1
|
Li P, Chen Z, Meng K, Chen Y, Xu J, Xiang X, Wu X, Huang Z, Lai R, Li P, Lai Z, Ao X, Liu Z, Yang K, Bai X, Zhang Z. Discovery of Taurocholic Acid Sodium Hydrate as a Novel Repurposing Drug for Intervertebral Disc Degeneration by Targeting MAPK3. Orthop Surg 2024; 16:183-195. [PMID: 37933407 PMCID: PMC10782270 DOI: 10.1111/os.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Nowadays, more than 90% of people over 50 years suffer from intervertebral disc degeneration (IDD), but there are exist no ideal drugs. The aim of this study is to identify a new drug for IDD. METHODS An approved small molecular drug library including 2040 small molecular compounds was used here. We found that taurocholic acid sodium hydrate (NAT) could induce chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs). Then, an in vivo mouse model of IDD was established and the coccygeal discs transcriptome analysis and surface plasmon resonance analysis (SPR) integrated with liquid chromatography-tandem mass spectrometry assay (LC-MS) were performed in this study to study the therapy effect and target proteins of NAT for IDD. Micro-CT was used to evaluate the cancellous bone. The expression of osteogenic (OCN, RNX2), chondrogenic (COL2A1, SOX9), and the target related (ERK1/2, p-ERK1/2) proteins were detected. The alkaline phosphatase staining was performed to estimate osteogenic differentiation. Blood routine and blood biochemistry indexes were analyzed for the safety of NAT. RESULTS The results showed that NAT could induce chondrogenesis and osteogenesis in MSCs. Further experiments confirmed NAT could ameliorate the secondary osteoporosis and delay the development of IDD in mice. Transcriptome analysis identified 128 common genes and eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for NAT. SPR-LC-MS assay detected 57 target proteins for NAT, including MAPK3 (mitogen-activated protein kinase 3), also known as ERK1 (extracellular regulated protein kinase 1). Further verification experiment confirmed that NAT significantly reduced the expression of ERK1/2 phosphorylation. CONCLUSION NAT would induce chondrogenesis and osteogenesis of MSCs, ameliorate the secondary osteoporosis and delay the progression of IDD in mice by targeting MAPK3.Furthermore, MAPK3, especially the phosphorylation of MAPK3, would be a potential therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Ping Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ruijun Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Peng Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kaifan Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Killinger M, Kratochvilová A, Reihs EI, Matalová E, Klepárník K, Rothbauer M. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng 2023; 17:77. [PMID: 38098075 PMCID: PMC10722696 DOI: 10.1186/s13036-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.
Collapse
Affiliation(s)
- Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Kratochvilová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Eva Ingeborg Reihs
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Matalová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences, Brno, Czech Republic
| | - Mario Rothbauer
- Cell Chip Group, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technical University Vienna, Vienna, Austria.
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zhang Y, Ling L, Ajay D/O Ajayakumar A, Eio YM, van Wijnen AJ, Nurcombe V, Cool SM. FGFR2 accommodates osteogenic cell fate determination in human mesenchymal stem cells. Gene 2022; 818:146199. [PMID: 35093449 PMCID: PMC9256080 DOI: 10.1016/j.gene.2022.146199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
The multilineage differentiation potential of human mesenchymal stem cells (hMSCs) underpins their clinical utility for tissue regeneration. Control of such cell-fate decisions is tightly regulated by different growth factors/cytokines and their cognate receptors. Fibroblast growth factors (FGFs) are among such factors critical for osteogenesis. However, how FGF receptors (FGFRs) help to orchestrate osteogenic progression remains to be fully elucidated. Here, we studied the protein levels of FGFRs during osteogenesis in human adult bone marrow-derived MSCs and discovered a positive correlation between FGFR2 expression and alkaline phosphatase (ALP) activity, an early marker of osteogenesis. Through RNA interference studies, we confirmed the role of FGFR2 in promoting the osteogenic differentiation of hMSCs. Knockdown of FGFR2 resulted in downregulation of pro-osteogenic genes and upregulation of pro-adipogenic genes and adipogenic commitment. Moreover, under osteogenic induction, FGFR2 knockdown resulted in upregulation of Enhancer of Zeste Homolog 2 (EZH2), an epigenetic enzyme that regulates MSC lineage commitment and suppresses osteogenesis. Lastly, we show that serial-passaged hMSCs have reduced FGFR2 expression and impaired osteogenic potential. Our study suggests that FGFR2 is critical for mediating osteogenic fate by regulating the balance of osteo-adipogenic lineage commitment. Therefore, examining FGFR2 levels during serial-passaging of hMSCs may prove useful for monitoring their multipotency.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Arya Ajay D/O Ajayakumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Yating Michelle Eio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, 636921, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119288, Singapore.
| |
Collapse
|
4
|
Cardoso MV, do Vale Placa R, Sant'Ana ACP, Greghi SLA, Zangrando MSR, de Rezende MLR, Oliveira RC, Damante CA. Laser and LED photobiomodulation effects in osteogenic or regular medium on rat calvaria osteoblasts obtained by newly forming bone technique. Lasers Med Sci 2020; 36:541-553. [PMID: 32514865 DOI: 10.1007/s10103-020-03056-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The purposes of this study are to evaluate the effects of photobiomodulation (PBM) with laser and LED on rat calvaria osteoblasts (rGO lineage), cultured in osteogenic (OST) or regular (REG) medium, after induction of a quiescent state and to test if PBM is capable of osteogenic induction and if there is a sum of effects when combining OST medium with PBM. Before irradiation, the cells were put in a quiescent state (1% FBS) 24 h, when red (AlGaInP-660 nm) and infrared laser (GaAlAs-808 nm) and LED (637 ± 15 nm) were applied. The groups were as follows: red laser (RL3-5 J/cm2, 3 s and RL5-8.3 J/cm2, 5 s, 1.66 W/cm2); infrared laser (IrL3-5 J/cm2, 3 s and IrL5-8.3 J/cm2, 5 s); LED (LED3-3 s and LED5-5 s, 0.02 J/cm2, 0.885 W/cm2); positive (C+, 10% FBS) and negative control (C-, 1% FBS). For alkaline phosphatase (ALP) and mineralization assays, the cells were cultured in REG (DMEM 10% FBS) and OST medium (DMEM 10% FBS, 50 μg/mL ascorbic acid, 10 mM β-glycerophosphate). Statistical analysis was performed using ANOVA and Tukey's tests (p < 0.05). RL5 and LED5 increased proliferation, in vitro wound closure, ALP, and mineralization in rGO cells (p < 0.05). PBM with red laser and LED induced mineralization by itself, without osteogenic medium, not observed for infrared laser (p < 0.05). A sum of effects was observed in osteogenic medium and PBM by infrared, red laser, and LED (5 s). Red laser and LED increased proliferation, migration, and secretory phases in rGO cells in a dose-dependent manner. PBM with red laser and LED promotes osteogenic induction by itself. PBM with infrared laser and osteogenic medium potentializes mineralization.
