1
|
Lee J, Cheong H. The Role of A20 in Cancer: Friend or Foe? Cells 2025; 14:544. [PMID: 40214497 PMCID: PMC11988600 DOI: 10.3390/cells14070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention.
Collapse
Affiliation(s)
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
2
|
Yang L, Xiao Y, Deng S, Yan D, Li Z, Wang Y, Lei C. Signal Transducer and Activator of Transcription 4-Induced Up-Regulated LINC01278 Enhances Proliferation and Invasion of Non-Small Cell Lung Cancer Cells via the MicroRNA-877-5p/Activating Transcription Factor 4 Axis. Tissue Eng Regen Med 2024; 21:595-608. [PMID: 38466361 PMCID: PMC11087432 DOI: 10.1007/s13770-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis. METHODS NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments. RESULTS Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo. CONCLUSION Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.
Collapse
Affiliation(s)
- LinZhu Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City, 650032, YunNan Province, China
| | - Yi Xiao
- First Department of Pumonary and Critical Care Medicline, Yan'an Affiliated Hospital of Kunming Medical University, KunMing City, 650051, YunNan Province, China
| | - ShouJun Deng
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China
| | - DaiLing Yan
- First Department of Pumonary and Critical Care Medicline, Yan'an Affiliated Hospital of Kunming Medical University, KunMing City, 650051, YunNan Province, China
| | - ZhenHua Li
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China
| | - Ying Wang
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China.
| | - ChangCheng Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City, 650032, YunNan Province, China.
| |
Collapse
|
3
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
4
|
Pang Y, Li D, Chen Y, Liu Q, Wu Y, Teng Q, Liu Y. Thymus and lung mucosa-associated lymphoid tissue lymphoma with adenocarcinoma of the lung: a case report and literature review. World J Surg Oncol 2023; 21:20. [PMID: 36691049 PMCID: PMC9869556 DOI: 10.1186/s12957-023-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mucosa-associated lymphoid tissue (MALT) lymphoma is a common, low-grade, malignant B-cell lymphoma. However, simultaneous MALT lymphoma in the thymus and lung is extremely rare, and concomitant adenocarcinoma of the lung is even rarer. Herein, we report a rare case of a collision tumor in which MALT lymphoma was found in both the thymus and lung with Sjögren's syndrome (SS) and adenocarcinoma in the lung. CASE PRESENTATION A physical examination of a 32-year-old woman revealed an anterior superior mediastinal space-occupying lesion, and chest computed tomography (CT) indicated a nodular ground-glass opacity and irregular mixed-density focus in the right lung. All lung cancer-related tumor biomarkers were within normal ranges. The thymus and part of the lung tissue were surgically resected. The histopathology and molecular examinations confirmed MALT lymphoma of the thymus and lung with lung adenocarcinoma. SS was also diagnosed. No special postoperative treatment was performed for the MALT lymphoma, and the patient underwent immunosuppressive therapy for SS after 4 months of follow-up observation. CONCLUSIONS MALT lymphoma of the thymus and lung tissues has no specific presentation on imaging and is difficult to differentiate from common malignant tumors, and the definite diagnoses of these tumors are highly dependent on histopathological examination in combination with molecular testing and cytogenetics. SS may be an important potential condition for the occurrence of MALT lymphoma in the thymus and lung. Additional similar cases are needed to clarify the biological pathways and potential molecular mechanisms of rare lymphomas and collision tumors.
