1
|
The horizon of bone organoid: A perspective on construction and application. Bioact Mater 2022; 18:15-25. [PMID: 35387160 PMCID: PMC8961298 DOI: 10.1016/j.bioactmat.2022.01.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Bone defects repair and regeneration by various causes such as tumor resection, trauma, degeneration, etc. have always been a key issue in the clinics. As one of the few organs that can regenerate after adulthood, bone itself has a strong regenerative ability. In recent decades, bone tissue engineering technology provides various types of functional scaffold materials and seed cells for bone regeneration and repair, which significantly accelerates the speed and quality of bone regeneration, and many clinical problems are gradually solved. However, the bone metabolism mechanism is complicated, the research duration is long and difficult, which significantly restricts the progress of bone regeneration and repair research. Organoids as a new concept, which is built in vitro with the help of tissue engineering technology based on biological theory, can simulate the complex biological functions of organs in vivo. Once proposed, it shows broad application prospects in the research of organ development, drug screening, mechanism study, and so on. As a complex and special organ, bone organoid construction itself is quite challenging. This review will introduce the characteristics of bone microenvironment, the concept of organoids, focus on the research progress of bone organoids, and propose the strategies for bone organoid construction, study direction, and application prospects. This review introduces the concept and recent progress of bone organoids. This review proposes the study focus and strategies for constructing bone organoids. This review summarizes the potential applications of bone organoids.
Collapse
|
2
|
Ahmed M, Lai TH, Kim W, Kim DR. A Functional Network Model of the Metastasis Suppressor PEBP1/RKIP and Its Regulators in Breast Cancer Cells. Cancers (Basel) 2021; 13:6098. [PMID: 34885208 PMCID: PMC8657175 DOI: 10.3390/cancers13236098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Korea; (M.A.); (T.H.L.); (W.K.)
| |
Collapse
|
3
|
He S, Guan Y, Wu Y, Zhu L, Yan B, Honda H, Yang J, Liu W. DEC1 deficiency results in accelerated osteopenia through enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling. Metabolism 2021; 118:154730. [PMID: 33607194 PMCID: PMC8311383 DOI: 10.1016/j.metabol.2021.154730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human differentiated embryonic chondrocyte expressed gene 1 (DEC1) has been implicated in enhancing osteogenesis, a desirable outcome to counteract against deregulated bone formation such as retarded bone development, osteopenia and osteoporosis. METHODS AND RESULTS DEC1 knockout (KO) and the age-matched wild-type (WT) mice were tested for the impact of DEC1 deficiency on bone development and osteopenia as a function of age. DEC1 deficiency exhibited retarded bone development at the age of 4 weeks and osteopenic phenotype in both 4- and 24-week old mice. However, the osteopenia was more severe in the 24-week age groups. Mechanistically, DEC1 deficiency downregulated the expression of bone-enhancing genes such as Runx2 and β-catenin accompanied by upregulating DKK1, an inhibitor of the Wnt/β-catenin signaling pathway. Consistently, DEC1 deficiency favored the attenuation of the integrated PI3KCA/Akt/GSK3β signaling, a pathway targeting β-catenin for degradation. Likewise, the attenuation was greater in the 24-week age group. These changes, however, were reversed by in vivo treatment with lithium chloride, a stabilizer of β-catenin, and confirmed by gain-of-function study with DEC1 transfection into DEC1 KO bone marrow mesenchymal stem cells and loss-of-function study with siDEC1 lentiviral infection into the corresponding WT cells. CONCLUSION DEC1 is a positive regulator with a broad activity spectrum in both bone development and maintenance, and the osteopenic phenotype accelerated by DEC1 deficiency is achieved by enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, China
| | - Yu Guan
- Department of Pharmacology, Nanjing Medical University, China
| | - Yichen Wu
- Department of Pharmacology, Nanjing Medical University, China
| | - Ling Zhu
- Department of Pharmacology, Nanjing Medical University, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hiroaki Honda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, China
| |
Collapse
|
4
|