Collapse
Affiliation(s)
- Matheus Völz Cardoso
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil.
| | - Rebeca do Vale Placa
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Sebastião Luiz Aguiar Greghi
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Maria Lucia Rubo de Rezende
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Rodrigo Cardoso Oliveira
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Carla Andreotti Damante
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| |
Collapse
|
5
|
Choi YY. Age-related osteogenesis on lateral force application to rat incisor – Part I: Premaxilla suture remodeling. APOS TRENDS IN ORTHODONTICS 2020. [DOI: 10.25259/apos_27_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives:
The suture is a fibrous tissue intervening two adjacent bone segments, existing only in the craniofacial region. In spite of wide use of palatal expansion in various ages, the age-dependent cellular mechanism for osteogenesis is largely unknown. The aim of this study was to examine the proliferation and differentiation pattern of the suture cells on lateral expansion in rats depending on the ages.
Materials and Methods:
Calibrated lateral tensile stress of 50 g was given to the male Sprague-Dawley rat incisors using a double helix in 30 young (10 weeks) and another 30 aged (52 weeks) group, respectively. Each group was subdivided into control, 1, 3, 7, 14, and 21 days, with five animals in each group. Premaxilla area was retrieved from each animal for further histologic analyses including H and E, Masson’s trichrome, and immunohistochemical staining using antibodies against phospho-extracellular signal-regulated kinase, proliferating cell nuclear antigen (PCNA), and fibroblast growth factor receptor-2 (FGFR2). Positive cell counts in the region of interest were conducted.
Results:
Gross suture separation and subsequent bone formation on the sutural side bone surface were observed in both groups, characterized as active collagen turnover, remarkable woven bone projection toward the sutural mesenchyme and subsequent maturation in 3 weeks. Increase in PCNA- and FGFR2-postive cell proportions were comparable in both groups, indicating similar time- and area-specific proliferation and osteogenic differentiation patterns in the stretched suture regardless of the age groups.
Conclusion:
According to the results, it can be implicated that the tensile stress applied to the suture in the adult group may induce active bone formation similar to that in young group, in associated with FGFR2 and Erk signaling cascade. Mesenchymal cells in the premaxillary suture appear to retain remarkable potential for further proliferation and differentiation even in aged subjects.
Collapse
|
6
|
Liu M, Sun F, Feng Y, Sun X, Li J, Fan Q, Liu M. MicroRNA-132-3p represses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress. Mol Cell Biochem 2019; 458:143-157. [DOI: 10.1007/s11010-019-03538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
|
7
|
Sato K, Matsubara O, Hase E, Minamikawa T, Yasui T. Quantitative in situ time-series evaluation of osteoblastic collagen synthesis under cyclic strain using second-harmonic-generation microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 30635995 PMCID: PMC6975189 DOI: 10.1117/1.jbo.24.3.031019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study is to evaluate the osteoblastic collagen synthesis under mechanical stimulation using second-harmonic-generation (SHG) microscopy. We apply SHG microscopy to monitor the collagen fibers synthesized by osteoblast-like cells (MC3T3-E1) without the need for fixation and staining. To quantitatively evaluate the influence of mechanical stimulation on osteoblastic collagen synthesis, we compare SHG images of osteoblast-synthesized collagen fibers with and without a cyclic stretch stimulus applied using a lab-made stretching device. We acquire SHG images every 7 days for 3 weeks at different stimulus conditions (5 min/day and 3 h/day with a strain magnitude of 5% and a frequency of 0.5 Hz). Image analysis of the average SHG intensity indicates that the amount of osteoblastic collagen synthesis is significantly enhanced by the cyclic stretch compared with the nonstretched condition, while there is no significant difference between the two mechanical stimulation conditions. Furthermore, the maturity of the collagen fibers in the early stage of bone formation is not affected by the mechanical stimulation. The results can be used in bone regenerative medicine to apply feedback control of collagen synthesis by artificial stimulation.
Collapse
Affiliation(s)
- Katsuya Sato
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Oki Matsubara
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Eiji Hase
- Japan Synchrotron Radiation Research Institute, Research and Utilization Division, Sayo, Hyogo, Japan
| | - Takeo Minamikawa
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| | - Takeshi Yasui
- Tokushima University, Graduate School of Technology, Industrial and Social Sciences, Tokushima City, Tokushima, Japan
| |
Collapse
|
8
|
Combined Fluid Shear Stress and Melatonin Enhances the ERK/Akt/mTOR Signal in Cilia-Less MC3T3-E1 Preosteoblast Cells. Int J Mol Sci 2018; 19:ijms19102929. [PMID: 30261648 PMCID: PMC6213863 DOI: 10.3390/ijms19102929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
We investigated whether combined fluid shear stress (FSS) and melatonin stimulated signal transduction in cilia-less MC3T3-E1 preosteoblast cells. MC3T3-E1 cells were treated with chloral hydrate or nocodazole, and mechanotransduction sensor primary cilia were removed. p-extracellular signal–regulated kinase (ERK) and p-Akt with/without melatonin increased with nocodazole treatment and decreased with chloral hydrate treatment, whereas p-ERK and p-Akt in FSS with/without melatonin increased in cilia-less groups compared to cilia groups. Furthermore, p-mammalian target of rapamycin (mTOR) with FSS-plus melatonin increased in cilia-less groups compared to only melatonin treatments in cilia groups. Expressions of Bcl-2, Cu/Zn-superoxide dismutase (SOD), and catalase proteins were higher in FSS with/without melatonin with cilia-less groups than only melatonin treatments in cilia groups. Bax protein expression was high in FSS-plus melatonin with chloral hydrate treatment. In chloral hydrate treatment with/without FSS, expressions of Cu/Zn-SOD, Mn-SOD, and catalase proteins were high compared to only-melatonin treatments. In nocodazole treatment, Mn-SOD protein expression without FSS was high, and catalase protein level with FSS was low, compared to only melatonin treatments. These data show that the combination with FSS and melatonin enhances ERK/Akt/mTOR signal in cilia-less MC3T3-E1, and the enhanced signaling in cilia-less MC3T3-E1 osteoblast cells may activate the anabolic effect for the preservation of cell structure and function.