Collapse
Affiliation(s)
- Yu Pang
- grid.410645.20000 0001 0455 0905Department of Pathology, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Daosheng Li
- grid.410645.20000 0001 0455 0905Department of Pathology, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Yiqian Chen
- grid.410645.20000 0001 0455 0905Department of Rehabilitation, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Qinqin Liu
- grid.410645.20000 0001 0455 0905Department of Hematology, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Yuheng Wu
- grid.410645.20000 0001 0455 0905Department of Medical Imaging, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Qingliang Teng
- grid.410645.20000 0001 0455 0905Department of Hematology, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| | - Yuyu Liu
- grid.410645.20000 0001 0455 0905Department of Hematology, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an, 271000 China
| |
Collapse
|
5
|
Wang S, Li M, Cai S, Zhang W. Transcriptome analysis reveals the differential inflammatory effects between propofol and sevoflurane during lung cancer resection: a randomized pilot study. World J Surg Oncol 2023; 21:8. [PMID: 36647133 PMCID: PMC9841614 DOI: 10.1186/s12957-023-02891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Propofol and sevoflurane are two commonly used perioperative anesthetics. Some studies have found that these anesthetic drugs affect tumorigenesis. Previous studies have mostly focused on in vitro experiments, and the specimens collected were mainly peripheral body fluids, lacking direct evidence of the impact of anesthetic drugs on human tissues. This study aimed to elucidate the effects of propofol and sevoflurane on lung cancer using next-generation sequencing through an in vivo experiment. METHODS Patients were randomly assigned to a group receiving either propofol or sevoflurane during surgery. Then, the patients' tumor and paired normal samples were collected and sequenced by next-generation sequencing. Differentially expressed genes (DEG) were analyzed by two statistical models, followed by cluster analysis, PCA, Gene Ontology, and KEGG pathway analysis. Candidate genes were confirmed by qRT-PCR. RESULTS The demographic data of the two study groups were not statistically significant. Through single-factor model analysis, 810 DEG in the propofol group and 508 DEG in the sevoflurane group were obtained. To better reflect the differential effects between propofol and sevoflurane while reducing the false-positive DEG, we used multifactor model analysis, which resulted in 124 DEG. In PCA and cluster analysis, four groups (propofol cancer group, propofol normal group, sevoflurane cancer group, sevoflurane normal group) were separated adequately, indicating the accuracy of the analysis. We chose seven significant pathways (cellular response to interleukin-1, chemokine-mediated signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, inflammatory response, immune response, and TNF signaling pathway) for downstream analysis. Based on the pathway analysis, three candidate genes (CXCR1, CXCL8, and TNFAIP3) were chosen, and their qRT-PCR results were consistent with the sequencing results. CONCLUSIONS Through RNA-seq analysis, the effects of propofol and sevoflurane during lung cancer resection were different, mainly in inflammatory-related pathways, which might be possibly by targeting CXCL8. TRIAL REGISTRATION Trial registry number was ChiCTR1900026213 .
Collapse
Affiliation(s)
- Sufang Wang
- grid.440588.50000 0001 0307 1240School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Mengjiao Li
- grid.440588.50000 0001 0307 1240School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Suna Cai
- grid.440588.50000 0001 0307 1240School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Wei Zhang
- grid.414011.10000 0004 1808 090XDepartment of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan China
| |
Collapse
|
6
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
7
|
Pedraz-Valdunciel C, Giannoukakos S, Giménez-Capitán A, Fortunato D, Filipska M, Bertran-Alamillo J, Bracht JWP, Drozdowskyj A, Valarezo J, Zarovni N, Fernández-Hilario A, Hackenberg M, Aguilar-Hernández A, Molina-Vila MÁ, Rosell R. Multiplex Analysis of CircRNAs from Plasma Extracellular Vesicle-Enriched Samples for the Detection of Early-Stage Non-Small Cell Lung Cancer. Pharmaceutics 2022; 14:2034. [PMID: 36297470 PMCID: PMC9610636 DOI: 10.3390/pharmaceutics14102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The analysis of liquid biopsies brings new opportunities in the precision oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols need to be developed to boost their potential in the clinical setting. Although nCounter has been used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed for EV-circRNA analysis of LC patients. METHODS EVs were isolated from early-stage LC patients (n = 36) and controls (n = 30). Different volumes of plasma, together with different number of pre-amplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis of circRNAs was performed, along with the testing of different machine learning (ML) methods for the development of a prognostic signature for LC. RESULTS A combination of 500 μL of plasma input with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from controls with AUC ROC of 0.86. CONCLUSIONS This study validates the use of the nCounter platform for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of prognostic signatures.