Bayram B, Owen AR, Dudakovic A, Bettencourt JW, Limberg AK, Morrey ME, Sanchez-Sotelo J, Berry DJ, Kocher JP, van Wijnen AJ, Abdel MP. Elevated Expression of Plasminogen Activator Inhibitor (PAI-1/SERPINE1) is Independent from rs1799889 Genotypes in Arthrofibrosis. Meta Gene 2021; 28. [PMID: 33816122 DOI: 10.1016/j.mgene.2021.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Arthrofibrosis is characterized by excessive extracellular matrix deposition in patients with total knee arthroplasties (TKAs) and causes undesirable joint stiffness. The pathogenesis of arthrofibrosis remains elusive and currently there are no diagnostic biomarkers for the pathological formation of this connective tissue. Fibrotic soft tissues are known to have elevated levels of plasminogen activator inhibitor-1 (PAI-1) (encoded by SERPINE1), a secreted serine protease inhibitor that moderates extracellular matrix remodeling and tissue homeostasis. The 4G/5G insertion/deletion (rs1799889) is a well-known SERPINE1 polymorphism that directly modulates PAI-1 levels. Homozygous 4G/4G allele carriers typically have higher PAI-1 levels and may predispose patients to soft tissue fibrosis (e.g., liver, lung, and kidney). Here, we examined the genetic contribution of the SERPINE1 rs1799889 polymorphism to musculoskeletal fibrosis in arthrofibrotic (n = 100) and non-arthrofibrotic (n = 100) patients using Sanger Sequencing. Statistical analyses revealed that the allele frequencies of the SERPINE1 rs1799889 polymorphism are similar in arthrofibrotic and non-arthrofibrotic patient cohorts. Because the fibrosis related SERPINE1 rs1799889 polymorphism is independent of arthrofibrosis susceptibility in TKA patients, the possibility arises that fibrosis of joint connective tissues may involve unique genetic determinants distinct from those linked to classical soft tissue fibrosis.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron R Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | | | - Afton K Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Sen B, Paradise CR, Xie Z, Sankaran J, Uzer G, Styner M, Meyer M, Dudakovic A, van Wijnen AJ, Rubin J. β-Catenin Preserves the Stem State of Murine Bone Marrow Stromal Cells Through Activation of EZH2. J Bone Miner Res 2020; 35:1149-1162. [PMID: 32022326 PMCID: PMC7295671 DOI: 10.1002/jbmr.3975] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. β-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that β-catenin was additive with cytoskeletal signals to prevent adipogenesis, and β-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. β-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with β-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of β-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of β-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, β-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to β-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Christopher R Paradise
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Jeyantt Sankaran
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Mark Meyer
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
6
|
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25:1364-1381. [PMID: 32439846 PMCID: PMC7303013 DOI: 10.1038/s41380-020-0767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Collapse
Affiliation(s)
- Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jodi Gresack
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Alyssa Ayala
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Melanie Gao
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Wei Wang
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah Meller
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Ammar Aly
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Anne Schaefer
- 0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
7
|
Zhu LF, Li L, Wang XQ, Pan L, Mei YM, Fu YW, Xu Y. M1 macrophages regulate TLR4/AP1 via paracrine to promote alveolar bone destruction in periodontitis. Oral Dis 2019; 25:1972-1982. [PMID: 31361069 DOI: 10.1111/odi.13167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Macrophages could be fully polarized and acquire specific phenotype like M1, which considered to be essential for the alveolar bone destruction during the development of periodontitis. However, the molecular mechanisms underlying the effects of M1 macrophages on the alveolar bone destruction are still not clear yet. METHODS Mouse periodontitis model was established to determine the involvement of M1 macrophages in the pathogenic process. Condition medium of the M1 macrophages (M1-CM) was incubated with pre-osteoblasts to evaluate its effects on the osteoblastogenesis. Cells after treatment with CM were used for RNA-sequencing, quantitative PCR, Western blotting, and immunofluorescence staining to figure out pathways involved in the inhibition of osteoblastogenesis. RESULTS Increased infiltration of M1 macrophages was associated with alveolar bone destruction in periodontitis. M1-CM markedly suppressed the generation of osteoblasts as evidenced by decreased expressions of Runx2 and Ocn, as well as reduced activity of ALP. Interestingly, RNA-sequencing indicated the activation of TLR4/AP1 signaling pathway in pre-osteoblasts treated with CM. Inhibition of TLR4 reduced the translocation of AP1 and rescued the osteoblastogenesis reduced by M1-CM. CONCLUSION M1 macrophages induce TLR4/AP1 signaling of pre-osteoblasts to inhibit the osteoblastogenesis via paracrine, at least partially contributing to alveolar bone destruction in periodontitis.
