1
|
Wu X, Zhou X, Wang S, Mao G. DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus. Virol J 2023; 20:250. [PMID: 37915066 PMCID: PMC10621139 DOI: 10.1186/s12985-023-02203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).
Collapse
Affiliation(s)
- Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Genxiang Mao
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
2
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
3
|
Del Valle L, Khalili K. Induction of Brain Tumors by the Archetype Strain of Human Neurotropic JCPyV in a Transgenic Mouse Model. Viruses 2021; 13:v13020162. [PMID: 33499370 PMCID: PMC7911272 DOI: 10.3390/v13020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
JC Virus (JCPyV), a member of the Polyomaviridiæ family, is a human neurotropic virus with world-wide distribution. JCPyV is the established opportunistic infectious agent of progressive multifocal leukoencephalopathy, a fatal demyelinating disease, which results from the cytolytic infection of oligodendrocytes. Mutations in the regulatory region of JCPyV determine the different viral strains. Mad-1 the strain associated with PML contains two 98 base pair repeats, whereas the archetype strain (CY), which is the transmissible form of JCPyV, contains only one 98 tandem with two insertions of 62 and 23 base pairs respectively. The oncogenicity of JCPyV has been suspected since direct inoculation into the brain of rodents and primates resulted in the development of brain tumors and has been attributed to the viral protein, T-Antigen. To further understand the oncogenicity of JCPyV, a transgenic mouse colony containing the early region of the archetype strain (CY), under the regulation of its own promoter was generated. These transgenic animals developed tumors of neural crest origin, including: primitive neuroectodermal tumors, medulloblastomas, adrenal neuroblastomas, pituitary tumors, malignant peripheral nerve sheath tumors, and glioblastomas. Neoplastic cells from all different phenotypes express T-Antigen. The close parallels between the tumors developed by these transgenic animals and human CNS tumors make this animal model an excellent tool for the study of viral oncogenesis.
Collapse
Affiliation(s)
- Luis Del Valle
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Departments of Medicine and Pathology, Louisiana State University Health, New Orleans, LA 70112, USA
- Correspondence: (L.D.V.); (K.K.)
| | - Kamel Khalili
- Department of Neurosciences and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (L.D.V.); (K.K.)
| |
Collapse
|
4
|
Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176236. [PMID: 32872288 PMCID: PMC7503523 DOI: 10.3390/ijms21176236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Collapse
|
5
|
Tahseen D, Rady PL, Tyring SK. Human polyomavirus modulation of the host DNA damage response. Virus Genes 2020; 56:128-135. [PMID: 31997082 DOI: 10.1007/s11262-020-01736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
The human DNA damage response (DDR) is a complex signaling network constituting many factors responsible for the preservation of genomic integrity. Human polyomaviruses (HPyVs) are able to harness the DDR machinery during their infectious cycle by expressing an array of tumor (T) antigens. These molecular interactions between human polyomavirus T antigens and the DDR create conditions that promote viral replication at the expense of host genomic stability to cause disease as well as carcinogenesis in the cases of the Merkel cell polyomavirus and BK polyomavirus. This review focuses on the six HPyVs with disease association, emphasizing strain-dependent differences in their selective manipulation of the DDR. Appreciation of the HPyV-DDR interface at a molecular scale is conducive to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Danyal Tahseen
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA
| | - Peter L Rady
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA
| | - Stephen K Tyring
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Del Valle L, Piña-Oviedo S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front Oncol 2019; 9:711. [PMID: 31440465 PMCID: PMC6694743 DOI: 10.3389/fonc.2019.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human neurotropic virus JCPyV, a member of the Polyomaviridiae family, is the opportunistic infectious agent of Progressive Multifocal Leukoencephalopathy (PML), a fatal disease seen in severe immunosuppressive conditions and, during the last decade, in patients undergoing immunotherapy. JCPyV is a ubiquitous pathogen with up to 85% of the adult population word-wide exhibiting antibodies against it. Early experiments demonstrated that direct inoculation of JCPyV into the brain of different species resulted in the development of brain tumors and other neuroectodermal-derived neoplasias. Later, several reports showed the detection of viral sequences in medulloblastomas and glial tumors, as well as expression of the viral protein T-Antigen. Few oncogenic viruses, however, have caused so much controversy regarding their role in the pathogenesis of brain tumors, but the discovery of new Polyomaviruses that cause Merkel cell carcinomas in humans and brain tumors in racoons, in addition to the role of JCPyV in colon cancer and multiple mechanistic studies have shed much needed light on the role of JCPyV in cancer. The pathways affected by the viral protein T-Antigen include cell cycle regulators, like p53 and pRb, and transcription factors that activate pro-proliferative genes, like c-Myc. In addition, infection with JCPyV causes chromosomal damage and T-Antigen inhibits homologous recombination, and activates anti-apoptotic proteins, such as Survivin. Here we review the different aspects of the biology and physiopathology of JCPyV.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Delbue S, Comar M, Ferrante P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect Agent Cancer 2017; 12:10. [PMID: 28174598 PMCID: PMC5292005 DOI: 10.1186/s13027-017-0122-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Almost one fifth of human cancers worldwide are associated with infectious agents, either bacteria or viruses, and this makes the possible association between infections and tumors a relevant research issue. We focused our attention on the human Polyomavirus JC (JCPyV), that is a small, naked DNA virus, belonging to the Polyomaviridae family. It is the recognized etiological agent of the Progressive Multifocal Leukoencephalopathy (PML), a fatal demyelinating disease, occurring in immunosuppressed individuals. JCPyV is able to induce cell transformation in vitro when infecting non-permissive cells, that do not support viral replication and JCPyV inoculation into small animal models and non human primates drives to tumor formation. The molecular mechanisms involved in JCPyV oncogenesis have been extensively studied: the main oncogenic viral protein is the large tumor antigen (T-Ag), that is able to bind, among other cellular factors, both Retinoblastoma protein (pRb) and p53 and to dysregulate the cell cycle, but also the early proteins small tumor antigen (t-Ag) and Agnoprotein appear to cooperate in the process of cell transformation. Consequently, it is not surprising that JCPyV genomic sequences and protein expression have been detected in Central Nervous System (CNS) tumors and colon cancer and an association between this virus and several brain and non CNS-tumors has been proposed. However, the significances of these findings are under debate because there is still insufficient evidence of a casual association between JCPyV and solid cancer development. In this paper we summarized and critically analyzed the published literature, in order to describe the current knowledge on the possible role of JCPyV in the development of human tumors.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Manola Comar
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy.,Istituto Clinico Città Studi, Milan, Italy
| |
Collapse
|
9
|
Polyomavirus interaction with the DNA damage response. Virol Sin 2015; 30:122-9. [PMID: 25910481 DOI: 10.1007/s12250-015-3583-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication-normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response (DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATM- and ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.