Collapse
Affiliation(s)
- Carlos Pedraz-Valdunciel
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Department of Biochemistry, Molecular Biology and Biomedicine, Autonomous University of Barcelona, Campus de Bellaterra, 08193 Barcelona, Spain
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | - Stavros Giannoukakos
- Department of Genetics, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | | | - Martyna Filipska
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- B Cell Biology Group, Hospital del Mar Biomedical Research Park (IMIM), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Jordi Bertran-Alamillo
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | - Jillian W. P. Bracht
- Vesicle Observation Centre, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1105AZ Amsterdam, The Netherlands
| | - Ana Drozdowskyj
- Oncology Institute Dr. Rosell (IOR), Dexeus University Institute, 08028 Barcelona, Spain
| | - Joselyn Valarezo
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | | | - Alberto Fernández-Hilario
- Department of Computer Science and Artificial Intelligence, DaSCI., University of Granada, 18071 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Rafael Rosell
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Oncology Institute Dr. Rosell (IOR), Dexeus University Institute, 08028 Barcelona, Spain
- Catalan Institute of Oncology, Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
8
|
Zhang G, Zheng H, Wang L. miR‑491‑3p functions as a tumor suppressor in non‑small cell lung cancer by targeting fibroblast growth factor 5. Oncol Rep 2022; 48:164. [PMID: 35866594 PMCID: PMC9350999 DOI: 10.3892/or.2022.8379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to identify the function of miR-491-3p in regulating non-small cell lung cancer (NSCLC). Tumor tissues and adjacent normal tissues were collected from 43 patients with NSCLC. A549 and H1299 cells were transfected with microRNA (miR)-491-3p mimic, mimic negative control (NC), miR-491-3p inhibitor, inhibitor NC, pcDNA3.1-FGF5 vector and control vector. Cell counting kit-8 assay and Edu experiments were performed to assess cell viability and proliferation. Matrigel experiment, wound healing assay and flow cytometric analysis were performed to explore cell invasion, migration and apoptosis, respectively. A dual-luciferase reporter experiment was performed to identify the relationship between miR-491-3p and fibroblast growth factor 5 (FGF5). In vivo study was conducted by using nude mice. The miR-491-3p and FGF5 protein expression levels were investigated using reverse transcription-quantitative polymerase chain reaction and western blot analysis. In NSCLC tumor tissues, miR-491-3p was downregulated and FGF5 was upregulated (P<0.01). Low miR-491-3p expression and high FGF5 mRNA expression was associated with poor outcomes in patients, including advanced TNM stage and lymph node metastasis (P<0.05). upregulation of miR-491-3p suppressed viability, proliferation, invasion and migration of NSCLC cells; however, it promoted apoptosis (P<0.01). FGF5 was a target gene for miR-491-3p. miR-491-3p directly inhibited FGF5 expression. upregulation of FGF5 significantly reversed the inhibitory effects of miR-491-3p on malignant phenotypes of NSCLC cells (P<0.01). miR-491-3p overexpression suppressed the in vivo growth of NSCLC. Thus, it was identified that miR-491-3p functions as a tumor suppressor in NSCLC by directly targeting FGF5.