Collapse
Affiliation(s)
- Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Rojas A, Sepulveda H, Henriquez B, Aguilar R, Opazo T, Nardocci G, Bustos F, Lian JB, Stein JL, Stein GS, van Zundert B, van Wijnen AJ, Allende ML, Montecino M. Mll-COMPASS complexes mediate H3K4me3 enrichment and transcription of the osteoblast master gene Runx2/p57 in osteoblasts. J Cell Physiol 2018; 234:6244-6253. [PMID: 30256410 DOI: 10.1002/jcp.27355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Expression of Runx2/p57 is a hallmark of the osteoblast-lineage identity. Although several regulators that control the expression of Runx2/p57 during osteoblast-lineage commitment have been identified, the epigenetic mechanisms that sustain this expression in differentiated osteoblasts remain to be completely determined. Here, we assess epigenetic mechanisms associated with Runx2/p57 gene transcription in differentiating MC3T3 mouse osteoblasts. Our results show that an enrichment of activating histone marks at the Runx2/p57 P1 promoter is accompanied by the simultaneous interaction of Wdr5 and Utx proteins, both are components of COMPASS complexes. Knockdown of Wdr5 and Utx expression confirms the activating role of both proteins at the Runx2-P1 promoter. Other chromatin modifiers that were previously described to regulate Runx2/p57 transcription in mesenchymal precursor cells (Ezh2, Prmt5, and Jarid1b proteins) were not found to contribute to Runx2/p57 transcription in full-committed osteoblasts. We also determined the presence of additional components of COMPASS complexes at the Runx2/p57 promoter, evidencing that the Mll2/COMPASS- and Mll3/COMPASS-like complexes bind to the P1 promoter in osteoblastic cells expressing Runx2/p57 to modulate the H3K4me1 to H3K4me3 transition.
Collapse
Affiliation(s)
- Adriana Rojas
- Faculty of Medicine, Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia.,Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Hugo Sepulveda
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Berta Henriquez
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Tatiana Opazo
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Fernando Bustos
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Santiago, Chile.,Faculty of Sciences, Department of Biology, Universidad de Chile, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
9
|
Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceño PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodríguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA. Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 2018; 119:8204-8219. [PMID: 29923217 DOI: 10.1002/jcb.26832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/04/2023]
Abstract
Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.