Collapse
|
10
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
11
|
Huang JL, Lin CS, Chang CC, Lu YN, Hsu YL, Wong TY, Wang YF. Human JC virus small tumour antigen inhibits nucleotide excision repair and sensitises cells to DNA-damaging agents. Mutagenesis 2015; 30:475-85. [PMID: 25744060 DOI: 10.1093/mutage/gev004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human JC virus (JCV) is potentially carcinogenic to humans as a Group 2B carcinogen, and it is ubiquitous in human populations. To investigate whether the small tumour (ST) antigen of the JCV contributes to genomic instability, we established cell lines stably expressing the JCV ST and examined its role in DNA repair. Results from host cell reactivation (HCR) assay revealed that the established cell lines exhibited lower nucleotide excision repair (NER) activity than the vector control cells did. The presence of γ-H2AX, a marker of DNA damage, indicated that the established cell line contained more DNA damage foci compared with vector control cells. Furthermore, the results of clonogenic analyses indicated that the JCV ST-expressing cells were more sensitive than the vector control cells to ultraviolet (UV) irradiation and cisplatin treatment. Micronuclei formation assay revealed that the JCV ST-positive cells presented more chromosomal breakages than did the JCV ST-negative cells, particularly after exposure to DNA-damaging agents. The xeroderma pigmentosum Group D protein, a DNA helicase involved in NER, was downregulated in the JCV ST-positive cells in response to UV irradiation. The effect of the protein phosphatase 2A (PP2A) inhibitor okadaic acid on NER was similar to that of the ST, which is a PP2A-binding protein. Therefore, the deactivation of the PP2A might underlie ST-mediated NER inhibition. The results of this study indicate that exposing JCV ST-positive cells to DNA-damaging agents causes genomic instability, which contributes to carcinogenesis. Our data provide further evidence on the association between the JCV ST and human cancer.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Chu Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ning Lu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ling Hsu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzyy-Yue Wong
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fei Wang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and human cytomegalovirus (HCMV) infection. Folia Microbiol (Praha) 2014; 60:199-209. [PMID: 25366712 PMCID: PMC4429022 DOI: 10.1007/s12223-014-0359-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Herpesvirus infections, such as those induced by human cytomegalovirus (HCMV), induce specific DNA damages. DNA damages can lead to cell mutation, death, apoptosis and immune system activation. Various types of DNA damage are repaired through multiple repair pathways, such as base excision, nucleotide excision, homologous recombination and nonhomologous end joining. Changes in the activity of DNA repair proteins during viral infection can cause disturbances in the DNA repair system and change its mechanisms. This report reviews results from studies, assaying a DNA repair system in HCMV infection.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynaecology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska Street, Lodz, 93-338, Poland,
| | | | | |
Collapse
|
13
|
Durzyńska J. IGF axis and other factors in HPV-related and HPV-unrelated carcinogenesis (review). Oncol Rep 2014; 32:2295-306. [PMID: 25333772 PMCID: PMC4240475 DOI: 10.3892/or.2014.3505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor (IGF) axis promotes the growth of cells, tissues and organs. IGF-1 is mainly produced in the liver but is also secreted from local tissues. In the circulation, IGF-1 is bound to insulin-like binding proteins (IGFBPs), and when released it activates the insulin-like growth factor receptor (IGF-1R). The signal is further transmitted by intracellular signaling pathways leading to gene expression that regulates, among others, cell proliferation and survival. This review presents the IGF axis in the context of cell transformation and cancer development. Aspects involving IGF-1 deficiency and protection from cancer are also briefly described. Furthermore, human papillomaviruses (HPVs) interplaying with IGF axis components in cervical cancer development are described. These small dsDNA viruses are divided into low-risk and high-risk HPVs with regard to the potency of their oncogenic actions; they mainly infect epithelial or mucosal cells. Special attention is drawn to expression of two major HPV oncogenes (E6 and E7) initiating and maintaining cervical carcinogenesis, which is a multistep and multifactorial process; therefore, involvement of additional factors such as mitochondrial DNA changes, sex hormones, retinoic and folic acids are also discussed. Finally, IGF axis components and HPV oncogenes as targets in anticancer treatment are presented which include IGF-1R downregulation, RNA interference and anti-HPV therapeutic vaccines. The review concludes that despite an enormous advancement in research on IGF and HPV-related cancers, more molecular studies and clinical trials are needed before commercialized therapies are widely available for oncology patients.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
14
|
Kulkarni AS, Fortunato EA. Modulation of homology-directed repair in T98G glioblastoma cells due to interactions between wildtype p53, Rad51 and HCMV IE1-72. Viruses 2014; 6:968-85. [PMID: 24576846 PMCID: PMC3970133 DOI: 10.3390/v6030968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen capable of causing life threatening consequences in neonates and immune-compromised individuals. HCMV inflicts site-specific double strand breaks (DSBs) in the cellular genome. DNA damage infliction raises the corollary question of virus modulation of DNA repair. We recently reported HDR was stimulated in wt human foreskin fibroblasts (HFFs) during fully permissive infection or expression of the HCMV protein IE1-72 (IE72). These studies have been extended into semi-permissive T98G glioblastoma cells. T98Gs encode a mutant p53, which may contribute to their high baseline rate of HDR. We fully expected HCMV infection to increase HDR in T98Gs, similar to its effects in HFFs. Surprisingly in T98Gs HCMV infection, or sole expression of IE72, decreased HDR by two-fold. Transient expression of wt p53 in T98Gs also reduced HDR by two-fold. Dual transient expression of wt p53 and IE72 restored high baseline HDR levels. GST pulldown experiments revealed that both IE72 and wt p53 bound the important HDR protein, Rad51. We conclude that the expression of certain HCMV proteins can modulate HDR in an infected cell, dependent upon p53 status. We propose a model of the protein interactions explaining this behavior.
