugs. Importantly, dysregulation of miR-26a has been related to many chronic and malignant diseases, especially in neurological disorders in the brain such as depression and neurodegenerative diseases as well as cancers such as papillary thyroid carcinoma, hepatocellular carcinoma and so on. It follows that miR-26a has a strong possibility to be a potential therapeutic target for the treatment of neurological disorders and cancers. Although the research of miRNAs has made great progress in the last few decades, much is yet to be discovered, especially regarding their underlying mechanisms and roles in the complex diseases of humans. Consequently, miR-26a has been analyzed in chronic and malignant diseases, and we discuss the dysregulation of miR-26a and functional roles in the development and pathogenesis of these diseases, which is very helpful for understanding their mechanisms as new biomarkers for diagnosing and curing diseases in the near future.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Chen
- Department of Neurology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang, 215600, Jiangsu, China
| |
Collapse
|
3
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023; 384:90-99. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previous studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
4
|
Zhang Y, Lv L, Zheng R, Xie R, Yu Y, Liao H, Chen J, Zhang B. Transcriptionally regulated miR-26a-5p may act as BRCAness in Triple-Negative Breast Cancer. Breast Cancer Res 2023; 25:75. [PMID: 37365643 DOI: 10.1186/s13058-023-01663-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND DNA damage and DNA damage repair (DDR) are important therapeutic targets for triple-negative breast cancer (TNBC), a subtype with limited chemotherapy efficiency and poor outcome. However, the role of microRNAs in the therapy is emerging. In this study, we explored whether miR-26a-5p could act as BRCAness and enhance chemotherapy sensitivity in TNBC. METHODS Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-26a-5p in breast cancer tissues and cell lines. CCK-8 was used to measure drug sensitivity in concentration gradient and time gradient. Comet assay was used to detect DNA damage. Flow cytometry was performed to examine apoptosis. Moreover, we used western blot and immunofluorescence to detect biomarkers. Luciferase reporter assay was performed to verify the combination of miR-26a-5p and 3'UTR of target gene. Hormone deprivation and stimulation assay were used to validate the effect of hormone receptors on the expression of miR-26a-5p. Chromatin immunoprecipitation (ChIP) assays were used to verify the binding sites of ER-a or PR with the promoter of miR-26a-5p. Animal experiments were performed to the effect of miR-26a-5p on Cisplatin treatment. RESULTS The expression of miR-26a-5p was significantly downregulated in TNBC. Overexpressing miR-26a-5p enhanced the Cisplatin-induced DNA damage and following apoptosis. Interestingly, miR-26a-5p promoted the expression of Fas without Cisplatin stimulating. It suggested that miR-26a-5p provided a hypersensitivity state of death receptor apoptosis and promoted the Cisplatin sensitivity of TNBC cells in vitro and in vivo. Besides, miR-26a-5p negatively regulated the expression of BARD1 and NABP1 and resulted in homologous recombination repair defect (HRD). Notably, overexpressing miR-26a-5p not only facilitated the Olaparib sensitivity of TNBC cells but also the combination of Cisplatin and Olaparib. Furthermore, hormone receptors functioned as transcription factors in the expression of miR-26a-5p, which explained the reasons that miR-26a-5p expressed lowest in TNBC. CONCLUSIONS Taken together, we reveal the important role of miR-26a-5p in Cisplatin sensitivity and highlight its new mechanism in DNA damage and synthetic lethal.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lianqiu Lv
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renjing Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Xie
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Han Liao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Dai R, Ren Y, Lv X, Chang C, He S, Li Q, Yang X, Ren L, Wei R, Su Q. MicroRNA-30e-3p reduces coronary microembolism-induced cardiomyocyte pyroptosis and inflammation by sequestering HDAC2 from the SMAD7 promoter. Am J Physiol Cell Physiol 2023; 324:C222-C235. [PMID: 36622073 DOI: 10.1152/ajpcell.00351.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 μg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/β-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1β levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1β secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and β-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.
