1
|
Homocianu M, Perju E. Photophysical Properties and Metal Ion Sensing of a Pyrene-Based Liquid Crystalline Dimer. Int J Mol Sci 2025; 26:2566. [PMID: 40141209 PMCID: PMC11941919 DOI: 10.3390/ijms26062566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the liquid crystalline behavior, photophysical properties, and metal ion sensing capabilities of a pyrene-based imine dimer (DPyH9). The compound exhibits monotropic nematic mesophase behavior, with a glass transition at 43 °C, as confirmed by polarized light microscopy (PLM) and differential scanning calorimetry (DSC). Its photophysical properties, including UV-vis absorption, solvatochromic fluorescence, and acidochromism, observed through spectral shifts upon HCl addition, were systematically analyzed. Notably, DPyH9 displayed selective metal ion sensing capabilities towards Sn2+ and Cu2+ with binding constants of 4.51 × 106 M-1 and 4.03 × 107 M-1 and detection limits of 1.61 × 10-5 M (Sn2+) and 4.73 × 10-5 M (Cu2+). Fluorescence titrations revealed distinct responses: Sn2+ induced an initial quenching and an enhancement at higher concentrations, while Cu2+ caused significant fluorescence quenching. These results therefore highlight DPyH9 as a potential candidate for sensing applications and optoelectronic devices.
Collapse
Affiliation(s)
- Mihaela Homocianu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | | |
Collapse
|
2
|
Chandrasekar V, Lu JR, Dierking I. Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals. Chemphyschem 2025; 26:e202400858. [PMID: 39489702 PMCID: PMC11793259 DOI: 10.1002/cphc.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.
Collapse
Affiliation(s)
- Varun Chandrasekar
- Department of Physics and AstronomyUniversity of ManchesterOxford RoadManchesterM139PLUK
| | - Jian Ren Lu
- Department of Physics and AstronomyUniversity of ManchesterOxford RoadManchesterM139PLUK
| | - Ingo Dierking
- Department of Physics and AstronomyUniversity of ManchesterOxford RoadManchesterM139PLUK
| |
Collapse
|
3
|
Maria de Souza L, Sofi J, Pereira E. Nonsymmetrical thermal conductivity along the director field in ferroelectric nematic liquid crystals. Phys Rev E 2024; 110:034703. [PMID: 39425320 DOI: 10.1103/physreve.110.034703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/06/2024] [Indexed: 10/21/2024]
Abstract
The synthesis of ferroelectric nematic liquid crystals (FNLCs) concludes the long wait for their existence and potential usage in multiple liquid crystal based applications. In FNLCs, electric polarization in the nematic phase significantly decreases the switching time of in-on display pixels. In this article, we report the occurrence of translation symmetry breaking for heat propagation along the director field n[over ̂] in the ferroelectric nematic phase. Due to the C_{∞V} symmetry of such a phase and close similarity to the bent-core polar liquid crystal phase, a rank-3 tensor describes its scalar order parameter and algebraic deductions. The finite element simulations show the occurrence of the nonsymmetrical thermal conductivity along n[over ̂]. The preferential heat transport in FNLCs can allow them to work as an all-thermal monophase non-nanostructured single-material thermal rectifier. We expect that this study will contribute towards the FNLCs application as functional layers and inks.
Collapse
|
4
|
Neu YC, Lin YS, Weng YH, Chen WC, Liu CL, Lin BH, Lin YC, Chen WC. Reversible Molecular Conformation Transitions of Smectic Liquid Crystals for Light/Bias-Gated Transistor Memory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7500-7511. [PMID: 38300744 PMCID: PMC10875644 DOI: 10.1021/acsami.3c16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
In recent years, organic photonic field-effect transistors have made remarkable progress with the rapid development of conjugated polycrystalline materials. Liquid crystals, with their smooth surface, defined layer thickness, and crystalline structures, are commonly used for these advantages. In this work, a series of smectic liquid crystalline molecules, 2,9-didecyl-dinaphtho-thienothiophene (C10-DNTT), 2,7-didecyl-benzothieno-benzothiopene (C10-BTBT), 3,9-didecyl-dinaphtho-thiophene (C10-DNT), and didecyl-sexithiophene (C10-6T), have been used in photonic transistor memory, functioning as both hole-transport channels and electron traps to investigate systematically the reasons and mechanisms behind the memory behavior of smectic liquid crystals. After thermal annealing, C10-BTBT and C10-6T/C10-DNTT are homeotropically aligned from the smectic A and smectic X phases, respectively. The 3D-ordered structure of these smectic-aligned crystals contributed to efficient photowriting and electrical erasing processes. Among them, the device performance of C10-BTBT was particularly significant, with a memory window of 21 V. The memory ratio could reach 1.5 × 106 and maintain a memory ratio of over 3 orders after 10,000 s, contributing to its smectic A structure. Through the research, we confirmed the memory and light/bias-gated behaviors of these smectic liquid crystalline molecules, attributing them to reversible molecular conformation transitions and the inherent structural inhomogeneity inside the polycrystalline channel layer.