Collapse
Affiliation(s)
- Amit S Kulkarni
- Tumorvirologie (F010), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Elizabeth A Fortunato
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, 875 Perimeter Drive, Mailstop 3051, Moscow, ID 83844, USA.
| |
Collapse
|
15
|
A prospective overview of the essential requirements in molecular modeling for nanomedicine design. Future Med Chem 2013; 5:929-46. [PMID: 23682569 DOI: 10.4155/fmc.13.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology has presented many new challenges and opportunities in the area of nanomedicine design. The issues related to nanoconjugation, nanosystem-mediated targeted drug delivery, transitional stability of nanovehicles, the integrity of drug transport, drug-delivery mechanisms and chemical structural design require a pre-estimated and determined course of assumptive actions with property and characteristic estimations for optimal nanomedicine design. Molecular modeling in nanomedicine encompasses these pre-estimations and predictions of pertinent design data via interactive computographic software. Recently, an increasing amount of research has been reported where specialized software is being developed and employed in an attempt to bridge the gap between drug discovery, materials science and biology. This review provides an assimilative and concise incursion into the current and future strategies of molecular-modeling applications in nanomedicine design and aims to describe the utilization of molecular models and theoretical-chemistry computographic techniques for expansive nanomedicine design and development.
Collapse
|
16
|
Noguchi A, Kikuchi K, Ohtsu T, Yoshiwara M, Nakamura Y, Miyagi Y, Zheng H, Takano Y. Pulmonary tumors associated with the JC virus T-antigen in a transgenic mouse model. Oncol Rep 2013; 30:2603-8. [PMID: 24100939 PMCID: PMC3839992 DOI: 10.3892/or.2013.2782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/02/2013] [Indexed: 12/18/2022] Open
Abstract
Many attempts to demonstrate the oncogenic role of the JC virus (JCV) have been partially successful in producing brain tumors, either by direct inoculation of JCV into the brain or in transgenic models in rodents. We previously reported the presence of JCV DNA with a relatively high incidence in pulmonary and digestive organs. However, we could not prove the oncogenic role of JCV. We prepared a transgene composed of the K19 promoter, specific to bronchial epithelium with the JCV T-antigen and established transgenic (TG) mice. Pulmonary tumors were detected without any metastasis in 2 out of 15 (13.3%) 16-month-old K19/JCV T-antigen TG mice. Using immunohistochemistry (IHC), these tumors showed JCV T-antigen, p53 and CK 19 expression, but not expression of nuclear and cytoplasmic β-catenin and insulin receptor substrate 1 (IRS1). IHC revealed the same expression pattern as in the bronchial epithelium of the TG mice. One tumor, which was examined with laser capture microdissection and molecular biological tools, demonstrated an EGFR mutation but not a K-ras mutation. We propose that the pulmonary tumors were derived from the JCV T-antigen in a TG mouse model. These findings shed light on pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Akira Noguchi
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-0815, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilk A, Waligórski P, Lassak A, Vashistha H, Lirette D, Tate D, Zea AH, Koochekpour S, Rodriguez P, Meggs LG, Estrada JJ, Ochoa A, Reiss K. Polycyclic aromatic hydrocarbons-induced ROS accumulation enhances mutagenic potential of T-antigen from human polyomavirus JC. J Cell Physiol 2013; 228:2127-38. [PMID: 23558788 DOI: 10.1002/jcp.24375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the products of incomplete combustion of organic materials, which are present in cigarette smoke, deep-fried food, and in natural crude oil. Since PAH-metabolites form DNA adducts and cause oxidative DNA damage, we asked if these environmental carcinogens could affect transforming potential of the human Polyomavirus JC oncoprotein, T-antigen (JCV T-antigen). We extracted DMSO soluble PAHs from Deepwater Horizon oil spill in the Gulf of Mexico (oil-PAHs), and detected several carcinogenic PAHs. The oil-PAHs were tested in exponentially growing cultures of normal mouse fibroblasts (R508), and in R508 stably expressing JCV T-antigen (R508/T). The oil-PAHs were cytotoxic only at relatively high doses (1:50-1:100 dilution), and at 1:500 dilution the growth and cell survival rates were practically unaffected. This non-toxic dose triggered however, a significant accumulation of reactive oxygen species (ROS), caused oxidative DNA damage and the formation of DNA double strand breaks (DSBs). Although oil-PAHs induced similar levels of DNA damage in R508 and R508/T cells, only T-antigen expressing cells demonstrated inhibition of high fidelity DNA repair by homologous recombination (HRR). In contrast, low-fidelity repair by non-homologous end joining (NHEJ) was unaffected. This potential mutagenic shift between DNA repair mechanisms was accompanied by a significant increase in clonal growth of R508/T cells chronically exposed to low doses of the oil-PAHs. Our results indicate for the first time carcinogenic synergy in which oil-PAHs trigger oxidative DNA damage and JCV T-antigen compromises DNA repair fidelity.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research at Stanley S Scott Cancer Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma. PLoS One 2013; 8:e53447. [PMID: 23308224 PMCID: PMC3538535 DOI: 10.1371/journal.pone.0053447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/28/2012] [Indexed: 12/02/2022] Open
Abstract
Neurofibromatosis type 2 protein (NF2) has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV) tumor antigen (T-antigen) as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.