Collapse
Affiliation(s)
- Gai Zhang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haijian Zheng
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ling Wang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
9
|
He X, Yao Q, Fan D, You Y, Lian W, Zhou Z, Duan L. Combination of levofloxacin and cisplatin enhances anticancer efficacy via co-regulation of eight cancer-associated genes. Discov Oncol 2022; 13:76. [PMID: 35984577 PMCID: PMC9391551 DOI: 10.1007/s12672-022-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 04/17/2023] Open
Abstract
Chemosensitizer or combined chemotherapy can sensitize cancer cells to therapy and minimize drug resistance. We reveal that levofloxacin has broad-spectrum anticancer activity. Here we report that combination of levofloxacin and cisplatin further enhanced cytotoxicity in cancer cells by further promotion of apoptosis. Levofloxacin concentration-dependently promoted the inhibition of clone formation in cancer cells treated by cisplatin, and their combination further suppressed the tumor growth in mice. Levofloxacin and cisplatin co-regulated genes in directions supporting the enhancement of anticancer efficacy, of which, THBS1, TNFAIP3, LAPTM5, PI3 and IL24 were further upregulated, NCOA5, SRSF6 and SFPQ were further downregulated. Out of the 24 apoptotic pathways significantly enriched in the combination group, TNFAIP3, THBS1, SRSF6 and SFPQ overlapped in 14, 13, 3 and 1 pathway respectively. Jak-STAT/Cytokine-cytokine receptor interaction pathway network and extrinsic apoptotic signaling pathway were significantly enriched in levofloxacin group, cisplatin group and combination group. Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was significantly enriched in the combination group, and IL24 and THBS1 were the overlapped genes. In conclusion, enhancement of anticancer efficacy in combination group was associated with the further regulation of THBS1, TNFAIP3, LAPTM5, PI3, IL24 and NCOA5, SFPQ, SRSF6. Targeting of Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was correlated to the enhancement. With additional benefit to cancer patients for treatment or prophylaxis of an infectious syndrome, levofloxacin can benefit cancer chemotherapy no matter it is used independently or used with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China.
| | - Qian Yao
- Institute of Yunnan Tumor, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan Province, People's Republic of China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Wenjing Lian
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
10
|
MicroRNA-9-5p Facilitates Lung Adenocarcinoma Cell Malignant Progression via Targeting STARD13. Biochem Genet 2022; 60:1865-1880. [PMID: 35119587 DOI: 10.1007/s10528-022-10191-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
We aimed to elucidate binding of microRNA-9-5p and STARD13 in lung adenocarcinoma (LUAD) cells and discuss their impact on malignant progression of LUAD, so as to provide evidence for identifying new therapeutic targets for LUAD. Bioinformatics analysis was introduced for analysis of differentially expressed miRNAs in LUAD tissue, and potential downstream target gene was predicted with TargetScan and other databases. MicroRNA-9-5p and STARD13 mRNA levels at cellular level was analyzed with qRT-PCR assay. Lipofectamine 2000 was applied for cell transfection. Proliferation, migration and invasion of LUAD cells were assayed with CCK-8, wound healing and Transwell assays, respectively. Protein expression of STARD13 was assessed with western blot. Binding of microRNA-9-5p and STARD13 was identified with dual-luciferase assay. Compared with normal human bronchial cells, microRNA-9-5p level in LUAD cells was noticeably increased, and STARD13 level was noticeably decreased. MicroRNA-9-5p could significantly promote malignant progression of LUAD cells, while forced STARD13 level markedly repress malignant progression of LUAD cells. Dual-luciferase gene assay showed that microRNA-9-5p had a direct targeting relationship with STARD13, and it was also found that microRNA-9-5p enhanced malignant behaviors of LUAD cells through modulating STARD13. STARD13 was a target of microRNA-9-5p in LUAD. MicroRNA-9-5p fostered malignant behaviors of LUAD cells by targeting STARD13. Therefore, microRNA-9-5p may become a new target for LUAD, and microRNA-9-5p inhibition may be a new treatment method.