Collapse
|
9
|
Valdivieso P, Toigo M, Hoppeler H, Flück M. T/T homozygosity of the tenascin-C gene polymorphism rs2104772 negatively influences exercise-induced angiogenesis. PLoS One 2017; 12:e0174864. [PMID: 28384286 PMCID: PMC5383042 DOI: 10.1371/journal.pone.0174864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. METHODS Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). RESULTS Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. CONCLUSION Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise.
Collapse
Affiliation(s)
- Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Marco Toigo
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Hans Hoppeler
- Institute of Anatomy, University of Berne, Berne, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Institute of Anatomy, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
10
|
In vitro effects of mechanical stimulation and photobiomodulation on osteoblastic cell function: A proof of concept study. PEDIATRIC DENTAL JOURNAL 2017. [DOI: 10.1016/j.pdj.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Luo F, Xie Y, Xu W, Huang J, Zhou S, Wang Z, Luo X, Liu M, Chen L, Du X. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome. Int J Biol Sci 2017; 13:32-45. [PMID: 28123344 PMCID: PMC5264259 DOI: 10.7150/ijbs.16287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/24/2016] [Indexed: 02/04/2023] Open
Abstract
Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.
Collapse
Affiliation(s)
- Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
12
|
Effects of Hypergravity on Osteopontin Expression in Osteoblasts. PLoS One 2015; 10:e0128846. [PMID: 26046934 PMCID: PMC4457898 DOI: 10.1371/journal.pone.0128846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Mechanical stimuli play crucial roles in bone remodeling and resorption. Osteopontin (OPN), a marker for osteoblasts, is important in cell communication and matrix mineralization, and is known to function during mechanotransduction. Hypergravity is a convenient approach to forge mechanical stimuli on cells. It has positive effects on certain markers of osteoblast maturation, making it a possible strategy for bone tissue engineering. We investigated the effects of hypergravity on OPN expression and cell signaling in osteoblasts. Hypergravity treatment at 20 g for 24 hours upregulated OPN expression in MC3T3-E1 cells at the protein as well as mRNA level. Hypergravity promoted OPN expression by facilitating focal adhesion assembly, strengthening actin bundles, and increasing Runx2 expression. In the hypergravity-triggered OPN expression pathway, focal adhesion assembly-associated FAK phosphorylation was upstream of actin bundle assembly.
Collapse
|
13
|
Xu L, Liu Y, Hou Y, Wang K, Wong Y, Lin S, Li G. U0126 promotes osteogenesis of rat bone-marrow-derived mesenchymal stem cells by activating BMP/Smad signaling pathway. Cell Tissue Res 2015; 359:537-545. [PMID: 25363751 DOI: 10.1007/s00441-014-2025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022]
Abstract
U0126 has been reported as a specific inhibitor of the ERK1/2 signaling pathway, which plays a vital role during the osteogenic differentiation of mesenchymal stem cells (MSCs). We report the positive effect of U0126 on the osteogenesis of rat MSCs. We find that U0126 promotes the osteogenic differentiation of rat MSCs as demonstrated by the quantitative real-time polymerase chain reaction for osteogenic markers, alkaline phosphatase activity and calcium nodule formation. Our data indicate that U0126 enhances the BMP/Smad signaling pathway in rat MSCs, while inhibiting the ERK1/2 signaling pathway. Furthermore, Western blot results demonstrate that U0126 increases Smad1/5/8 phosphorylation synergistically with β-glycerophosphate. In addition, U0126 significantly increases the expression of BMP2 during the process of osteogenesis in rat MSCs and the level of phosphorylated Smad1/5/8 is significantly reduced by BMP2 antibody, suggesting that U0126 also promotes the expression of BMP2 to enhance Smad proteins phosphorylation. Thus, we demonstrate a novel function for U0126 in promoting osteogenic differentiation of rat MSCs by the activation of the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yonghui Hou
- School of Biomedical Sciences, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Kuixing Wang
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yinmei Wong
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- MOE Key Laboratory of Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
- Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Room 904, 9/F, Shatin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
14
|
Karasawa Y, Tanaka H, Nakai K, Tanabe N, Kawato T, Maeno M, Shimizu N. Tension Force Downregulates Matrix Metalloproteinase Expression and Upregulates the Expression of Their Inhibitors through MAPK Signaling Pathways in MC3T3-E1 cells. Int J Med Sci 2015; 12:905-13. [PMID: 26640410 PMCID: PMC4643081 DOI: 10.7150/ijms.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs), produced by osteoblasts, catalyze the turnover of extracellular matrix (ECM) molecules in osteoid, and the regulation of MMP activity depends on interactions between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We focused on the degradation process of ECM in osteoid that was exposed to mechanical strain, and conducted an in vitro study using MC3T3-E1 osteoblastic cells to examine the effects of tension force (TF) on the expression of MMPs and TIMPs, and activation of mitogen-activated protein kinase (MAPK) pathways. DESIGN Cells were incubated on flexible-bottomed culture plates and stimulated with or without cyclic TF for 24 hours. The expression of MMPs and TIMPs was examined at mRNA and protein levels by real-time RT-PCR and Western blotting, respectively. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) were examined by Western blotting. RESULTS TF decreased the expression of MMP-1, -3, -13 and phosphorylated ERK1/2. In contrast, TF increased the expression of TIMP-2, -3 and phosphorylated SAPK/JNK. The expression of MMP-2, -14, TIMP-1, -4 and phosphorylated p38 MAPK was unaffected by TF. MMP-1, -3 and -13 expression decreased in cells treated with the ERK inhibitor PD98059 compared with untreated control cells. The JNK inhibitor SP600125 inhibited the TF-induced upregulation of TIMP-2 and -3. CONCLUSIONS The results suggest that TF suppresses the degradation process that occurs during ECM turnover in osteoid via decreased production of MMP-1, -3 and -13, and increased production of TIMP-2 and -3 through the MAPK signaling pathways in osteoblasts.