Collapse
|
19
|
O'Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog 2012; 8:e1003038. [PMID: 23209410 PMCID: PMC3510244 DOI: 10.1371/journal.ppat.1003038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/03/2012] [Indexed: 02/05/2023] Open
Abstract
Many viruses subvert the host cell's ability to mount and complete various DNA damage responses (DDRs) after infection. HCMV infection of permissive fibroblasts activates host DDRs at the time of viral deposition and during replication, but the DDRs remain uncompleted without arrest or apoptosis. We believe this was in part due to partitioning of the damage response and double strand break repair components. After extraction of soluble proteins, the localization of these components fell into three groups: specifically associated with the viral replication centers (RCs), diffused throughout the nucleoplasm and excluded from the RCs. Others have shown that cells are incapable of processing exogenously introduced damage after infection. We hypothesized that the inability of the cells to process damage might be due to the differential association of repair components within the RCs and, in turn, potentially preferential repair of the viral genome and compromised repair of the host genome. To test this hypothesis we used multiple strategies to examine repair of UV-induced DNA damage in mock and virus-infected fibroblasts. Comet assays indicated that repair was initiated, but was not completed in infected cells. Quantitative analysis of immunofluorescent localization of cyclobutane pyrimidine dimers (CPDs) revealed that after 24 h of repair, CPDs were significantly reduced in viral DNA, but not significantly changed in the infected host DNA. To further quantitate CPD repair, we developed a novel dual-color Southern protocol allowing visualization of host and viral DNA simultaneously. Combining this Southern methodology with a CPD-specific T4 endonuclease V alkaline agarose assay to quantitate repair of adducts, we found efficient repair of CPDs from the viral DNA but not host cellular DNA. Our data confirm that NER functions in HCMV-infected cells and almost exclusively repairs the viral genome to the detriment of the host's genome. Human cytomegalovirus (HCMV) is a leading cause of birth defects. This may be due in part to this virus' ability to inflict specific damage to its host's DNA, combined with the disruption of an infected cell's ability to repair damage. Earlier studies found that components of the cell's repair machinery were differentially associated with the HCMV viral replication centers in the nucleus. Experiments here extend this observation to include components of the machinery involved in UV lesion repair. We hypothesized that association of components of the DNA repair machinery within the viral replication centers could favor the repair of viral DNA, but more importantly, be detrimental to the repair of cellular DNA. Infected cells were irradiated and examined for repair by three different methods. In the course of this study, we developed a new technique allowing simultaneous evaluation of both the viral and host genomes in an infected cell. These experiments found rapid, selective removal of UV lesions from the viral and not the cellular DNA within infected cells. Our results indicate the differential association of certain cellular repair proteins with this virus may have far-reaching implications in the disease pathogenesis of HCMV infection.
Collapse
Affiliation(s)
- John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Celeste J. Brown
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
20
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
21
|
Aituov B, Duisembekova A, Bulenova A, Alibek K. Pathogen-driven gastrointestinal cancers: Time for a change in treatment paradigm? Infect Agent Cancer 2012; 7:18. [PMID: 22873119 PMCID: PMC3508868 DOI: 10.1186/1750-9378-7-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023] Open
Abstract
The regulation of cancerous tumor development is converged upon by multiple pathways and factors. Besides environmental factors, gastrointestinal (GI) tract cancer can be caused by chronic inflammation, which is generally induced by bacteria, viruses, and parasites. The role of these inducers in cancer development, cell differentiation and transformation, cell cycle deregulation, and in the expression of tumor-associated genes cannot be ignored. Although Helicobacter pylori activates many oncogenic pathways, particularly those in gastric and colorectal cancers, the role of viruses in tumor development is also significant. Viruses possess significant oncogenic potential to interfere with normal cell cycle control and genome stability, stimulating the growth of deregulated cells. An increasing amount of recent data also implies the association of GI cancers with bacterial colonization and viruses. This review focuses on host-cell interactions that facilitate primary mechanisms of tumorigenesis and provides new insights into novel GI cancer treatments.
Collapse
Affiliation(s)
- Bauyrzhan Aituov
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Assem Duisembekova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Assel Bulenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
| | - Kenneth Alibek
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan
- Republican Scientific Center for Emergency Care, 3 Kerey and Zhanibek Khan Street, Astana 010000, Kazakhstan
| |
Collapse
|
22
|
Turnell AS, Grand RJ. DNA viruses and the cellular DNA-damage response. J Gen Virol 2012; 93:2076-2097. [PMID: 22855786 DOI: 10.1099/vir.0.044412-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is clear that a number of host-cell factors facilitate virus replication and, conversely, a number of other factors possess inherent antiviral activity. Research, particularly over the last decade or so, has revealed that there is a complex inter-relationship between viral infection and the host-cell DNA-damage response and repair pathways. There is now a realization that viruses can selectively activate and/or repress specific components of these host-cell pathways in a temporally coordinated manner, in order to promote virus replication. Thus, some viruses, such as simian virus 40, require active DNA-repair pathways for optimal virus replication, whereas others, such as adenovirus, go to considerable lengths to inactivate some pathways. Although there is ever-increasing molecular insight into how viruses interact with host-cell damage pathways, the precise molecular roles of these pathways in virus life cycles is not well understood. The object of this review is to consider how DNA viruses have evolved to manage the function of three principal DNA damage-response pathways controlled by the three phosphoinositide 3-kinase (PI3K)-related protein kinases ATM, ATR and DNA-PK and to explore further how virus interactions with these pathways promote virus replication.
Collapse
Affiliation(s)
- Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger J Grand
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
23
|
Abstract
The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1-IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has a predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160-185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed by several other laboratories. Nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing estrogen receptor beta (ERβ), further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, School of Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
24
|
Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death. Exp Cell Res 2012; 318:1745-58. [PMID: 22652453 DOI: 10.1016/j.yexcr.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 01/02/2023]
Abstract
The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2.
Collapse
|
25
|
Prevalence of JC virus in Chinese patients with colorectal cancer. PLoS One 2012; 7:e35900. [PMID: 22606241 PMCID: PMC3350510 DOI: 10.1371/journal.pone.0035900] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/23/2012] [Indexed: 01/25/2023] Open
Abstract
Background JCV is a DNA polyomavirus very well adapted to humans. Although JCV DNA has been detected in colorectal cancers (CRC), the association between JCV and CRC remains controversial. In China, the presence of JCV infection in CRC patients has not been reported. Here, we investigated JCV infection and viral DNA load in Chinese CRC patients and to determine whether the JCV DNA in peripheral blood (PB) can be used as a diagnostic marker for JCV-related CRC. Methodology/Principal Findings Tumor tissues, non-cancerous tumor-adjacent tissues and PB samples were collected from 137 CRC patients. In addition, 80 normal colorectal tissue samples from patients without CRC and PB samples from 100 healthy volunteers were also harvested as controls. JCV DNA was detected by nested PCR and glass slide-based dot blotting. Viral DNA load of positive samples were determined by quantitative real-time PCR. JCV DNA was detected in 40.9% (56/137) of CRC tissues at a viral load of 49.1 to 10.3×104 copies/µg DNA. Thirty-four (24.5%) non-cancerous colorectal tissues (192.9 to 4.4×103 copies/µg DNA) and 25 (18.2%) PB samples (81.3 to 4.9×103 copies/µg DNA) from CRC patients were positive for JCV. Tumor tissues had higher levels of JCV than non-cancerous tissues (P = 0.003) or PB samples (P<0.001). No correlation between the presence of JCV and demographic or medical characteristics was observed. The JCV prevalence in PB samples was significantly associated with the JCV status in tissue samples (P<0.001). Eleven (13.8%) normal colorectal tissues and seven (7.0%) PB samples from healthy donors were positive for JCV. Conclusions/Significance JCV infection is frequently present in colorectal tumor tissues of CRC patients. Although the association between JCV presence in PB samples and JCV status in tissue samples was identified in this study, whether PB JCV detection can serve as a marker for JCV status of CRC requires further study.
