1
|
Tylutka A, Morawin B, Torz N, Osmólska J, Łuszczki K, Jarmużek P, Zembron-Lacny A. Association of adipose tissue inflammation and physical fitness in older adults. Immun Ageing 2024; 21:64. [PMID: 39342343 PMCID: PMC11438273 DOI: 10.1186/s12979-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
An active lifestyle is of key importance for reduction of obesity and inflammation, as well as circulating levels of adipokines. Therefore, the aim of our study was to assess the relationship of physical fitness with chronic inflammatory status, and to evaluate biomarkers useful in the analysis of adipose tissue dysfunction. Sixty-three older adults (69.6 ± 5.1 years) were allocated to a high n = 31 (women n = 23 and men n = 8 male) or low physical fitness n = 32 (women n = 29 and men n = 3) group based on gait speed values (1.4-1.8 m/s or ≤ 1.3 m/s). The gait speed correlated with hand grip strength (rs = 0.493, p = 0.0001) and with leptin level (R = -0.372, p = 0.003), which shows the benefits of physical activity on muscle strength and circulating adipokines. In low physical fitness group, 58.1% individuals had adiponectin to leptin ratio (Adpn/Lep) < 0.5 revealing dysfunction of adipose tissue and high cardiometabolic risk; 20% of the group were obese with BMI ≥ 30 kg/m2. In high physical fitness group, 25.8% of individuals had Adpn/Lep ≥ 1.0 i.e., within the reference range. Markers of systemic inflammation were significantly related to physical fitness: CRP/gait speed (rs = -0.377) and HMGB-1/gait speed (rs = -0.264). The results of the ROC analysis for Adpn (AUC = 0.526), Lep (AUC = 0.745) and HMGB-1 (AUC = 0.689) indicated their diagnostic potential for clinical prognosis in older patients. The optimal threshold values corresponded to 1.2 μg/mL for Adpn (sensitivity 74.2%, specificity 41.9%, OR = 1.4, 95%Cl 0.488-3.902), 6.7 ng/mL for Lep (sensitivity 56.2%, specificity 93.5%, OR = 14.8, 95%Cl 3.574-112.229), 2.63 mg/L for CRP (sensitivity 51.6%, specificity 84.3%, OR = 4.4, 95% Cl 1.401- 16.063) and 34.2 ng/mL for HMGB-1 (sensitivity 62.0%, specificity 86.6%, OR = 12.0, 95%Cl 3.254-61.614). The highest sensitivity and specificity were observed for Leptin and HMGB-1. The study revealed changes in inflammatory status in older adults at various levels of physical fitness and demonstrated diagnostic usefulness of adipokines in the assessment of adipose tissue inflammation.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland
| | - Natalia Torz
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland
| | - Joanna Osmólska
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland
| | - Kacper Łuszczki
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Collegium Medicum University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str, Zielona Gora, 65-417, Poland.