Collapse
Affiliation(s)
- Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Yanling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Xiangwei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Shirong He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Xiheng Yang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Lei Ren
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Riming Wei
- College of Biotechnology, Guilin Medical University, Guilin, People's Republic of China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, People's Republic of China
| |
Collapse
|
6
|
Xuan L, Fu D, Zhen D, Bai D, Yu L, Gong G. Long non-coding RNA Sox2OT promotes coronary microembolization-induced myocardial injury by mediating pyroptosis. ESC Heart Fail 2022; 9:1689-1702. [PMID: 35304834 PMCID: PMC9065873 DOI: 10.1002/ehf2.13814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE As a common complication of coronary microembolization (CME), myocardial injury (MI) implies high mortality. Long non-coding RNAs (lncRNAs) are rarely studied in CME-induced MI. Herein, this study intended to evaluate the role of lncRNA Sox2 overlapping transcript (Sox2OT) in CME-induced MI. METHODS The CME rat models were successfully established by injection of microemboli. Rat cardiac functions and MI were observed by ultrasonic electrocardiogram, HE staining, and HBFP staining. Functional assays were utilized to test the inflammatory responses, oxidative stress, and pyroptosis using reverse transcription quantitative polymerase chain reaction, Western blotting, immunohistochemistry, immunofluorescence, and ELISA. Dual-luciferase reporter gene assay and RNA immunoprecipitation were conducted to clarify the targeting relations between Sox2OT and microRNA (miRNA)-23b and between miR-23b and toll-like receptor 4 (TLR4). RESULTS Rat CME disrupted the cardiac functions and induced inflammatory responses and oxidative stress, and activated the nuclear factor-kappa B (NF-κB) pathway and pyroptosis (all P < 0.05). An NF-κB inhibitor downregulated the NF-κB pathway, reduced pyroptosis, and relieved cardiomyocyte injury and pyroptosis. Compared with the sham group (1.05 ± 0.32), lncRNA Sox2OT level (4.41 ± 0.67) in the CME group was elevated (P < 0.05). Sox2OT acted as a competitive endogenous RNA (ceRNA) of miR-23b to regulate TLR4. Silencing of Sox2OT favoured miR-23b binding to 3'UTR of TLR4 mRNA leading to suppressed TLR4-mediated NFKB signalling and pyroptosis in myocardial tissues harvested from CME rat models. In addition, miR-23b overexpression could supplement the cytosolic miR-23b reserves to target TLR-4 and partially reverse Sox2OT-mediated pyroptosis in LPS-treated H9C2 cells. CONCLUSIONS This study supported that silencing Sox2OT inhibited CME-induced MI by eliminating Sox2OT/miR-23b binding and down-regulating the TLR4/NF-κB pathway. This investigation may provide novel insights for the treatment of CME-induced MI.
Collapse
Affiliation(s)
- Liying Xuan
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Danni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Dong Zhen
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Dongsong Bai
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Lijun Yu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
| | - Guohua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, No. 1742 Holin River Street, Tongliao, Inner Mongolia, 028002, China
- Inner Mongolia Key Laboratory, Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, China
- First Medical Clinic, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
7
|
Xu Y, Lv X, Cai R, Ren Y, He S, Zhang W, Li Q, Yang X, Dai R, Wei R, Su Q. Possible implication of miR-142-3p in coronary microembolization induced myocardial injury via ATXN1L/HDAC3/NOL3 axis. J Mol Med (Berl) 2022; 100:763-780. [PMID: 35414011 DOI: 10.1007/s00109-022-02198-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
This study aims to explore the mechanism underlying miR-142-3p regulating myocardial injury induced by coronary microembolization (CME) through ATXN1L. miR-142-3p overexpression or ATXN1L knockout adenovirus vectors were injected into rats before CME treatment. Cardiac functions were examined by echocardiography, and pathologies of myocardial tissues were assessed. Then, serum cTnI and IL-1β contents and concentrations of IL-1β and IL-18 in cell supernatant were measured. Immunofluorescence determined the localization of histone deacetylase 3 (HDAC3). The interaction between miR-142-3p and ATXN1L as well as the binding between HDAC3 and histone 3 (H3) was identified. The binding of ATXN1L and HDAC3 to NOL3 promoter was verified using ChIP. The levels of ATXN1L, NOL3, and miR-142-3p as well as apoptosis- and pyroptosis-related proteins and acetyl-histone 3 (ac-H3) were evaluated. CME treatment impaired the cardiac functions in rats and increased cTnI content. CME rats showed microinfarction