Collapse
Affiliation(s)
- Yoko Karasawa
- 1. Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Hideki Tanaka
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kumiko Nakai
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan ; 4. Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Takayuki Kawato
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- 2. Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan ; 3. Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriyoshi Shimizu
- 5. Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan ; 6. Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
15
|
Kim CH, Yoo YM. Fluid shear stress and melatonin in combination activate anabolic proteins in MC3T3-E1 osteoblast cells. J Pineal Res 2013; 54:453-61. [PMID: 23397978 DOI: 10.1111/jpi.12043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022]
Abstract
In this study, we investigated whether fluid shear stress and melatonin in combination stimulate the anabolic proteins through the phosphorylation of extracellular signal-regulated kinase (p-ERK) in MC3T3-E1 osteoblast cells. First, we researched why fluid shear stress and melatonin in combination influence cell survival. Fluid shear stress (1 hr) and melatonin (1 mM) in combination reduced autophagic marker LC3-II compared with fluid shear stress (1 hr) and/or melatonin (0.1 mM). Under the same conditions for fluid shear stress, markers of cell survival signaling pathway p-ERK, phosphorylation of serine-threonine protein kinase (p-Akt), phosphorylation of mammalian target of rapamycin (p-mTOR), and p85-S6K were investigated. p-Akt, p-mTOR (Ser 2481) expressions increased with the addition of 1 mM melatonin prior to 0.1 mM melatonin treatment. However, p-S6K expression did not change significantly. Next, mitochondria activity including Bcl-2, Bax, catalase, and Mn-superoxide dismutase (Mn-SOD) were studied. Expressions of Bcl-2, Bax, and catalase proteins were low under fluid shear stress plus 1 mM melatonin compared with only fluid shear stress alone, whereas Mn-SOD expression was high compared with conditions of no fluid shear stress. Finally, the anabolic proteins of bone, osteoprotegerin, type I collagen (collagen I), and bone sialoprotein II (BSP II) were checked. These proteins increased with combined fluid shear stress (1, 4 hr) and melatonin (0.1, 1 mM). Together, these results suggest that fluid shear stress and melatonin in combination may increase the expression of anabolic proteins through the p-ERK in MC3T3-E1 osteoblast cells. Therefore, fluid shear stress in combination with melatonin may promote the anabolic response of osteoblasts.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do, Korea
| | | |
Collapse
|
16
|
Inhibition of JNK and ERK pathways by SP600125- and U0126-enhanced osteogenic differentiation of bone marrow stromal cells. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0352-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
17
|
Nowlan NC, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol 2012; 11:207-19. [PMID: 21505895 PMCID: PMC4794622 DOI: 10.1007/s10237-011-0304-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/19/2011] [Indexed: 01/29/2023]
Abstract
In genetically modified mice with abnormal skeletal muscle development, bones and joints are differentially affected by the lack of skeletal muscle. We hypothesise that unequal levels of biophysical stimuli in the developing humerus and femur can explain the differential effects on these rudiments when muscle is absent. We find that the expression patterns of four mechanosensitive genes important for endochondral ossification are differentially affected in muscleless limb mutants, with more extreme changes in the expression in the humerus than in the femur. Using finite element analysis, we show that the biophysical stimuli induced by muscle forces are similar in the humerus and femur, implying that the removal of muscle contractile forces should, in theory, affect the rudiments equally. However, simulations in which a displacement was applied to the end of the limb, such as could be caused in muscleless mice by movements of the mother or normal littermates, predicted higher biophysical stimuli in the femur than in the humerus. Stimuli induced by limb movement were much higher than those induced by the direct application of muscle forces, and we propose that movements of limbs caused by muscle contractions, rather than the direct application of muscle forces, provide the main mechanical stimuli for normal skeletal development. In muscleless mice, passive movement induces unequal biophysical stimuli in the humerus and femur, providing an explanation for the differential effects seen in these mice. The significance of these results is that forces originating external to the embryo may contribute to the initiation and progression of skeletal development when muscle development is abnormal.