Collapse
|
11
|
Chen Z, Jin P, Chen Z, Ye F, Ren Z, Ji T, Li R, Yu L. The expression of circ_0090049 in hepatocellular carcinoma and the molecular regulation mechanism of other biological functions. Anticancer Drugs 2022; 33:48-60. [PMID: 34620742 DOI: 10.1097/cad.0000000000001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in liver cancer. Circular RNA_0090049 (circ_0090049) has been shown to be involved in the advance of HCC. However, the interaction between circ_0090049 and microRNA (miRNA) in HCC has not been studied. Quantitative real-time PCR was used to detect the expression of related genes. Through detection of cell proliferation, migration, invasion, and rate of tumor sphere formation, the capping experiment was carried out to verify the regulatory relationship between miRNA and circ_0090049 or circ_0090049 and ubiquitin-conjugating enzyme E2 T (UBE2T). The expression of related proteins was detected by Western blotting. The interaction of miRNA with circ_0090049 or UBE2T was notarized by Dual-luciferase reporter assay. Xenotransplantation experiments confirmed the function of circ_0090049 in vivo. Circ_0090049 and UBE2T were upregulated in liver cancer. Silencing circ_0090049 reduced the proliferation, migration, invasion, and tumor spheroid formation rate of Huh7 and HCCLM3 cells. MiR-605-5p and miR-548c-3p were identified as targets of circ_0090049, and UBE2T was the target of miR-605-5p and miR-548c-3p. Anti-miR-605-5p, anti-miR-548c-3p or UBE2T overexpression restored the inhibitory effect of circ_0090049 knockdown on HCC cells. Animal experiments confirmed the antitumor effect of silence circ_0090049. Circ_0090049 regulates the expression of UBE2T by regulating miR-605-5p or miR-548c-3p, thereby promoting the development of HCC cells.
Collapse
Affiliation(s)
| | | | - Zhen Chen
- General Surgery, Ruian People's Hospital, Ruian City, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
12
|
Xian J, Zeng Y, Chen S, Lu L, Liu L, Chen J, Rao B, Zhao Z, Liu J, Xie C, Zhu L, Zhang D, Qiu F, Lu J, Yang L. Discovery of a novel linc01125 isoform in serum exosomes as a promising biomarker for NSCLC diagnosis and survival assessment. Carcinogenesis 2021; 42:831-841. [PMID: 33928340 DOI: 10.1093/carcin/bgab034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
A non-invasive method to distinguish potential lung cancer patients would improve lung cancer prevention. We employed the RNA-sequencing analysis to profile serum exosomal long non-coding RNAs (lncRNAs) from non-small cell lung cancer (NSCLC) patients and pneumonia controls, and then determined the diagnostic and prognostic value of a promising lncRNA in four datasets. We identified 90 dysregulated lncRNAs for NSCLC and found the most significant lncRNA was a novel isoform of linc01125. Serum exosomal linc01125 could distinguish NSCLC cases from disease-free and tuberculosis controls, with the area under the curve values as 0.662 [95% confidence interval (CI) = 0.614-0.711] and 0.624 (95% CI = 0.522-0.725), respectively. High expression of exosomal linc01125 was also correlated with an unfavorable overall survival of NSCLC (hazard ratio = 1.48, 95% CI = 1.05-2.08). Clinic treatment decreased serum exosomal linc01125 in NSCLC patients (P = 0.036). Linc01125 functions to inhibit cancer growth and metastasis via acting as a competing endogenous RNA to up-regulate tumor necrosis factor alpha-induced protein 3 (TNFAIP3) expression by sponging miR-19b-3p. Notably, the oncogenic transformation of 16HBE led to decreased linc01125 in cells but increased linc01125 in cell-derived exosomes. The expression of linc01125 in total exosomes was highly correlated with that in tumor-associated exosomes in serum. Moreover, lung cancer cells were capable of releasing linc01125 into exosomes in vitro and in vivo. Our analyses suggest serum exosomal linc01125 as a promising biomarker for non-invasively diagnosing NSCLC and predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Jianfeng Xian
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Yuyuan Zeng
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Shizhen Chen
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Liming Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Li Liu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Boqi Rao
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Zhuxiang Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guanzhou, China
| | - Jun Liu
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guanzhou, China
| | - Chenli Xie
- Fifth People's Hospital of Dongguan, Dongguan, China
| | - Lingling Zhu
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guanzhou, China