foci in myocardial tissues. After CME treatment, miR-142-3p and NOL3 were modestly expressed while ATXN1L content was elevated, in addition to increases in apoptosis and pyroptosis. miR-142-3p overexpression or ATXN1L knockout alleviated CME-induced myocardial injury, cardiomyocyte apoptosis, and pyroptosis in myocardial tissues. miR-142-3p regulated ATXN1L expression in a targeted manner. In the cellular context, miR-142-3p overexpression attenuated apoptosis and pyroptosis in cardiomyocytes, which was partly counteracted by ATXN1L overexpression. ATXN1L functioned on cardiomyocytes by promoting deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression. Inhibition of HDAC3 or overexpression of NOL3 ameliorated the promotive effects of ATXN1L on cardiomyocyte apoptosis and pyroptosis. In vivo and in vitro evidence in this study supported that miR-142-3p could attenuate CME-induced myocardial injury via ATXN1L/HDAC3/NOL3. HIGHLIGHTS: CME model witnessed aberrant expression of miR-142-3p, ATXN1L, and NOL3; miR-142-3p negatively regulated ATXN1L; miR-142-3p mediated CME-induced myocardial injury through ATXN1L; ATXN1L promoted deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression; ATXN1L acted on cardiomyocyte apoptosis and pyroptosis through HDAC3/NOL3 axis.
Collapse
Affiliation(s)
- Yuli Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Xiangwei Lv
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Ruping Cai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Yanling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Shirong He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Wei Zhang
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Xiheng Yang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China
| | - Riming Wei
- School of Intelligent Medicine and Biotechbology, Guilin Medical University, Lingui District, No.1, Zhiyuan Road, Guilin, Guangxi, 541199, People's Republic of China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, Guangxi, 541001, People's Republic of China.
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, 541199, People's Republic of China.
| |
Collapse
|
8
|
Luo Y, Xu H, Yang Z, Lin X, Zhao F, Huang Y, Wang Y, Yang X, Li H, Wang L, Wen M, Xian S. Long non-coding RNA MALAT1 silencing elevates microRNA-26a-5p to ameliorate myocardial injury in sepsis by reducing regulator of calcineurin 2. Arch Biochem Biophys 2022; 715:109047. [PMID: 34619102 DOI: 10.1016/j.abb.2021.109047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Sepsis is a leading cause of morbidity and mortality after surgery. We aimed to explore the role of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) sponging microRNA-26a-5p in sepsis-induced myocardial injury by regulating regulator of calcineurin 2 (Rcan2). METHODS HL-1 cells were incubated with lipopolysaccharide (LPS) to induce in vitro cardiomyocyte injury models, which were then treated with silenced MALAT1 vector, miR-26a-5p mimic or Rcan2 overexpression vector. Next, inflammatory factor level and apoptosis of cells were determined. The in vivo mouse models were constructed by intraperitoneal injection of LPS. The modeled mice were injected with relative oligonucleotides and the pathology, apoptosis, and inflammation in mouse myocardial tissues were assessed. Expression of MALAT1, miR-26a-5p and Rcan2 in vivo and in vitro was evaluated. RESULTS MALAT1 and Rcan2 were upregulated while miR-26a-5p was downregulated in LPS-treated HL-1 cells and mice. MALAT1 silencing or miR-26a-5p upregulation suppressed LPS-induced inflammation and apoptosis of cardiomyocytes in cellular and animal models. These effects of elevated miR-26a-5p could be reversed by upregulating Rcan2, and MALAT1 knockdown-induced ameliorative impacts could be reversed by miR-26a-5p downregulation. CONCLUSION MALAT1 silencing elevated miR-26a-5p to ameliorate LPS-induced myocardial injury by reducing Rcan2. Our research may provide novel biomarkers for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haitao Xu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhongqi Yang
- President's Office, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinfeng Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fengli Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yusheng Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanjun Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xueqing Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hongbo Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingjun Wang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minyong Wen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shaoxiang Xian
- President's Office, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
9
|