Collapse
Affiliation(s)
- Niamh C Nowlan
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
18
|
Chung E, Rylander MN. Response of a preosteoblastic cell line to cyclic tensile stress conditioning and growth factors for bone tissue engineering. Tissue Eng Part A 2011; 18:397-410. [PMID: 21919794 DOI: 10.1089/ten.tea.2010.0414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone regeneration can be accelerated by utilizing mechanical stress and growth factors (GFs). However, a limited understanding exists regarding the response of preosteoblasts to tensile stress alone or with GFs. We measured cell proliferation and expression of heat-shock proteins (HSPs) and other bone-related proteins by preosteoblasts following cyclic tensile stress (1%-10% magnitude) alone or in combination with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1). Tensile stress (3%) with GFs induced greater gene upregulation of osteoprotegerin (3.3 relative fold induction [RFI] compared to sham-treated samples), prostaglandin E synthase 2 (2.1 RFI), and vascular endothelial growth factor (VEGF) (11.5 RFI), compared with samples treated with stimuli alone or sham-treated samples. The most significant increases in messenger RNA expression occurred with GF addition to either static-cultured or tensile-loaded (1% elongation) cells for the following genes: HSP47 (RFI=2.53), cyclooxygenase-2 (RFI=72.52), bone sialoprotein (RFI=11.56), and TGF-β1 (RFI=8.05). Following 5% strain with GFs, VEGF secretion increased 64% (days 3-6) compared with GF alone and cell proliferation increased 23% compared with the sham-treated group. GF addition increased osteocalcin secretion but decreased matrix metalloproteinase-9 significantly (days 3-6). Tensile stress and GFs in combination may enhance bone regeneration by initiating angiogenic and anti-osteoclastic effects and promote cell growth.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
19
|
Lossdörfer S, Abuduwali N, Jäger A. Bone Morphogenetic Protein-7 Modifies the Effects of Insulin-Like Growth Factors and Intermittent Parathyroid Hormone (1-34) on Human Periodontal Ligament Cell Physiology In Vitro. J Periodontol 2011; 82:900-8. [DOI: 10.1902/jop.2010.100572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Shi Y, Li H, Zhang X, Fu Y, Huang Y, Lui PPY, Tang T, Dai K. Continuous cyclic mechanical tension inhibited Runx2 expression in mesenchymal stem cells through RhoA-ERK1/2 pathway. J Cell Physiol 2011; 226:2159-69. [DOI: 10.1002/jcp.22551] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Non-overlapping functions for Pyk2 and FAK in osteoblasts during fluid shear stress-induced mechanotransduction. PLoS One 2011; 6:e16026. [PMID: 21283581 PMCID: PMC3026802 DOI: 10.1371/journal.pone.0016026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022] Open
Abstract
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2+/+ and Pyk2−/− primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2+/+ and Pyk2−/− osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK−/− osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts.
Collapse
|
22
|
Ding VMY, Ling L, Natarajan S, Yap MGS, Cool SM, Choo ABH. FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J Cell Physiol 2010; 225:417-28. [PMID: 20506199 DOI: 10.1002/jcp.22214] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factor-2 (FGF-2) is widely used to culture human embryonic stem cells (hESC) and induced pluripotent stem (iPS) cells. Despite its importance in maintaining undifferentiated hESC phenotype, a lack of understanding in the role of FGF-2 still exists. Here, we investigate the signaling events in hESC following the addition of exogenous FGF-2. In this study, we show that hESC express all forms of fibroblast growth factor receptors (FGFRs) which co-localize on Oct3/4 positive cells. Furthermore, downregulation of Oct3/4 in hESC occurs following treatment with an FGFR inhibitor, suggesting that FGF signaling may regulate Oct3/4 expression. This is also observed in iPS cells. Also, downstream of FGF signaling, both mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase pathways (PI3-K) are activated following FGF-2 stimulation. Notably, inhibition of MAPK and PI3-K signaling using specific kinase inhibitors revealed that activated PI3-K, rather than MAPK, can mediate pluripotent marker expression. To understand the importance of PI3-K activation, activation of Wnt/beta-catenin by FGF-2 was investigated. Wnt signaling had been implicated to have a role in maintaining of pluripotent hESC. We found that upon FGF-2 stimulation, GSK3beta is phosphorylated following which nuclear translocation of beta-catenin and TCF/LEF activation occurs. Interestingly, inhibition of the Wnt pathway with Dikkopf-1 (DKK-1) resulted in only partial suppression of the FGF-2 induced TCF/LEF activity. Prolonged culture of hESC with DKK-1 did not affect pluripotent marker expression. These results suggest that FGF-2 mediated PI3-K signaling may have a direct role in modulating the downstream of Wnt pathway to maintain undifferentiated hESC.
Collapse
Affiliation(s)
- Vanessa M Y Ding
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Stem Cell Group, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Dumas V, Ducharne B, Perrier A, Fournier C, Guignandon A, Thomas M, Peyroche S, Guyomar D, Vico L, Rattner A. Extracellular matrix produced by osteoblasts cultured under low-magnitude, high-frequency stimulation is favourable to osteogenic differentiation of mesenchymal stem cells. Calcif Tissue Int 2010; 87:351-64. [PMID: 20582583 DOI: 10.1007/s00223-010-9394-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/07/2010] [Indexed: 01/28/2023]
Abstract
The effects of low-magnitude, high-frequency (LMHF) mechanical stimulation on osteoblastic cells are poorly understood. We have developed a system that generates very small (15-40 με), high-frequency (400 Hz, sine) deformations on osteoblast cultures (MC3T3-E1). We investigated the effects of these LMHF stimulations mainly on extracellular matrix (ECM) synthesis. The functional properties of this ECM after decellularization were evaluated on C3H10T1/2 mesenchymal stem cells (MSCs). LMHF stimulations were applied 20 min once daily for 1, 3, or 7 days in MC3T3-E1 culture (1, 3, or 7 dLMHF). Cell number and viability were not affected after 3 or 7 dLMHF. Osteoblast response to LMHF was assessed by an increase in nitric oxide secretion, alteration of the cytoskeleton, and focal contacts. mRNA expression for fibronectin, osteopontin, bone sialoprotein, and type I collagen in LMHF cultures were 1.8-, 1.6-, 1.5-, and 1.7-fold higher than controls, respectively (P < 0.05). In terms of protein, osteopontin levels were increased after 3 dLMHF and ECM organization was altered as shown by fibronectin topology after 7 dLMHF. After decellularization, 7 dLMHF-ECM or control ECM was reseeded with MSCs. Seven dLMHF-ECM improved early events such as cell attachment (2 h) and focal contact adhesion (6 h) and, later (16 h), modified MSC morphological parameters. After 5 days in multipotential medium, gene-expression changes indicated that 7 dLMHF-ECM promoted the expression of osteoblast markers at the expense of adipogenic marker. LMHF stimulations of osteoblasts are therefore efficient and sufficient to generate osteogenic matrix.