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China.,The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Yuexiu District, Guangzhou, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| |
Collapse
|
13
|
Shi Y, Wang X, Wang J, Wang X, Zhou H, Zhang L. The dual roles of A20 in cancer. Cancer Lett 2021; 511:26-35. [PMID: 33933552 DOI: 10.1016/j.canlet.2021.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
A20 is a prototypical anti-inflammatory molecule that is linked to multiple human diseases, including cancers. The role of A20 as a tumor suppressor was first discovered in B cell lymphomas. Subsequent studies revealed the dual roles of A20 in solid cancers. This review focuses on the roles of A20 in different cancer types to demonstrate that the effects of A20 are cancer type-dependent. A20 plays antitumor roles in colorectal carcinomas and hepatocellular carcinomas, whereas A20 acts as an oncogene in breast cancers, gastric cancers and melanomas. Moreover, the roles of A20 in the setting of glioma therapy are context-dependent. The action mechanisms of A20 in different types of cancer are summarized. Additionally, the role of A20 in antitumor immunity is discussed. Furthermore, some open questions in this rapidly advancing field are proposed. Exploration of the actions and molecular mechanisms of A20 in cancer paves the way for the application of A20-targeting approaches in future cancer therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Luo XJ, Zheng M, Cao MX, Zhang WL, Huang MC, Dai L, Tang YL, Liang XH. Distinguishable Prognostic miRNA Signatures of Head and Neck Squamous Cell Cancer With or Without HPV Infection. Front Oncol 2021; 10:614487. [PMID: 33643915 PMCID: PMC7902765 DOI: 10.3389/fonc.2020.614487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
Since their discovery in the 1990’s, microRNAs (miRNA) have opened up new vistas in the field of cancer biology and are found to have fundamental roles in tumorigenesis and progression. As head and neck squamous cell carcinoma (HNSCC) with positive human papillomavirus (HPV+) is significantly distinct from its HPV negative (HPV−) counterpart in terms of both molecular mechanisms and clinical prognosis, the current study aimed to separately develop miRNA signatures for HPV+ and HPV− HNSCC as well as to explore the potential functions. Both signatures were reliable for the prediction of prognosis in their respective groups. Then Enrichment analysis was performed to predict the potential biological functions of the signatures. Importantly, combining previous studies and our results, we speculated that HPV+ HNSCC patients with low signature score had better immunity against the tumors and enhanced the sensitivity of therapies leading to improved prognosis, while HPV− HNSCC patients with high signature score acquired resistance to therapeutic approaches as well as dysregulation of cell metabolism leading to poor prognosis. Hence, we believe that the identified signatures respectively for HPV+ and HPV− HNSCC, are of great significance in accessing patient outcomes as well as uncovering new biomarkers and therapeutic targets, which are worth further investigation through molecular biology experiments.
Collapse
Affiliation(s)
- Xiao-Jie Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Li Y, Huang H, Ye X, Huang Z, Chen X, Wu F, Lin T. miR-202-3p negatively regulates MMP-1 to inhibit the proliferation, migration and invasion of lung adenocarcinoma cells. Cell Cycle 2021; 20:406-416. [PMID: 33487115 PMCID: PMC7894427 DOI: 10.1080/15384101.2021.1876390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the common cancers. Studies show that MMP-1 is involved in tumor progression, yet relevant regulatory mechanism in LUAD remains to be further elucidated. Here, we demonstrated from bioinformatics analysis for GEO data that MMP-1 was differentially up-regulated in LUAD. miR-202-3p, identified as the upstream regulator of MMP-1 by both bioinformatics and dual-luciferase assays, was differentially down-regulated in LUAD and presented a negative correlation with MMP-1. Following cell biological experiments proved that knocking down the expression of MMP-1 inhibited the proliferation, migration and invasion of LUAD cells, while overexpressed miR-202-3p posed a similar suppressive effect on cancer progression. Additionally, rescue assay further identified that overexpression of MMP-1 attenuated the suppressive effect of up-regulated miR-202-3p on malignant progression of LUAD cells. In all, this research suggests a mechanism by which MMP-1 under the regulation of miR-202-3p modulates the proliferation, migration and invasion of LUAD cells, which may contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yong Li