Collapse
|
26
|
Jiang M, Imperiale MJ. Design stars: how small DNA viruses remodel the host nucleus. Future Virol 2012; 7:445-459. [PMID: 22754587 DOI: 10.2217/fvl.12.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology & Immunology, & Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
27
|
Wilk A, Waligorska A, Waligorski P, Ochoa A, Reiss K. Inhibition of ERβ induces resistance to cisplatin by enhancing Rad51-mediated DNA repair in human medulloblastoma cell lines. PLoS One 2012; 7:e33867. [PMID: 22439007 PMCID: PMC3306313 DOI: 10.1371/journal.pone.0033867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/23/2012] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERβ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERβ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin–induced cytotoxicity in human medulloblastoma cell lines.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Agnieszka Waligorska
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Piotr Waligorski
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Augusto Ochoa
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Krzysztof Reiss
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Stimulation of homology-directed repair at I-SceI-induced DNA breaks during the permissive life cycle of human cytomegalovirus. J Virol 2011; 85:6049-54. [PMID: 21490102 DOI: 10.1128/jvi.02514-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) selectively relocalizes many DNA repair proteins, thereby avoiding a potentially detrimental damage response. In the present study, we evaluated interactions between HCMV and the homology-directed repair (HDR) pathway. In permissive human foreskin fibroblasts, a fluorescence-based double-stranded break repair assay was used to determine that HCMV stimulated HDR. Repair of both stably integrated and extrachromosomal reporter substrates was observed to increase. HDR was also stimulated through individual expression of the viral immediate-early protein IE1-72, mimicking full virus infection. These experiments further demonstrate HCMV's role in modulating critical cellular processes during a permissive infection.
Collapse
|
29
|
Ramamoorthy S, Devaraj B, Miyai K, Luo L, Liu YT, Boland CR, Goel A, Carethers JM. John Cunningham virus T-antigen expression in anal carcinoma. Cancer 2010; 117:2379-85. [PMID: 24048785 DOI: 10.1002/cncr.25793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND Anal carcinoma is thought to be driven by human papillomavirus (HPV) infection through interrupting function of cell regulatory proteins such as p53 and pRb. John Cunningham virus (JCV) expresses a T-antigen that causes malignant transformation through development of aneuploidy and interaction with some of the same regulatory proteins as HPV. JCV T-antigen is present in brain, gastric, and colon malignancies, but has not been evaluated in anal cancers. The authors examined a cohort of anal cancers for JCV T-antigen and correlated this with clinicopathologic data. METHODS Archived anal carcinomas were analyzed for JCV T-antigen expression. DNA from tumor and normal tissue was sequenced for JCV with viral copies determined by quantitative polymerase chain reaction and Southern blotting. HPV and microsatellite instability (MSI) status was correlated with JCV T-antigen expression. RESULTS Of 21 cases of anal cancer (mean age 49 years, 38% female), 12 (57%) were in human immunodeficiency virus (HIV)-positive individuals. All 21 cancers expressed JCV T-antigen, including 9 HPV-negative specimens. More JCV copies were present in cancer versus surrounding normal tissue (mean 32.54 copies/μg DNA vs 2.98 copies/μg DNA, P = .0267). There was no correlation between disease stage and viral copies, nor between viral copies and HIV-positive or -negative status (28.7 vs 36.34 copies/μg DNA, respectively, P = .7804). In subset analysis, no association was found between JCV T-antigen expression and HPV or MSI status. CONCLUSIONS Anal carcinomas uniformly express JCV T-antigen and contain more viral copies compared with surrounding normal tissue. JCV and its T-antigen oncogenic protein, presumably through interruption of cell regulatory proteins, may play a role in anal cancer pathogenesis.
Collapse
Affiliation(s)
- Sonia Ramamoorthy
- Department of Surgery, University of California, San Diego, California; Moores Comprehensive Cancer Center, University of California, San Diego, California
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Dana E. Rollison
- Department of Cancer Epidemiology and Genetics, Moffitt Cancer Center, Tampa FL
| |
Collapse
|
31
|
Del Valle L, Khalili K. Detection of human polyomavirus proteins, T-antigen and agnoprotein, in human tumor tissue arrays. J Med Virol 2010; 82:806-11. [PMID: 20336718 DOI: 10.1002/jmv.21514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Expression of the human polyomavirus JCV genome in several experimental animals induces a variety of neural origin tumors. The viral proteins, T-antigen and Agnoprotein, contribute to the oncogenesis of JCV by associating with several tumor suppressor proteins and dysregulating signaling pathways, which results in uncontrolled cell proliferation. In addition, T-antigen and Agnoprotein have been associated with DNA damage and interfering with DNA repair mechanisms. In this study, we have utilized commercially available tissue arrays of human tumors of various origins and demonstrated the expression of both T-antigen and Agnoprotein in some, but not all, tumors of neural and non-neural origin. Most notably, more than 40% of human glioblastomas and greater than 30% of colon adenocarcinomas express viral proteins. The detection of viral transforming proteins, T-antigen and Agnoprotein in the absence of viral capsid proteins suggests a role for JCV in the development and/or progression of human tumors. These results invite further large-scale investigation on the role of polyomaviruses, particularly JCV in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
32
|
Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol 2010; 84:8007-20. [PMID: 20519379 DOI: 10.1128/jvi.00334-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated previously that expression of simian virus 40 (SV40) large T antigen (LT), without a viral origin, is sufficient to induce the hallmarks of a cellular DNA damage response (DDR), such as focal accumulation of gamma-H2AX and 53BP1, via Bub1 binding. Here we expand our characterization of LT effects on the DDR. Using comet assays, we demonstrate that LT induces overt DNA damage. The Fanconi anemia pathway, associated with replication stress, becomes activated, since FancD2 accumulates in foci, and monoubiquitinated FancD2 is detected on chromatin. LT also induces a distinct set of foci of the homologous recombination repair protein Rad51 that are colocalized with Nbs1 and PML. The FancD2 and Rad51 foci require neither Bub1 nor retinoblastoma protein binding. Strikingly, wild-type LT is localized on chromatin at, or near, the Rad51/PML foci, but the LT mutant in Bub1 binding is not localized there. SV40 infection was previously shown to trigger ATM activation, which facilitates viral replication. We demonstrate that productive infection also triggers ATR-dependent Chk1 activation and that Rad51 and FancD2 colocalize with LT in viral replication centers. Using small interfering RNA (siRNA)-mediated knockdown, we demonstrate that Rad51 and, to a lesser extent, FancD2 are required for efficient viral replication in vivo, suggesting that homologous recombination is important for high-level extrachromosomal replication. Taken together, the interplay of LT with the DDR is more complex than anticipated, with individual domains of LT being connected to different subcomponents of the DDR and repair machinery.