| |
Collapse
|
2
|
Zheng X, Wang Q, Xu X, Huang X, Chen J, Huo X. Associations of insulin sensitivity and immune inflammatory responses with child blood lead (Pb) and PM 2.5 exposure at an e-waste recycling area during the COVID-19 lockdown. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:296. [PMID: 38980420 DOI: 10.1007/s10653-024-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaofan Huang
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Jiaxue Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
3
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
4
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
Wang JX, Zhang Y, Wang SF, Li J, Li PC. Efficacy of Xiyanping in the Treatment of Elderly Patients with Chronic Obstructive Pulmonary Disease and Its Effect on the Expression of GDF-15 and HIF-1 α in Serum. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6193110. [PMID: 36277008 PMCID: PMC9581673 DOI: 10.1155/2022/6193110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/24/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
Background COPD is a chronic respiratory disease with a long course and recurrent characteristics. According to relevant statistics, the global incidence of COPD is more than 30%, which seriously affects the life of patients and endangers their health. Objective To observe the curative effect of Xiyanping in elderly patients with COPD and its influence on the expressions of growth differentiation GDF-15 and HIF-1α in serum. Methods From August 2019 to December 2021, 86 elderly patients with acute exacerbation of COPD were admitted to our hospital. As the research objects, they were divided into the control group (n = 43) and the observation group (n = 43) randomly. The control group received the conventional treatment, while the observation group got Xiyanping on the basis of the control group. The differences in the duration of antibiotic use, expectoration, hospital stays, adverse reactions and serum-related factors, blood routine, pulmonary function, airway hyperreactivity index, COPD assessment test (CAT) score, and Borg score were made a comparison between them. Results On the 3rd and 7th days after being treated, the sputum excretion in them was higher than before, but on the 3rd day of treatment, the sputum excretion in the observation group was higher than that in the control group, while on the 7th day of treatment, the sputum excretion was lower than that in the control group with statistically significant differences (P < 0.05). Before treatment, the serum-related factors and blood routine indexes between them were similar (P > 0.05). After treatment, GDF-15, HIF-1α, CXCL12, TNF-α, IL-8, TGF-β, WBC, and NEU in them were significantly lower than before, and the values in the observation group were significantly lower than those in the control group with statistically significant differences (P < 0.05). There was no difference in the related indexes of pulmonary function and airway hyperreactivity between them before treatment. After being treated, FEV1, FVC, and FEV1/FVC in them were significantly higher than those before treatment. The airway resistance and lung compliance of the two groups at exhalation and inspiration were significantly lower than before, and the values in the observation group were significantly lower than those in the control group (P < 0.05). There was no difference in CAT and Borg scores between them before treatment. After treatment, the CAT score and Borg score of these patients were significantly lower than those before treatment, and the value of the observation group was significantly lower than that of the control group (P < 0.05). The duration of antibiotic use and length of stay in the observation group were significantly shorter than those of the control group, while the incidence of adverse reactions was not statistically significantly different compared with the control group (P > 0.05). Conclusion Xiyanping can improve pulmonary function of elderly patients with acute exacerbation of COPD, reduce the response of airway hyperreactivity, and promote the excretion of sputum.
Collapse
Affiliation(s)
- Jun Xia Wang
- Pharmacy Department of Shijiazhuang Eighth Hospital, China
| | - Ying Zhang
- Department of Anesthesiology, Shijiazhuang Eighth Hospital, China
| | - Shu Fang Wang
- Department of Internal Medicine of Tang County Hospital of Traditional Chinese Medicine, China
| | - Juan Li
- Department of Internal Medicine, Langfang Hospital of Traditional Chinese Medicine, China
| | - Peng Cheng Li
- Department of Internal Medicine of Tang County Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
6
|
Tao Z, Helms MN, Leach BCB, Wu X. Molecular insights into the multifaceted functions and therapeutic targeting of high mobility group box 1 in metabolic diseases. J Cell Mol Med 2022; 26:3809-3815. [PMID: 35706377 PMCID: PMC9279590 DOI: 10.1111/jcmm.17448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/27/2022] Open
Abstract