Collapse
Affiliation(s)
- Yi-Chieh Neu
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yi-Sa Lin
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yi-Hsun Weng
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Wei-Cheng Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yan-Cheng Lin
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Wen-Chang Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Zhang KL, Yu WH, Zhao KQ, Hu P, Wang BQ, Donnio B. Mesomorphism Modulation of Perfluorinated Janus Triphenylenes by Inhomogeneous Chain Substitution Patterns. Chem Asian J 2024:e202301080. [PMID: 38214422 DOI: 10.1002/asia.202301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Two isomeric series of compounds with "inverted" chains' substitution patterns, 7,10-dialkoxy-1,2,3,4-tetrafluoro-6,11-dimethoxytriphenylene and 6,11-dialkoxy-1,2,3,4-tetrafluoro-7,10-dimethoxytriphenylene, labelled respectively p-TPFn and m-TPFn, and two non-fluorinated homologous isomers, 3,6-dibutoxy-2,7-dimethoxytriphenylene and 2,7-dibutoxy-3,6-dimethoxytriphenylene, p-TP4 and m-TP4, respectively, were synthesized in three steps and obtained in good yields by the efficient transition-metal-free, fluoroarene nucleophilic substitution via the reaction of appropriate 2,2'-dilithium biphenylenes with either perfluorobenzene, C6 F6 , to yield p-TPFn and m-TPFn, or o-difluorobenzene, C6 H4 F2 , for p-TP4 and m-TP4, respectively. The single-crystal structures of p-TPF4, m-TPF4 and p-TP4, unequivocally confirmed that the cyclization reactions occurred at the expected positions, and that the fluorinated molecules stack up into columns with short separation, a propitious situation for the emergence of columnar mesophases. The mesomorphous properties were found to be greatly affected by both chains' length and positional isomerism: a Colhex phase is found for p-TPF4 and m-TPF4, but mesomorphism vanishes in p-TPF6, and changes for the isomeric homologs m-TPFn, with the induction for n≥6 of a lamello-columnar phase, LamColrec . As expected, both non-fluorinated compounds are deprived of mesomorphism. These compounds emit blue-violet colour in solution, independently of the chains' substitution pattern, and the absolute fluorescence quantum yields can reach up to 46 %. In thin films, fluorescence is slightly redshifted.
Collapse
Affiliation(s)
- Kai-Li Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034, cedex 2 Strasbourg, France
| |
Collapse
|
6
|
Cruickshank E, Rybak P, Majewska MM, Ramsay S, Wang C, Zhu C, Walker R, Storey JMD, Imrie CT, Gorecka E, Pociecha D. To Be or Not To Be Polar: The Ferroelectric and Antiferroelectric Nematic Phases. ACS OMEGA 2023; 8:36562-36568. [PMID: 37810647 PMCID: PMC10552116 DOI: 10.1021/acsomega.3c05884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.
Collapse
Affiliation(s)
- Ewan Cruickshank
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Paulina Rybak
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Magdalena M. Majewska
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Shona Ramsay
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Cheng Wang
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Rebecca Walker
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - John M. D. Storey
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Corrie T. Imrie
- Department
of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, U.K.
| | - Ewa Gorecka
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Hadjichristov GB, Marinov YG. Photoluminescent Thin Films of Room-Temperature Glassy Tris(keto-hydrozone) Discotic Liquid Crystals and Their Nanocomposites with Single-Walled Carbon Nanotubes for Optoelectronics. ACS OMEGA 2023; 8:27102-27116. [PMID: 37546593 PMCID: PMC10398711 DOI: 10.1021/acsomega.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
This study addresses the photoresponse of liquid-crystalline tris(keto-hydrozone) discotic (TKHD)-a star-shaped molecular structure with three branches. Object of our research interest was also TKHD filled with single-walled carbon nanotubes (SWCNTs) at a concentration of 1 wt %. At room temperature, the discotic liquid crystals in thin films (thickness 3 μm) of both TKHD and nanocomposite SWCNT/TKHD were in a glassy state. Such glassy thin films exhibited photoluminescence ranging from the deep-red to the near-infrared spectral region, being attractive for organic optoelectronics. The addition of SWCNTs to TKHD was found to stabilize the photoluminescence of TKHD, which is of significance for optoelectronic device applications. The photothermoelectrical response of highly conductive SWCNT/TKHD nanocomposite films was characterized by electrical impedance spectroscopy in the frequency range from 1 Hz to 1 MHz of the applied electric field. It was elucidated that the reversible photothermoelectrical effect in SWCNT/TKHD films occurs through SWCNTs and their network.
Collapse
Affiliation(s)
- Georgi B. Hadjichristov
- Laboratory
of Optics & Spectroscopy, Georgi Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia BG-1784, Bulgaria
| | - Yordan G. Marinov
- Laboratory
of Liquid Crystals & Biomolecular Layers, Georgi Nadjakov Institute
of Solid State Physics, Bulgarian Academy
of Sciences, 72 Tzarigradsko
Chaussee Blvd., Sofia BG-1784, Bulgaria
| |
Collapse
|
8
|
Carbocation Catalysis in the Synthesis of Heterocyclic Compounds. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|