Yan G, Wang J, Fang Z, Yan S, Zhang Y. MiR-26a-5p Targets WNT5A to Protect Cardiomyocytes from Injury Due to Hypoxia/Reoxygenation Through the Wnt/β-catenin Signaling Pathway. Int Heart J 2021; 62:1145-1152. [PMID: 34544974 DOI: 10.1536/ihj.21-054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the effect and mechanism of miR-26a-5p on cardiomyocyte injury induced by hypoxia/reoxygenation (H/R).After construction of an H/R model in rat cardiomyocyte H9c2 cells, miR-26a-5p in the cells was interfered with (cells transfected with miR-26a-5p inhibitor) or overexpressed (cells transfected with a miR-26a-5p mimics). The viability and the apoptosis rate of cells in each group were detected using CCK-8 and flow cytometry; the relationship between miR-26a-5p and WNT5A was verified by a dual-luciferase reporter assay; the expression of miR-26a-5p, WNT5A, cleavedcaspase3 and Wnt/β-catenin signaling pathway-related proteins in each group was detected using qRT-PCR or Western blot; LDH release, SOD, and GSH-PX activities in each group were detected by kit.In the H/R group, the expression level of miR-26a-5p was significantly decreased, whereas the expression level of WNT5A was significantly increased. The activity of the Wnt/β-catenin signaling pathway was up-regulated; the level of LDH released was significantly increased; and activities of SOD and GSH-PX were significantly decreased. The aforementioned changes resulted in decreased cell activity and increased apoptosis rate. The overexpression of miR-26a-5p could reduce the expression level of WNT5A, the activity of the Wnt/β-catenin signaling pathway, and the apoptosis rate and restore the cell viability.These results suggest that miR-26a-5p can target WNT5A and thus, inhibit the Wnt/β-catenin signaling pathway activity, inhibiting H/R-induced cardiomyocyte injury and apoptosis.
Collapse
Affiliation(s)
- Guohui Yan
- Department of Ultrasound, Zhongshan Hospital Xiamen University.,Department of Medicine, Fujian Medical University
| | - Jiajia Wang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Zanxi Fang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Shuidi Yan
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| | - Yang Zhang
- Department of Medicine, Fujian Medical University.,Center of Clinical Laboratory, Zhongshan Hospital Xiamen University
| |
Collapse
|
10
|
Li T, Chen Z, Zhou Y, Li H, Xie J, Li L. Resveratrol Pretreatment Inhibits Myocardial Apoptosis in Rats Following Coronary Microembolization via Inducing the PI3K/Akt/GSK-3β Signaling Cascade. Drug Des Devel Ther 2021; 15:3821-3834. [PMID: 34522086 PMCID: PMC8434837 DOI: 10.2147/dddt.s323555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose Coronary microembolization (CME) is associated with progressive cardiac dysfunction, myocardial inflammation, and apoptosis. Resveratrol (RES) has a considerable role in cardioprotection. However, the contribution and possible mechanisms of RES in CME have not been clearly understood. Methods In the current study, 40 SD rats were randomly selected and categorized into various groups including CME, CME + resveratrol (CME + RES), CME + resveratrol+ LY294002 (CME + RES + LY), and sham groups (10 animals in each group). The inert plastic microspheres (42 μm) were injected into the rats’ left ventricle for developing the CME model. Then resveratrol (25 mg/kg/d) was given to the rats in the CME + RES and CME + RES + LY groups for one week before CME induction. Furthermore, LY294002 (10 mg/kg) was intraperitoneally injected into the rats of the CME + RES + LY group 0.5 hours before CME modeling. The cardiac functions, serum levels of myocardial injury biomarkers, myocardial histopathology, and mRNA and proteins associated with myocardial apoptosis were all assessed 12 hours after surgery. Results The results revealed that resveratrol pretreatment alleviated the CME-induced myocardial damage by improving cardiac dysfunction, and lowering the serum level of myocardial injury biomarkers, myocardial microinfarct size, and cardiomyocyte apoptotic index. Pretreatment with resveratrol reduced the level of proteins and mRNAs associated with the pro-apoptosis in myocardial tissues and increased the levels of proteins and mRNAs associated with the anti-apoptosis. Moreover, the combined treatment of resveratrol and LY294002 reversed the observed protective effects. Conclusion Resveratrol can inhibit cardiomyocyte apoptosis, thus attenuating the CME-induced myocardial injury by triggering the PI3K/Akt/GSK-3β cascade.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Haoliang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
11