Collapse
|
24
|
Lossdörfer S, Götz W, Jäger A. PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 2010; 15:941-52. [PMID: 20697756 DOI: 10.1007/s00784-010-0456-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Parathyroid hormone (PTH) is widely accepted as an anabolic agent when administered intermittently. Here, we explored the influence of intermittent PTH(1-34) on the expression of local factors by human periodontal ligament (PDL) cells that modify osteoclast biology. This approach aimed at a further elucidation of the role of the hormone and of PDL cells in the regulation of periodontal tissue homeostasis and of repair processes. In a co-culture model of mature PDL cells and RAW 264.7 cells, intermittent PTH(1-34) induced an increased gene expression for tartrate-resistant acid phosphatase (+84%), cathepsin K (+56%), and vitronectin-receptor (+56%); and an enhanced resorptive activity of differentiated osteoclasts (+154%). These findings were correlated with a reduction of the osteoprotegerin (OPG)/receptor activator of nuclear factor kappaB ligand (RANKL) ratio in the presence of PTH(1-34; -44%). Similar results were obtained when RAW cells were cultured with the conditioned medium of PTH(1-34)-stimulated PDL cells. In contrast, when less mature PDL cells were co-cultured with RAW cells, PTH(1-34) induced an inhibition of osteoclastic differentiation (TRAP, -35%; cathepsin K, -28%; vitronectin-receptor, -35%), a reduction of the resorbed substrate area (-77%) and an increase of the OPG/RANKL ratio (+11%). The conditioned medium of PTH(1-34)-pretreated less mature PDL cells led to a down-regulation of the number and activity of multinucleated cells. These data indicate that intermittent PTH(1-34) modifies the expression of membrane-bound and secreted factors by PDL cells which then in turn alter osteoclast biology. The PDL cell response to PTH(1-34) is specific in terms of cell maturation and the mechanism involved.
Collapse
Affiliation(s)
- Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany.
| | | | | |
Collapse
|
25
|
Decreased polyunsaturated Fatty Acid content contributes to increased survival in human colon cancer. JOURNAL OF ONCOLOGY 2009; 2009:867915. [PMID: 19841681 PMCID: PMC2762309 DOI: 10.1155/2009/867915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/14/2022]
Abstract
Among diet
components, some fatty acids are known to affect
several stages of colon carcinogenesis, whereas
others are probably helpful in preventing
tumors. In light of this, our aim was to
determine the composition of fatty acids and the
possible correlation with apoptosis in human
colon carcinoma specimens at different
Duke's stages and to evaluate the effect of
enriching human colon cancer cell line with the
possible reduced fatty acid(s). Specimens of
carcinoma were compared with the corresponding
non-neoplastic mucosa: a significant decrease of
arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2,
Bcl-2, and pBad were found. The importance of arachidonic acid in
apoptosis was demonstrated by enriching a Caco-2 cell line with
this fatty acid. It induced apoptosis in a dose- and
time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the
reduced content of arachidonic acid is likely related to
carcinogenic process decreasing the susceptibility of cancer cells
to apoptosis.
Collapse
|
26
|
Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials 2009; 30:5417-26. [DOI: 10.1016/j.biomaterials.2009.06.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/18/2009] [Indexed: 12/13/2022]
|
27
|
Grellier M, Bareille R, Bourget C, Amédée J. Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med 2009; 3:302-9. [PMID: 19283726 DOI: 10.1002/term.166] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We examined the hypothesis that human mesenchymal stem cells detect physiological mechanical signals. Human bone marrow stromal cells (HBMSCs) were exposed to fluid shear stress of 12 dynes/cm(2) and analysed for their ability to express osteoblast-specific markers and associated signalling pathways. HBMSCs showed a significant increase in alkaline phosphatase (ALP) gene expression and a marked decrease in type I collagen, while no effect on Cbfa1/Runx2 was detected. This regulation is related to p38 and ERK1/2 activation, although the use of specific inhibitors to these two MAP kinases suggests that ALP mRNA induction is especially dependent on p38 activity, while type I collagen downregulation is ERK1/2-dependent. Interestingly, the expression of connexin43, which is involved in cell-to-cell communication of osteoblastic cells through gap junction formation, and its distribution through the cells, were modified by fluid flow (FF). HBMSCs are sensitive to shear stress and it appears essential to take their responsiveness into consideration before associating these regenerative cells with a bioactive biomaterial in a new bone tissue-engineering strategy.
Collapse
Affiliation(s)
- Maritie Grellier
- INSERM, U577, Bordeaux and Université Victor Segalen Bordeaux 2, UMR-S577, Bordeaux, France.