HMGB1 is a ubiquitously expressed protein localized in nucleus, cytoplasm, as well as secreted into extracellular space. Nuclear HMGB1 binds to DNAs and RNAs, regulating genomic stability and transcription. Cytoplasmic HMGB1 regulates autophagy through binding to core autophagy regulators. Secreted extracellular HMGB1 functions as a ligand to various receptors (RAGE and TLRs, etc.), regulating multiple signalling pathways, such as MAPK, PI3K and NF-κB signallings. Trafficking and localization of HMGB1 across cellular compartments could be regulated by its posttranslational modifications, which fine-tune its functions in metabolic diseases, inflammation and cancers. The current review examines the up-to-date findings pertaining to the biological functions of HMGB1, with focus on its posttranslational modifications and roles in downstream signalling pathways involved in metabolic diseases. This review also discusses the feasibility of targeting HMGB1 as a potential pharmacological intervention for metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin C B Leach
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
8
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
9
|
Aldibbiat AM, Al-Sharefi A. Do Benefits Outweigh Risks for Corticosteroid Therapy in Acute Exacerbation of Chronic Obstructive Pulmonary Disease in People with Diabetes Mellitus? Int J Chron Obstruct Pulmon Dis 2020; 15:567-574. [PMID: 32214806 PMCID: PMC7084124 DOI: 10.2147/copd.s236305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) are chronic health conditions with significant impacts on quality and extent of life. People with COPD and DM appear to have worse outcomes in each of the comorbid conditions. Treatment with corticosteroids in acute exacerbation of COPD (AECOPD) has been shown to reduce treatment failure and exacerbation relapse, and to shorten length of hospital stay, but not to affect the inexorable gradual worsening of lung function. Treatment with corticosteroids can lead to a wide spectrum of side effects and complications, including worsening hyperglycemia and deterioration of diabetes control in those with pre-existing DM. The relationship between COPD and DM is rather complex and accumulating evidence indicates a distinct phenotype of the comorbid state. Several randomized controlled trials on corticosteroid treatment in AECOPD excluded people with DM or did not report on outcomes in this subgroup. As such, the perceived benefits of corticosteroids in AECOPD in people with DM have not been validated. In people with COPD and DM, the detrimental side effects of corticosteroids are guaranteed, while the benefits are not confirmed and only presumed based on extrapolation from the general COPD population. Therefore, the potential for harm when prescribing corticosteroids for AECOPD in people with DM cannot be excluded.
Collapse
Affiliation(s)
- Ali M Aldibbiat
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed Al-Sharefi
- Metabolic and Diabetes Unit, Sunderland Royal Hospital, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| |
Collapse
|
10
|
Huang J, Zeng T, Tian Y, Wu Y, Yu J, Pei Z, Tan L. Clinical significance of high-mobility group box-1 (HMGB1) in subjects with type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD). J Clin Lab Anal 2019; 33:e22910. [PMID: 31129918 PMCID: PMC6642301 DOI: 10.1002/jcla.22910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background Simple method to predict type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD) is in great need clinically. This study aims to assess the clinical significance of high‐mobility group box‐1 (HMGB1) in predicting T2DM combined with COPD in Chinese patients with T2DM or COPD. Methods Serum concentrations of glycated hemoglobin (HbA1C), fasting plasma glucose (FPG), fasting insulin (FINS), total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐c), high‐density lipoprotein cholesterol (HDL‐c), C‐reactive protein (CRP), fibrinogen (FIB), HMGB1, white blood cell count (WBC), neutrophil% (NEU%), and lung function text such as forced expiratory volume 1/forced vital capacity (FEV1/FVC) and forced expiratory volume 1% predicted value (FEV1%pred) were measured in 126 T2DM patients, 118 COPD patients, 112 T2DM combined with COPD patients, and 120 healthy controls. Logistic regression was used to estimate the risk factors for T2DM combined with COPD. Results High‐mobility group box‐1 elevated in patients with T2DM combined with COPD, significantly higher than other subjects (P < 0.05), and differences in HMGB1 also existed between patients with T2DM or COPD and healthy individuals (P < 0.01). HMGB1 was positively correlated with HOMA‐IR, FBG, and HbA1c (P < 0.01) and negatively correlated with FEV1/FVC and FEV1%pred (P < 0.01). Logistic regression showed that HMGB1 was identified to be independent risk factor for T2DM combined with COPD. Conclusion High‐mobility group box‐1 was independent risk factor for T2DM combined with COPD and can be served to predict the occurrence of T2DM combined with COPD.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Tingting Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Yongjian Tian
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Yang Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Jianlin Yu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Zihuan Pei
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Liming Tan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| |
Collapse
|