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Li HL, Li T, Li L. miR-200a-3p Attenuates Coronary Microembolization-Induced Myocardial Injury in Rats by Inhibiting TXNIP/NLRP3-Mediated Cardiomyocyte Pyroptosis. Front Cardiovasc Med 2021; 8:693257. [PMID: 34422922 PMCID: PMC8374895 DOI: 10.3389/fcvm.2021.693257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Coronary microembolization (CME) commonly develops as a complication after percutaneous coronary intervention (PCI), and associated inflammation is a leading driver of myocardial damage. Cardiomyocyte loss in the context of ischemic myocardial disease has been linked to inflammatory pyroptotic cell death. Additionally, miR-200a-3p dysregulation has been linked to myocardial ischemia-reperfusion and many other pathological conditions. However, how miR-200a-3p impacts cardiomyocyte pyroptosis in the context of CME remains to be assessed. Herein, a rat model of CME was established via the injection of microembolic spheres into the left ventricle. When myocardial tissue samples from these rats were analyzed, miR-200a-3p levels were markedly decreased, whereas thioredoxin-interacting protein (TXNIP) levels were increased. The ability of miR-200a-3p to directly target TXNIP and to control its expression was confirmed via dual-luciferase reporter assay. Adeno-associated virus serotype 9-pre-miR-200a-3p (AAV-miR-200a-3p) construct transfection was then employed as a means of upregulating this miRNA in CME model rats. Subsequent assays, including echocardiography, enzyme-linked immunosorbent assays (ELISAs), hematoxylin-eosin (H&E) staining, hematoxylin-basic fuchsin-picric acid (HBFP) staining, TdT-mediated dUTP nick-end labeling (TUNEL) staining, immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting revealed that miR-200a-3p overexpression inhibited cardiomyocyte pyroptosis and alleviated CME-induced myocardial injury by inhibiting the TXNIP/NOD-like receptor family pyrin domain-containing 3 (NLRP3) pathway. The ability of miR-200a-3p to protect against CME-induced myocardial injury thus highlights a novel approach to preventing or treating such myocardial damage in clinical settings.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Shi H, Li H, Zhang F, Xue H, Zhang Y, Han Q. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol Int 2021; 45:2357-2367. [PMID: 34370360 DOI: 10.1002/cbin.11685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy has been a high prevalence rate throughout the world. It has posed a big threat to public health due to limited therapeutic approaches. Previous studies showed that pathological cardiac hypertrophy was associated with autophagy, microRNAs (miRNA), and other signaling pathways, while the molecular mechanisms remain incompletely characterized. In this study, we used thoracic aortic constriction (TAC)-induced mice and angiotensin-II (Ang-II)-induced H9C2 cell line as cardiac hypertrophy model to investigate the role of miR-26a-5p in cardiac hypertrophy. We found that miR-26a-5p was downregulated in cardiac hypertrophy mice. Overexpression of miR-26a-5p by type 9 recombinant adeno-associated virus (rAAV9) reversed the heart hypertrophic manifestations. The phenotypes were also promoted by miR-26a-5p inhibitor in Ang-II-induced H9C2 cells. Through miRNA profile analysis and dual-luciferase reporter assay, ADAM17 was identified as a direct target of miR-26a-5p. Restored expression of ADAM17 disrupted the effect of miR-26a-5p on cardiac hypertrophy. To sum up, these results indicated that miR-26a-5p played an inhibitory role in cardiac hypertrophy and dysfunction via targeting ADAM17. The miR-26a-5p-ADAM17-cardiac hypertrophy axis provided special insight and a new molecular mechanism for a better understanding of cardiac hypertrophy disease, as well as the diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Fan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Honghong Xue
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
13
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Zheng J, Li HL, Li T, Li L. Breviscapine Pretreatment Inhibits Myocardial Inflammation and Apoptosis in Rats After Coronary Microembolization by Activating the PI3K/Akt/GSK-3β Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:843-855. [PMID: 33658766 PMCID: PMC7920514 DOI: 10.2147/dddt.s293382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Purpose Coronary microembolization (CME) can cause myocardial inflammation, apoptosis and progressive cardiac dysfunction. On the other hand, breviscapine exerts a significant cardioprotective effect in many cardiac diseases although its role and the potential mechanisms in CME remain unclear. Therefore, the present study aimed to ascertain whether pretreatment with breviscapine could improve CME-induced myocardial injury by alleviating myocardial inflammation and apoptosis. The possible underlying mechanisms were also explored. Methods In this study, 48 Sprague-Dawley (SD) rats were randomly assigned to the CME, CME + breviscapine (CME + BE), CME + breviscapine + LY294002 (CME + BE + LY) and sham groups (12 rats per group). In addition, the CME model was successfully established by injecting 42 μm inert plastic microspheres into the left ventricle of rats. Rats in the CME + BE and CME + BE + LY groups received 40 mg/kg/d of breviscapine for 7 days before inducing CME. Moreover, rats in the CME + BE + LY group were intraperitoneally injected with the phosphoinositide 3-kinase (PI3K) specific inhibitor, LY294002 (10 mg/kg) 30 minutes before CME modeling. 