| | | | | | | |
Collapse
|
28
|
Teplyuk NM, Haupt LM, Ling L, Dombrowski C, Mun FK, Nathan SS, Lian JB, Stein JL, Stein GS, Cool SM, van Wijnen AJ. The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts. J Cell Biochem 2009; 107:144-54. [PMID: 19259985 DOI: 10.1002/jcb.22108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin JM, Callon KE, Lin JS, Watson M, Empson V, Tong PC, Grey A, Naot D, Green CR, Reid IR, Cornish J. Actions of fibroblast growth factor-8 in bone cells in vitro. Am J Physiol Endocrinol Metab 2009; 297:E142-50. [PMID: 19383871 DOI: 10.1152/ajpendo.90743.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fibroblast growth factors (FGFs) are a group of at least 25 structurally related peptides that are involved in many biological processes. Some FGFs are active in bone, including FGF-1, FGF-2, and FGF-18, and recent evidence indicates that FGF-8 is osteogenic, particularly in mesenchymal stem cells. In the current study, we found that FGF-8 was expressed in rat primary osteoblasts and in osteoblastic UMR-106 and MC3T3-E1 cells. Both FGF-8a and FGF-8b potently stimulated the proliferation of osteoblastic cells, whereas they inhibited the formation of mineralized bone nodules in long-term cultures of osteoblasts and reduced the levels of osteoblast differentiation markers, osteocalcin, and bone sialoprotein. FGF-8a induced the phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK) in osteoblastic cells; however, its mitogenic actions were not blocked by either the MAPK kinase (MEK) inhibitor U-0126 or the PI 3-kinase (PI3K) inhibitor LY-294002. Interestingly, FGF-8a, unlike FGF-8b and other members of the family, inhibited osteoclastogenesis in mouse bone marrow cultures, and this was via a receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)-independent manner. However, FGF-8a did not affect osteoclastogenesis in RAW 264.7 cells (a macrophage cell line devoid of stromal cells) exogenously stimulated by RANKL, nor did it affect mature osteoclast function as assessed in rat calvarial organ cultures and isolated mature osteoclasts. In summary, we have demonstrated that FGF-8 is active in bone cells, stimulating osteoblast proliferation in a MAPK-independent pathway and inhibiting osteoclastogenesis via a RANKL/OPG-independent mechanism. These data suggest that FGF-8 may have a physiological role in bone acting in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Jian-Ming Lin
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumarasuriyar A, Lee I, Nurcombe V, Cool SM. De-sulfation of MG-63 cell glycosaminoglycans delays in vitro osteogenesis, up-regulates cholesterol synthesis and disrupts cell cycle and the actin cytoskeleton. J Cell Physiol 2009; 219:572-83. [PMID: 19142873 DOI: 10.1002/jcp.21700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycan (GAG) sugars are largely responsible for the bioactivity of the proteoglycan proteins they decorate, and are particularly important for mediating the processes of cell attachment and growth factor signaling. Here, we show that chlorate-induced de-sulfation of GAGs expressed by MG-63 osteosarcoma cells results in delayed cell proliferation when the cells are exposed to chlorate for short or medium periods, but a disrupted mineralization without altered cell proliferation in response to long-term chlorate exposure. Analysis of GAG-binding growth factor activity indicated that chlorate disrupted BMP2/noggin signaling, but not FGF2 activity. Microarray analyses, which were confirmed by subsequent cell-based assays, indicated that chlorate predominantly disrupted the cell cycle and actin cytoskeleton and upregulated cholesterol synthesis, without affecting cell migration or attachment. Furthermore, we observed that disruption of the functions of the proteoglycan syndecan-4 replicated phenotypes induced by chlorate, implicating a primary role for this proteoglycan in providing bioactivity for these cells. J. Cell. Physiol. 219: 572-583, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
|
31
|
Du D, Furukawa KS, Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng 2009; 102:1670-8. [DOI: 10.1002/bit.22214] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 2009; 17:473-81. [PMID: 18974013 DOI: 10.1016/j.joca.2008.09.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/12/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES In osteoarthritis (OA), mechanical factors play a key role, not only in cartilage degradation, but also in subchondral bone sclerosis. The aim of this study was to develop on original compression model for studying the effect of mechanical stress on osteoblasts. MATERIALS AND METHODS We investigate the effects of compression on primary calvaria osteoblasts isolated from newborn mice and cultured for 28 days in monolayer. At the end of this period, osteoblasts were embedded in a newly synthesized extracellular matrix which formed a three-dimensional membrane. This membrane was then submitted to compression in Biopress Flexercell plates (1-1.7 MPa compressions at 1 Hz frequency) during 1-8h. The expression of 20 genes was investigated by real time reverse transcriptase polymerase chain reaction. Interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and prostaglandin (PG)E(2) were assayed in the culture medium by specific immunoassays. RESULTS The compression highly increased IL-6 and cyclooxygenase (COX)-2 mRNA levels in osteoblasts. In parallel, increased amount of IL-6 and PGE(2) was found in the supernatant of loaded osteoblasts. This stimulation reached a maximum after 4h of 10% compression. MMP-2, MMP-3, and MMP-13 mRNA levels were also increased by compressive stress, while 15-hydroxyprostaglandin-dehydrogenase and osteoprotegerin (OPG) start to decrease at hour 4. COX-1, microsomial PG E synthase-1 (mPGES1), mPGES2 and cytosolic PGES and receptor activator of nuclear factor ligand (RANKL) were unmodified. Finally, we observed that alpha 5 beta 1 integrin, intracellular Ca(++), nuclear factor-kappaB and extracellular signal-regulated kinase 1/2 pathways were involved in the compression-induced IL-6 and PGE(2) production. IL-6 neutralizing antibodies and piroxicam inhibited the decrease OPG expression, but did not modify RANKL mRNA level, indicating that IL-6 and PGE(2) induce a decrease of the OPG/RANKL ratio. CONCLUSION This work demonstrates that IL-6 is mechano-sensitive cytokine and probably a key factor in the biomechanical control of bone remodeling in OA.
Collapse
Affiliation(s)
- C Sanchez
- Bone and Cartilage Metabolism Research Unit, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
33
|
Abstract
Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.
Collapse
|
34
|
Kokkinos PA, Zarkadis IK, Panidis TT, Deligianni DD. Estimation of hydrodynamic shear stresses developed on human osteoblasts cultured on Ti-6Al-4V and strained by four point bending. Effects of mechanical loading to specific gene expression. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:655-665. [PMID: 18941870 DOI: 10.1007/s10856-008-3602-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 09/23/2008] [Indexed: 05/26/2023]
Abstract
The aim of the present investigation was to study the effects of mechanical strain on the orthopedic biomaterial Ti-6Al-4V-osteoblast interface, using an in vitro model. Homogeneous strain was applied to Human Bone Marrow derived Osteoblasts (HBMDOs) cultured on Ti-6Al-4V, at levels which are considered physiological, by a four-point bending mechanostimulatory system. A simple model for the estimation of maximum hydrodynamic shear stresses developed on cell culture layer and induced by nutrient medium flow during mechanical loading, as a function of the geometry of the culture plate and the load characteristics, is proposed. Shear stresses were lower than those which can elicit cell response. Mechanical loading was found that contributes to the regulation of osteoblast differentiation by influencing the expression of the osteoblast-specific transcription factor Cbfa1, both at the mRNA and protein level, and also the osteocalcin expression, whereas osteopontin gene expression was unaffected by mechanical loading at all experimental conditions.