Collapse
|
33
|
Coelho TR, Almeida L, Lazo PA. JC virus in the pathogenesis of colorectal cancer, an etiological agent or another component in a multistep process? Virol J 2010; 7:42. [PMID: 20167111 PMCID: PMC2830963 DOI: 10.1186/1743-422x-7-42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/18/2010] [Indexed: 02/06/2023] Open
Abstract
JCV infection occurs early in childhood and last throughout life. JCV has been associated to colorectal cancer and might contribute to the cancer phenotype by several mechanisms. Among JCV proteins, particularly two of them, large T-antigen and agnoprotein, can interfere with cell cycle control and genomic instability mechanisms, but other viral proteins might also contribute to the process. Part of viral DNA sequences are detected in carcinoma lesions, but less frequently in adenomas, and not in the normal surrounding tissue, suggesting they are integrated in the host cell genome and these integrations have been selected; in addition viral integration can cause a gene, or chromosomal damage. The inflammatory infiltration caused by a local chronic viral infection in the intestine can contribute to the selection and expansion of a tumor prone cell in a cytokine rich microenvironment. JCV may not be the cause of colorectal cancer, but it can be a relevant risk factor and able to facilitate progression at one or several stages in tumor progression. JCV transient effects might lead to selective expansion of tumor cells. Since there is not a direct cause and effect relationship, JCV infection may be an alternative to low frequency cancer predisposition genes.
Collapse
Affiliation(s)
- Tatiana R Coelho
- Instituto de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | | | | |
Collapse
|
34
|
Gualco E, Urbanska K, Perez-Liz G, Sweet T, Peruzzi F, Reiss K, Del Valle L. IGF-IR-dependent expression of Survivin is required for T-antigen-mediated protection from apoptosis and proliferation of neural progenitors. Cell Death Differ 2009; 17:439-51. [PMID: 19834489 PMCID: PMC2822053 DOI: 10.1038/cdd.2009.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Insulin-like Growth Factor-1 Receptor (IGF-IR) and the human polyomavirus JCV protein, T-Antigen cooperate in the transformation of neuronal precursors in the cerebellum, which may be a contributing factor in the development of brain tumors. Since it is not clear why T-Antigen requires IGF-IR for transformation, we investigated this process in neural progenitors from IGF-IR knockout embryos (ko-IGF-IR) and from their wild type non-transgenic littermates (wt-IGF-IR). In contrast to wt-IGF-IR, the brain and dorsal root ganglia of ko-IGF-IR embryos showed low levels of the anti-apoptotic protein Survivin, accompanied by elevated numbers of apoptotic neurons and an earlier differentiation phenotype. In wt-IGF-IR neural progenitors in vitro, induction of T-Antigen expression tripled the expression of Survivin, and accelerated cell proliferation. In ko-IGF-IR progenitors induction of T-Antigen failed to increase Survivin, resulting in massive apoptosis. Importantly, ectopic expression of Survivin protected ko-IGF-IR progenitor cells from apoptosis and siRNA inhibition of Survivin activated apoptosis in wt-IGF-IR progenitors expressing T-Antigen. Our results indicate that reactivation of the anti-apoptotic Survivin may be a critical step in JCV T-Antigen induced transformation, which in neural progenitors requires IGF-IR.
Collapse
Affiliation(s)
- E Gualco
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. VITAMINS AND HORMONES 2009; 80:351-87. [PMID: 19251044 DOI: 10.1016/s0083-6729(08)00613-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Xiao Jian Sun
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
36
|
Urbanska K, Pannizzo P, Lassak A, Gualco E, Surmacz E, Croul S, Del Valle L, Khalili K, Reiss K. Estrogen receptor beta-mediated nuclear interaction between IRS-1 and Rad51 inhibits homologous recombination directed DNA repair in medulloblastoma. J Cell Physiol 2009; 219:392-401. [PMID: 19117011 DOI: 10.1002/jcp.21683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or gamma-irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERbeta) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERbeta was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERbeta was also present in human medulloblastoma clinical samples. Expression of ERbeta coincided with nuclear translocation of insulin receptor substrate 1 (IRS-1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERbeta and IRS-1 bind each other, and the interaction involves C-terminal domain of IRS-1 (aa 931-1233). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the sites of damaged DNA, and interacted with Rad51--an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR-DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931-1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERbeta-mediated IRS-1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shimwell NJ, Martin A, Bruton RK, Blackford AN, Sedgwick GG, Gallimore PH, Turnell AS, Grand RJA. Adenovirus 5 E1A is responsible for increased expression of insulin receptor substrate 4 in established adenovirus 5-transformed cell lines and interacts with IRS components activating the PI3 kinase/Akt signalling pathway. Oncogene 2008; 28:686-97. [DOI: 10.1038/onc.2008.417] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Del Valle L, White MK, Khalili K. Potential mechanisms of the human polyomavirus JC in neural oncogenesis. J Neuropathol Exp Neurol 2008; 67:729-40. [PMID: 18648329 PMCID: PMC2771681 DOI: 10.1097/nen.0b013e318180e631] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human polyomavirus JC (JCV) is a small DNA tumor virus and the etiologic agent of the progressive multifocal leukoencephalopathy. In progressive multifocal leukoencephalopathy, active JCV replication causes the lytic destruction of oligodendrocytes. The normal immune system prevents JCV replication and suppresses the virus into a state of latency so that expression of viral proteins cannot be detected. In a cellular context that is nonpermissive for viral replication, JCV can affect oncogenic transformation. For example, JCV is highly tumorigenic when inoculated into experimental animals, including rodents and monkeys. In these animal tumors, there is expression of early T-antigen but not of late capsid proteins, nor is there viral replication. Moreover, mice transgenic for JCV T-antigen alone develop tumors of neural tube origin. Detection of JCV genomic sequences and expression of viral T-antigen and agnoprotein suggest a possible association of this virus with a variety of human brain and non-CNS tumors. Here, we discuss the mechanisms involved in JCV oncogenesis, briefly review studies that do and do not support a causative role for this virus in human CNS tumors, and identify key issues for future research.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
39
|
Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, Ricciardiello L. The role of viral and bacterial pathogens in gastrointestinal cancer. J Cell Physiol 2008; 216:378-88. [PMID: 18338378 DOI: 10.1002/jcp.21427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of Helicobacter pylori (H. pylori) with gastric cancer is thus far the best understood model to comprehend the causal relationship between a microbial pathogen and cancer in the human gastrointestinal tract. Besides H. pylori, a variety of other pathogens are now being recognized as potential carcinogens in different settings of human cancer. In this context, viral causes of human cancers are central to the issue since these account for 10-20% of cancers worldwide. In the case of H. pylori and gastric cancer, as well as the human papillomavirus and anal cancer, the causal relationship between the infectious agent and the related cancer in the gastrointestinal tract has been clearly confirmed by epidemiological and experimental studies. Similarly, Epstein-Barr virus and the oncogenic JC virus are being suggested as possible causative agents for cancers in the upper and lower gastrointestinal tract. This review discusses various viral and microbial pathogens and their oncogenic properties in the evolution of gastrointestinal carcinogenesis and summarizes the available experimental data make a convincing agreement favoring the associations between infectious agents and specific human cancers.