12 h after surgery, the study measured cardiac function, the serum levels of markers of myocardial injury, myocardial inflammation-associated mRNAs and proteins, myocardial apoptosis-associated mRNAs and proteins and conducted myocardial histopathology. Results The findings demonstrated that pretreatment with breviscapine alleviated myocardial injury following CME by improving cardiac dysfunction, decreasing the serum levels of markers of myocardial injury, reducing the size of myocardial microinfarct and lowering the cardiomyocyte apoptotic index. More importantly, pretreatment with breviscapine resulted to a decrease in the levels of inflammatory and pro-apoptotic mRNAs and proteins in myocardial tissues and there was an increase in the levels of anti-apoptotic mRNAs and proteins. However, these protective effects were eliminated when breviscapine was combined with LY294002. Conclusion The findings from this study indicated that breviscapine may inhibit myocardial inflammation and apoptosis by regulating the PI3K/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, thereby ameliorating CME-induced cardiac dysfunction and reducing myocardial injury.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
14
|
Lima Correa B, El Harane N, Gomez I, Rachid Hocine H, Vilar J, Desgres M, Bellamy V, Keirththana K, Guillas C, Perotto M, Pidial L, Alayrac P, Tran T, Tan S, Hamada T, Charron D, Brisson A, Renault NK, Al-Daccak R, Menasché P, Silvestre JS. Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts. Cardiovasc Res 2021; 117:292-307. [PMID: 32049348 DOI: 10.1093/cvr/cvaa028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.
Collapse
Affiliation(s)
- Bruna Lima Correa
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Nadia El Harane
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Ingrid Gomez
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | | | - José Vilar
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Manon Desgres
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Valérie Bellamy
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Kamaleswaran Keirththana
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Chloé Guillas
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Maria Perotto
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Laetitia Pidial
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Paul Alayrac
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Thi Tran
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Sisareuth Tan
- UMR-CBMN, CNRS-Université de Bordeaux-IPB, F-33600 Pessac, France
| | - Thomas Hamada
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | | | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux-IPB, F-33600 Pessac, France
| | | | - Reem Al-Daccak
- INSERM, UMRS-976, Hôpital Saint-Louis, F-75015 Paris, France
| | - Philippe Menasché
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, F-75015 Paris, France
| | - Jean-Sébastien Silvestre
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| |
Collapse
|
15
|
Deng J, Guo M, Li G, Xiao J. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 2020; 27:360-369. [PMID: 32341485 DOI: 10.1038/s41434-020-0148-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia-reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts, General Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
16
|
Abstract
Coronary artery disease (CAD) is the second leading cause of death after stroke in China. Percutaneous coronary intervention (PCI) significantly improves the prognosis of CAD patients. This study aimed to evaluate the diagnostic value of circulating microRNAs (miRNAs) in patients with severe CAD requiring PCI. The plasma miRNA profiles were determined using miRNA microarray. The relative expression levels of differentially expressed miRNA were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Nine miRNAs (ebv-miR-BART12, ebv-miR-BART16, let-7i-5p, miR-130a-3p, miR-26a-5p, miR-3149, miR-3152-3p, miR-32-3p, and miR-149-3p) were differentially expressed between severe CAD and control groups. Four miRNAs (let-7i-5p, miR-32-3p, miR-3149, and miR-26a-5p) validated by qRT-PCR showed good diagnostic accuracy, with the area under the receiver operating characteristic curves (AUCs) of 0.634 (95% confidence interval [CI] 0.528-0.739), 0.745 (95%CI 0.649-0.84), 0.795 (95%CI 0.709-0.88), and 0.818 (95%CI 0.739-0.897), respectively. Furthermore, the combination of these 4 miRNAs exhibited better diagnostic performance compared with any individual miRNA, with an AUC of 0.837 (95%CI 0.763-0.911). These data indicate that plasma let-7i-5p, miR-32-3p, miR-3149, and miR-26a-5p have promising diagnostic value for severe CAD.