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Huiqin Huang
- Fujian Provincial Key Laboratory of Medical Testing, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Xiangli Ye
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhenghui Huang
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiangqi Chen
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Feng Wu
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Tingyan Lin
- Department of Respiration Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- CONTACT Tingyan Lin
| |
Collapse
|
16
|
Platelet isoform of phosphofructokinase promotes aerobic glycolysis and the progression of non‑small cell lung cancer. Mol Med Rep 2020; 23:74. [PMID: 33236133 PMCID: PMC7716410 DOI: 10.3892/mmr.2020.11712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The platelet isoform of phosphofructokinase (PFKP) is a rate-limiting enzyme involved in glycolysis that serves an important role in various types of cancer. The aim of the present study was to explore the specific regulatory relationship between PFKP and non-small cell lung cancer (NSCLC) progression. PFKP expression in NSCLC tissues and corresponding adjacent tissues was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical analysis. PFKP expression in human bronchial epithelial cells (16HBE) and NSCLC cells (H1299, H23 and A549) was also detected using RT-qPCR. Cell proliferation was detected by Cell Counting Kit-8 and colony formation assays. Transwell invasion and wound healing assays, and flow cytometry were used to detect cell invasion, migration and apoptosis, respectively. The expression levels of glycolysis-associated enzymes (hexokinase-2, lactate dehydrogenase A and glucose transporter-1), epithelial-mesenchymal transition-related proteins (N-cadherin, vimentin and E-cadherin) and apoptosis-related proteins (caspase-3 and B-cell lymphoma-2) were detected by western blotting. Glucose uptake, lactate production and the adenosine trisphosphate/adenosine diphosphate ratio were measured using the corresponding kits. The results of the present study demonstrated that PFKP expression was upregulated in NSCLC tissues and cells, and PFKP expression was related to lymph node metastasis and histological grade. In addition, overexpression of PFKP inhibited cell apoptosis, and promoted proliferation, migration, invasion and glycolysis of H1299 cells, whereas knockdown of PFKP had the opposite effects. In conclusion, PFKP inhibited cell apoptosis, and promoted proliferation, migration, invasion and glycolysis of NSCLC cells; these findings may lay the foundation for novel treatments of NSCLC.
Collapse
|
17
|
Yi X, Liu C. Downregulation of microRNA-605 indicates poor prognosis and promotes the progression of osteosarcoma. Oncol Lett 2020; 20:370. [PMID: 33154768 PMCID: PMC7608056 DOI: 10.3892/ol.2020.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a type of primary bone tumor, which is one of the leading causes of cancer-related death. MicroRNA (miR)-605 has been demonstrated to act as a prognostic biomarker and therapeutic target in various cancers, such as breast cancer and non-small cell lung cancer, but its function in OS remains unclear. The aim of the present study was to investigate the prognostic value of miR-605 in patients with OS by evaluating its expression levels and to explore the biological function of miR-605 in OS progression. For this purpose, tumor tissues and adjacent normal tissues were collected from OS patients, and the expression of miR-605 in the collected tissues and OS MG63, U2OS, HOS, and SAOS-2 cell lines was detected by quantitative real-time PCR. The prognostic value of miR-605 was evaluated by Kaplan-Meier survival curves and Cox regression analysis. The effects of miR-605 on OS cell proliferation, migration and invasion were analyzed by the CCK-8 and transwell assays, respectively. The results of the present study revealed that miR-605 was significantly downregulated in OS tissues compared with adjacent normal tissues, which was associated with the clinical stage and distant metastasis of patients. Additionally, the downregulation of miR-605 predicted the poor prognosis of patients with OS and served as an independent prognostic indicator. The downregulation of miR-605 enhanced cell proliferation, migration, and invasion of OS cells, which suggested that miR-605 may be involved in the progression of OS. The findings of the present study provide a new therapeutic target for the treatment of patients with OS.