Collapse
Affiliation(s)
- Michael Selgrad
- Department of Internal Medicine, Gastroenterology, Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas 75246, USA
| | | | | | | | | | | |
Collapse
|
40
|
Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 2008; 82:8124-37. [PMID: 18524825 DOI: 10.1128/jvi.00430-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Latent membrane protein 1 (LMP1), an Epstein-Barr virus (EBV) oncoprotein, mimics a constitutively activated tumor necrosis factor receptor and activates various signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt. LMP1 is essential for EBV-mediated B-cell transformation and is sufficient to transform several cell lines. Cellular transformation has been associated strongly with genomic instability, while DNA repair plays an important role in maintaining genomic stability. Previously, we have shown that LMP1 represses DNA repair by the C-terminal activating region 1 (CTAR1) in human epithelial cells. In the present study, we demonstrate that the PI3K/Akt pathway is required for LMP1-mediated repression of DNA repair. Through the LMP1/PI3K/Akt pathway, FOXO3a, which can induce DNA repair, is inactivated because of phosphorylation and relocalization. Expression of a constitutively active FOXO3a mutant can rescue LMP1-mediated repression of DNA repair. Furthermore, LMP1 can decrease the expression of DNA damage-binding protein 1 (DDB1), which functions in nucleotide excision repair, through the PI3K/Akt/FOXO3a pathway. LMP1-mediated repression of DNA repair is restored by DDB1, although only partially. These results suggest that LMP1 triggers the PI3K/Akt pathway to inactivate FOXO3a and decrease DDB1, which can lead to repression of DNA repair and may contribute to genomic instability in human epithelial cells.
Collapse
|
41
|
Darbinyan A, White MK, Akan S, Radhakrishnan S, Valle LD, Amini S, Khalili K. Alterations of DNA damage repair pathways resulting from JCV infection. Virology 2007; 364:73-86. [PMID: 17368705 PMCID: PMC2570112 DOI: 10.1016/j.virol.2007.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/28/2006] [Accepted: 02/12/2007] [Indexed: 11/25/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disorder of the CNS caused by infection of glial cells with the polyomavirus, JCV. Here we report that genomic stability and DNA repair are significantly dysregulated by JCV infection of human astrocytes. Metaphase spreads exhibited increased ploidy correlating with duration of infection. Increased micronuclei formation and phospho-Histone2AX expression also indicated DNA damage. Western blot analysis revealed perturbation in expression of some DNA repair proteins including a large elevation of Rad51. Immunohistochemistry on clinical samples of PML showed robust labeling for Rad51 in nuclei of bizarre astrocytes and inclusion body-bearing oligodendrocytes that are characteristic of JCV infection. Finally, in vitro end-joining DNA repair was altered in extracts prepared from JCV-infected human astrocytes. Alterations in DNA repair pathways may be important for the life cycle of JCV and the pathogenesis of PML.
Collapse
Affiliation(s)
- Armine Darbinyan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
| | - Martyn K. White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
| | - Selma Akan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
| | - Sujatha Radhakrishnan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
| | - Luis Del Valle
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122
- † Corresponding Author: Dr. Kamel Khalili, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, MS 015-96, Room 203, Philadelphia, PA 19122, Tel: 215-204-0678; Fax: 215-204-0679,
| |
Collapse
|
42
|
Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, Divisova J, Britton OL, Mohsin S, Allred DC, Hadsell DL, Lee AV. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 2006; 26:9302-14. [PMID: 17030631 PMCID: PMC1698542 DOI: 10.1128/mcb.00260-06] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prognosis. We found that overexpressed IRS-1 was constitutively phosphorylated in vitro and in vivo and that transgenic mice overexpressing IRS-1 or IRS-2 in the mammary gland showed progressive mammary hyperplasia, tumorigenesis, and metastasis. Tumors showed extensive squamous differentiation, a phenotype commonly seen with activation of the canonical beta-catenin signaling pathway. Consistent with this, IRSs were found to bind beta-catenin in vitro and in vivo. IRS-induced tumorigenesis is unique, given that the IRSs are signaling adaptors with no intrinsic kinase activity, and this supports a growing literature indicating a role for IRSs in cancer. This study defines IRSs as oncogene proteins in vivo and provides new models to develop inhibitors against IRSs for anticancer therapy.