Collapse
Affiliation(s)
- Petros A Kokkinos
- Biomedical Engineering Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Rion, 26500, Patra, Greece
| | | | | | | |
Collapse
|
35
|
Kumarasuriyar A, Murali S, Nurcombe V, Cool SM. Glycosaminoglycan composition changes with MG-63 osteosarcoma osteogenesis in vitro and induces human mesenchymal stem cell aggregation. J Cell Physiol 2009; 218:501-11. [PMID: 18988189 DOI: 10.1002/jcp.21620] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteogenic differentiation is coordinated by the exposure of cells to temporal changes in a combination of growth factors and elements within the extracellular matrix (ECM). Many of the key proteins that drive these changes share the property of being dependent on ECM glycosaminoglycans (GAGs) for their activity. Here, we examined whether GAGs isolated from proliferating, differentiating and mineralizing MG-63 osteosarcoma cells differed in their physical properties, and thus in their capacities to coordinate the osteogenic cascade both in human MG-63 osteosarcoma cells and primary human mesenchymal stem cells (hMSCs). Our results show that the size distribution of GAGs, the expression of GAG-carrying proteoglycan cores and the expression of enzymes involved in their modification systematically change as MG-63 cells mature in culture. When dosed back onto cells exogenously in soluble form, GAGs regulated MG-63 survival and growth in a dose-dependent manner, but not differentiation in either cell type. In contrast, hMSCs aggregated into distinct colonies when grown on GAG-coated substrates, while MG-63 cells did not. Heparin-coated substrates improved hMSC viability without inducing aggregation. These results suggest a complex role for GAGs in coordinating the emergence of the osteoblast phenotype, and provide further evidence for the use of heparans in bone tissue repair applications.
Collapse
Affiliation(s)
- A Kumarasuriyar
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | | | | | | |
Collapse
|
36
|
Kumarasuriyar A, Grøndahl L, Nurcombe V, Cool SM. Osteoblasts up-regulate the expression of extracellular proteases following attachment to Poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Gene 2009; 428:53-8. [DOI: 10.1016/j.gene.2008.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/18/2008] [Indexed: 12/13/2022]
|
37
|
Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol 2008; 4:e1000250. [PMID: 19112485 PMCID: PMC2592698 DOI: 10.1371/journal.pcbi.1000250] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 11/11/2008] [Indexed: 11/18/2022] Open
Abstract
Although it is known that mechanical forces are needed for normal bone
development, the current understanding of how biophysical stimuli are
interpreted by and integrated with genetic regulatory mechanisms is limited.
Mechanical forces are thought to be mediated in cells by
“mechanosensitive” genes, but it is a challenge to
demonstrate that the genetic regulation of the biological system is dependant on
particular mechanical forces in vivo. We propose a new means of selecting
candidate mechanosensitive genes by comparing in vivo gene expression patterns
with patterns of biophysical stimuli, computed using finite element analysis. In
this study, finite element analyses of the avian embryonic limb were performed
using anatomically realistic rudiment and muscle morphologies, and patterns of
biophysical stimuli were compared with the expression patterns of four candidate
mechanosensitive genes integral to bone development. The expression patterns of
two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise
with biophysical stimuli induced by embryonic muscle contractions, identifying
them as potentially being involved in the mechanoregulation of bone formation.
An altered mechanical environment was induced in the embryonic chick, where a
neuromuscular blocking agent was administered in ovo to modify skeletal muscle
contractions. Finite element analyses predicted dramatic changes in levels and
patterns of biophysical stimuli, and a number of immobilised specimens exhibited
differences in ColX and Ihh expression. The results obtained indicate that
computationally derived patterns of biophysical stimuli can be used to inform a
directed search for genes that may play a mechanoregulatory role in particular
in vivo events or processes. Furthermore, the experimental data demonstrate that
ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators
in translating information from the mechanical environment to the molecular
regulation of bone formation in the embryo. While mechanical forces are known to be critical to adult bone maintenance and
repair, the importance of mechanobiology in embryonic bone formation is less
widely accepted. The influence of mechanical forces on cells is thought to be
mediated by “mechanosensitive genes,” genes which respond to
mechanical stimulation. In this research, we examined the situation in the
developing embryo. Using finite element analysis, we simulated the biophysical
stimuli in the developing bone resulting from spontaneous muscle contractions,
incorporating detailed morphology of the developing chick limb. We compared
patterns of stimuli with expression patterns of a number of genes involved in
bone formation and demonstrated a clear colocalisation in the case of two genes
(Ihh and ColX). We then altered the mechanical environment of the growing chick
embryo by blocking muscle contractions and demonstrated changes in the
magnitudes and patterns of biophysical stimuli and in the expression patterns of
both Ihh and ColX. We have demonstrated the value of combining computational
techniques with in vivo gene expression analysis to identify genes that may play
a mechanoregulatory role and have identified genes that respond to mechanical
stimulation during bone formation in vivo.
Collapse
Affiliation(s)
- Niamh C Nowlan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
38
|
Arnaud-Dabernat S, Yadav D, Sarvetnick N. FGFR3 contributes to intestinal crypt cell growth arrest. J Cell Physiol 2008; 216:261-8. [DOI: 10.1002/jcp.21401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007; 11:654-69. [PMID: 17760831 PMCID: PMC3823248 DOI: 10.1111/j.1582-4934.2007.00078.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A paradigm shift is taking place in orthopaedic and reconstructive surgery from using medical devices and tissue grafts to a tissue engineering approach that uses biodegradable scaffolds combined with cells or biological molecules to repair and/or regenerate tissues. One of the potential benefits offered by solid free-form fabrication technology (SFF) is the ability to create scaffolds with highly reproducible architecture and compositional variation across the entire scaffold, due to its tightly controlled computer-driven fabrication. In this review, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design in bone engineering.We also discuss the application-specific modifications driven by surgeon's requirements in vitro and/or in vivo. Next, we review the current use of SFF techniques in scaffold fabrication in the context of their clinical use in bone regeneration. Lastly, we comment on future developments in our groups, such as the functionalization of novel composite scaffolds with combinations of growth factors; and more specifically the promising area of heparan sulphate polysaccaride immobilization within the bone tissue engineering arena.
Collapse
Affiliation(s)
- D W Hutmacher
- Division of Bioengineering, Faculty of Engineering Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine National University of Singapore, Singapore.
| | | |
Collapse
|