Collapse
Affiliation(s)
- Xuelin Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Suzhou University, Suzhou
| | | | | | | | - Shanan Lin
- Department of Cardiothoracic Surgery, Taizhou Central Hospital, Taizhou, Zhejiang
| | - Xiaoqiang Li
- Department of Vascular Surgery, the Second Affiliated Hospital of Suzhou University, Suzhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
17
|
Cai ZL, Shen B, Yuan Y, Liu C, Xie QW, Hu TT, Yao Q, Wu QQ, Tang QZ. The effect of HMGA1 in LPS-induced Myocardial Inflammation. Int J Biol Sci 2020; 16:1798-1810. [PMID: 32398950 PMCID: PMC7211173 DOI: 10.7150/ijbs.39947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: The High Mobility Group A1 (HMGA1) proteins, serving as a dynamic regulator of gene transcription and chromatin remodeling, play an influential part in the pathological process of a large number of cardiovascular diseases. However, the precise role of HMGA1 in sepsis induced cardiomyopathy (SIC) remains unintelligible. This research was designed to illustrate the effect of HMGA1 involved in SIC. Methods and Results: Cardiomyocyte-specific HMGA1 overexpression was obtained using an adeno-associated virus system with intramyocardial injection in mice heart. The model of SIC in mice was constructed via intraperitoneal injection of lipopolysaccharide (LPS) for 6h. H9c2 rat cardiomyocytes was stimulated with LPS for 12h. HMGA1 expression was upregulated in murine inflammatory hearts as well as LPS stimulated H9c2 cardiomyocytes. HMGA1-overexpressing exhibited aggravated cardiac dysfunction, cardiac inflammation as well as cells apoptosis following LPS treatment both in vivo and in vitro experiment. Interestingly, HMGA1 knockdown in H9c2 cardiomyocytes attenuated LPS-induced cardiomyocyte inflammation, but aggravated cell apoptosis. Mechanistically, we found that overexpression of HMGA1 induced increased expression of cyclooxygenase-2 (COX-2). COX-2 inhibitor alleviated the aggravation of inflammation and apoptosis in HMGA1 overexpressed H9c2 cardiomyocytes whereas HMGA1 knockdown induced a reduction in signal transducer and activators of transcription 3 (STAT3) expression. STAT3 agonist reversed HMGA1 silence induced anti-inflammatory effects, while ameliorated cell apoptosis induced by LPS. Conclusion: In conclusion, our results suggest that overexpression of HMGA1 aggravated cardiomyocytes inflammation and apoptosis by up-regulating COX-2 expression, while silence of HMGA1 expression attenuated inflammation but aggregated cell apoptosis via down-regulation of STAT3.
Collapse
Affiliation(s)
- Zhu-Lan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qing-Wen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Tong-Tong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
18
|
Xing X, Guo S, Zhang G, Liu Y, Bi S, Wang X, Lu Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9106. [PMID: 31994603 PMCID: PMC6984371 DOI: 10.1590/1414-431x20199106] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Abstract
Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shuang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shaojie Bi
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|