Collapse
Affiliation(s)
- Robert K Dearth
- Breast Cancer, Baylor College of Medicine and Methodist Hospital, Department of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Caracciolo V, Reiss K, Khalili K, De Falco G, Giordano A. Role of the interaction between large T antigen and Rb family members in the oncogenicity of JC virus. Oncogene 2006; 25:5294-301. [PMID: 16936750 DOI: 10.1038/sj.onc.1209681] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human polyomaviruses (JC virus, BK virus and simian virus 40) are causative agents of some human diseases and, interestingly, are involved in processes of cell transformation and oncogenesis. These viruses need the cell cycle machinery of the host cell to complete their replication; so they evolved mechanisms that can interfere with the growth control of infected cells and force them into DNA replication. The retinoblastoma family of proteins (pRb), which includes pRb/p105, p107 and pRb2/p130, acts as one of the most important regulators of the G1/S transition of the cell cycle. Rb proteins represent an important target for viral oncoproteins. Early viral T antigens can bind all members of the pRb family, promoting the activation of the E2F family of transcription factors, thus inducing the expression of genes required for the entry to the S phase. The interaction between early viral antigens and cell cycle regulators represents an important mechanism through which viruses deregulate cell cycle and lead to cell transformation. In this review, we will discuss the effects of the interaction between large T antigen and Rb proteins in JC virus-mediated oncogenesis.
Collapse
Affiliation(s)
- V Caracciolo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | |
Collapse
|
44
|
Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, Middea E, Cascio S, Brunelli E, Andò S, Surmacz E. Expression of nuclear insulin receptor substrate 1 in breast cancer. J Clin Pathol 2006; 60:633-41. [PMID: 16882697 PMCID: PMC1955087 DOI: 10.1136/jcp.2006.039107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Insulin receptor substrate 1 (IRS-1), a cytoplasmic protein transmitting signals from the insulin and insulin-like growth factor 1 receptors, has been implicated in breast cancer. Previously, it was reported that IRS-1 can be translocated to the nucleus and modulate oestrogen receptor alpha (ERalpha) activity in vitro. However, the expression of nuclear IRS-1 in breast cancer biopsy specimens has never been examined. AIMS To assess whether nuclear IRS-1 is present in breast cancer and non-cancer mammary epithelium, and whether it correlates with other markers, especially ERalpha. Parallel studies were carried out for the expression of cytoplasmatic IRS-1. METHODS IRS-1 and ERalpha expression was assessed by immunohistochemical analysis. Data were evaluated using Pearson's correlation, linear regression and receiver operating characteristic analysis. RESULTS Median nuclear IRS-1 expression was found to be low in normal mammary epithelial cells (1.6%) and high in benign tumours (20.5%), ductal grade 2 carcinoma (11.0%) and lobular carcinoma (approximately 30%). Median ERalpha expression in normal epithelium, benign tumours, ductal cancer grade 2 and 3, and lobular cancer grade 2 and 3 were 10.5, 20.5, 65.0, 0.0, 80 and 15%, respectively. Nuclear IRS-1 and ERalpha positively correlated in ductal cancer (p<0.001) and benign tumours (p<0.01), but were not associated in lobular cancer and normal mammary epithelium. In ductal carcinoma, both nuclear IRS-1 and ERalpha negatively correlated with tumour grade, size, mitotic index and lymph node involvement. Cytoplasmic IRS-1 was expressed in all specimens and positively correlated with ERalpha in ductal cancer. CONCLUSIONS A positive association between nuclear IRS-1 and ERalpha is a characteristic for ductal breast cancer and marks a more differentiated, non-metastatic phenotype.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Humans
- Immunoenzyme Techniques
- Insulin Receptor Substrate Proteins
- Mammary Glands, Human/metabolism
- Microscopy, Confocal
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/metabolism
- Phosphoproteins/metabolism
Collapse
Affiliation(s)
- Diego Sisci
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Trojanek J, Ho T, Croul S, Wang JY, Chintapalli J, Koptyra M, Giordano A, Khalili K, Reiss K. IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer 2006; 119:539-48. [PMID: 16572421 DOI: 10.1002/ijc.21828] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The large T-antigen from human polyomavirus JC (JCV T-antigen) is suspected to play a role in malignant transformation. Previously, we reported that JCV T-antigen requires the presence of a functional insulin-like growth factor I receptor (IGF-IR) for transformation of fibroblasts and for survival of medulloblastoma cell lines; that IGF-IR is phosphorylated in medulloblastoma biopsies and that JCV T-antigen inhibits homologous recombination-directed DNA repair, causing accumulation of mutations. Here we are evaluating whether JCV T-antigen positive and negative mouse medulloblastoma cell lines, which significantly differ in their tumorigenic properties, are also different in their abilities to repair double strand breaks of DNA (DSBs). Our results show that despite much stronger tumorigenic potential, JCV T-antigen positive medulloblastoma cells are more sensitive to genotoxic agents (cisplatin and gamma-irradiation). Subsequent analysis of DNA repair of DSBs indicated that homologous recombination-directed DNA repair (HRR) was selectively attenuated in JCV T-antigen positive medulloblastoma cells. JCV T-antigen did not affect HRR directly. In the presence of JCV T-antigen, insulin receptor substrate 1 (IRS-1) translocated to the nucleus where it co-localized with Rad51, possibly attenuating HRR.
Collapse
Affiliation(s)
- Joanna Trojanek
- Center for Neurovirology, Department of Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Khalili K, Gordon J, White MK. The polyomavirus, JCV and its involvement in human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:274-87. [PMID: 16626043 DOI: 10.1007/0-387-32957-9_20] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The human neurotropic polyomavirus, JC virus (JCV), is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system that occurs mainly in immunosuppressed patients. JCV has also been found to be associated with human tumors of the brain and other organs. In this chapter, we describe JC virus and its role in human diseases.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
White MK, Khalili K. Expression of JC virus regulatory proteins in human cancer: potential mechanisms for tumourigenesis. Eur J Cancer 2005; 41:2537-48. [PMID: 16219459 DOI: 10.1016/j.ejca.2005.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
JC virus (JCV) is a human polyomavirus that is the etiologic agent of the fatal demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML). JCV is also linked to some tumours of the brain and other organs as evidenced by the presence of JCV DNA sequences and the expression of viral proteins in clinical samples. Since JCV is highly oncogenic in experimental animals and transforms cells in culture, it is possible that JCV contributes to the malignant phenotype of human tumours with which it is associated. JCV encodes three non-capsid regulatory proteins: large T-antigen, small t-antigen and agnoprotein that interact with a number of cellular target proteins and interfere with certain normal cellular functions. In this review, we discuss how JCV proteins deregulate signalling pathways especially ones pertaining to transcriptional regulation and cell cycle control. These effects may be involved in the progression of JCV-associated tumours and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, MS 015-96, Room 203, Philadelphia, PA 19122, USA
| | | |
Collapse
|