Collapse
Affiliation(s)
- Xiuling Yi
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunlei Liu
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
18
|
Wang Z, Yuan S, Cao X, Huang C, Zhang A, Lu C, Liu L. MiR‐335‐5p inhibits the progression of head and neck squamous cell carcinoma by targeting MAP3K2. FEBS Open Bio 2020. [PMCID: PMC7609806 DOI: 10.1002/2211-5463.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has indicated that aberrantly expressed microRNAs (miRNAs) play key roles in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). Previous studies have shown that miR‐335‐5p can serve as a tumor suppressor or an oncogene in cancer. However, the clinical importance and biological effects of miR‐335‐5p in HNSCC have not been determined. Here, we investigated the expression pattern, functional role, and mechanisms of miR‐335‐5p in HNSCC. We showed a decreased expression of miR‐335‐5p in HNSCC samples from the TCGA and GEO databases. Consistently, we detected a downregulation of miR‐335‐5p in HNSCC cell lines and patient tissues. The expression of miR‐335‐5p was inversely correlated with advanced clinical TNM stage and lymph node metastasis in HNSCC patients. miR‐335‐5p overexpression inhibited HNSCC cell proliferation and induced apoptosis, while miR‐335‐5p inhibition had the opposite effects. miR‐335‐5p overexpression suppressed tumor growth in mice. Bioinformatic analyses and functional assays identified MAP3K2 as a target of miR‐335‐5p, and we showed that miR‐335‐5p downregulated mitogen‐activated protein kinase kinase kinase 2 (MAP3K2) expression in HNSCC cells. We found an inverse association between MAP3K2 and miR‐335‐5p expression in 38 pairs of HNSCC tissues. Furthermore, the effect of miR‐335‐5p overexpression on growth and metastasis as well as cell apoptosis in HNSCC cells could be partially rescued by MAP3K2 expression. Collectively, our data show that miR‐335‐5p inhibits the development of HNSCC by regulating MAP3K2 expression. Thus, these findings offer novel insights into a potential therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Shuoqing Yuan
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Xiaoming Cao
- Department of Otolaryngology Dezhou People‘s Hospital Dezhou China
| | - Chaoping Huang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Aobo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Cheng Lu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| |
Collapse
|
19
|
Pan R, Zhou H. Exosomal Transfer of lncRNA H19 Promotes Erlotinib Resistance in Non-Small Cell Lung Cancer via miR-615-3p/ATG7 Axis. Cancer Manag Res 2020; 12:4283-4297. [PMID: 32606925 PMCID: PMC7294568 DOI: 10.2147/cmar.s241095] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Drug resistance restrains the effect of drug therapy in non-small cell lung cancer (NSCLC). However, the mechanism of the acquisition of drug resistance remains largely unknown. This study aims to investigate the effect of exosomal lncRNA H19 on erlotinib resistance in NSCLC and the underlying mechanism. Methods HCC827 and A549 cells were continuously grafted into erlotinib-containing culture medium to establish erlotinib-resistant cell lines. The expression of H19 and miR-615-3p was detected by qRT-PCR. The protein levels of MMP2, MMP9, CD9, CD63 and ATG7 were measured by Western blot. Cell viability and proliferation were determined by Cell Counting Kit-8 (CCK-8) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, respectively. Migration and invasion were assessed by transwell assay. Xenograft tumor models were used to investigate the effect of H19 on erlotinib resistance in vivo. Online software and dual-luciferase reporter assay were used to predicate the downstream targets and confirm the targeted relationships. Results H19 was upregulated in erlotinib-resistant cells, and knockdown of H19 inhibited cell proliferation, migration and invasion in erlotinib-resistant cells. Extracellular H19 can be packaged into exosomes. Exosomes containing H19 induced erlotinib resistance of sensitive cells, while knockdown of H19 abolished this effect. miR-615-3p was a target of H19 and can bind to ATG7. Exosomal H19 affected erlotinib resistance of erlotinib-resistant NSCLC cells via targeting miR-615-3p to regulate ATG7 expression. In addition, the serum exosomal H19 was upregulated in patients with erlotinib resistance. Furthermore, downregulated H19 decreased the resistance of tumor cells to erlotinib in vivo. Conclusion Our study demonstrated that exosomal H19 facilitated erlotinib resistance in NSCLC via miR-615-3p/ATG7 axis, which might provide a potential target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Rongtao Pan
- Department of Oncology, Taishan Hospital of Shandong Province, Taian 271000, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| |
Collapse
|