Collapse
Affiliation(s)
- Héctor F Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Carlos O Lizama
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar A Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro F Briceño
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Rodríguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), University of Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario A Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Tai PWL, Wu H, van Wijnen AJ, Stein GS, Stein JL, Lian JB. Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation. PLoS One 2017; 12:e0188056. [PMID: 29176792 PMCID: PMC5703546 DOI: 10.1371/journal.pone.0188056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to discover regulatory sequences that control bone-related genes during development has been greatly improved by massively parallel sequencing methodologies. To expand our understanding of cis-regulatory regions critical to the control of gene expression during osteoblastogenesis, we probed the presence of open chromatin states across the osteoblast genome using global DNase hypersensitivity (DHS) mapping. Our profiling of MC3T3 mouse pre-osteoblasts during differentiation has identified more than 224,000 unique DHS sites. Approximately 65% of these sites are dynamic during temporal stages of osteoblastogenesis, and a majority of them are located within non-promoter (intergenic and intronic) regions. Nearly half of all DHS sites (both constitutive and dynamic) overlap binding events of the bone-essential RUNX2 and/or the chromatin-related CTCF transcription factors. This finding reinforces the role of these regulatory proteins as essential components of the bone gene regulome. We observe a reduction in chromatin accessibility throughout the genome between pre-osteoblast and early osteoblasts. Our analysis also defined a class of differentially expressed genes that harbor DHS peaks centered within 1 kb downstream of transcriptional end sites (TES). These DHSs at the 3’-flanks of genes exhibit dynamic changes during differentiation that may impact regulation of the osteoblast genome. Taken together, the distribution of DHS regions within non-promoter locations harboring osteoblast and chromatin related transcription factor binding motifs, reflect novel cis-regulatory requirements to support temporal gene expression in differentiating osteoblasts.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Hai Wu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | | | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail: (JLS); (JBL)
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail: (JLS); (JBL)
| |
Collapse
|
11
|
Hu J, Mao Z, He S, Zhan Y, Ning R, Liu W, Yan B, Yang J. Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3β/β-catenin integrated signaling pathway. Biochem Pharmacol 2017; 136:109-121. [PMID: 28408345 DOI: 10.1016/j.bcp.2017.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a serious public health concern worldwide. Herba epimedii has been used for centuries and even thousands of years to treat osteoporotic conditions. Icariin, a flavonol glycoside, is one of the major active ingredients. In this study, we have shown that icariin protected against glucocorticoid-induced osteoporotic changes in SaoS-2 cells and mice. We have also shown that dexamethasone (a glucocorticoid) suppressed and icariin induced DEC1, a structurally distinct helix-loop-helix protein. DEC1 overexpression promoted whereas DEC1 knockdown decreased osteogenic activity. Likewise, DEC1 overexpression and knockdown inversely regulated the expression of β-catenin and PIK3CA, an essential player in the Wnt/β-catenin and PI3K/Akt signaling pathways, respectively. Interestingly, DKK1, an inhibitor of Wnt/β-catenin signaling inhibitor, and LY294002, an inhibitor of PI3K/Akt signaling, abolished the induction of DEC1 by icariin. It is established that these two pathways are interconnected by the phosphorylation status of GSK3β. Dexamethasone decreased but icariin increased GSK3β phosphorylation. Finally, DEC1 deficient mice developed osteoporotic phenotypes. Taken together, it is concluded that DEC1 likely supports the action of icariin against glucocorticoid induced osteoporosis with an involvement of the PI3K/Akt/GSK3β/β-catenin integrated signaling pathway.
Collapse
Affiliation(s)
- Jinhua Hu
- Pharmaceutical Preparation Section, Changzhou No. 7 People's Hospital, Changzhou 213000, China
| | - Zhao Mao
- Jinling Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Yuanran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | | | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Carr FE, Tai PWL, Barnum MS, Gillis NE, Evans KG, Taber TH, White JH, Tomczak JA, Jaworski DM, Zaidi SK, Lian JB, Stein JL, Stein GS. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology 2016; 157:3278-92. [PMID: 27253998 PMCID: PMC4967127 DOI: 10.1210/en.2015-2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.
Collapse
Affiliation(s)
- Frances E Carr
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Phillip W L Tai
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Michael S Barnum
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Noelle E Gillis
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Katherine G Evans
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Thomas H Taber
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jeffrey H White
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jennifer A Tomczak
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Diane M Jaworski
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jane B Lian
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Janet L Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Gary S Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
13
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Rojas A, Aguilar R, Henriquez B, Lian JB, Stein JL, Stein GS, van Wijnen AJ, van Zundert B, Allende ML, Montecino M. Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. J Biol Chem 2015; 290:28329-28342. [PMID: 26453309 DOI: 10.1074/jbc.m115.657825] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Indexed: 12/30/2022] Open
Abstract
Transcription factor Runx2 controls bone development and osteoblast differentiation by regulating expression of a significant number of bone-related target genes. Here, we report that transcriptional activation and repression of the Runx2 gene via its osteoblast-specific P1 promoter (encoding mRNA for the Runx2/p57 isoform) is accompanied by selective deposition and elimination of histone marks during differentiation of mesenchymal cells to the osteogenic and myoblastic lineages. These epigenetic profiles are mediated by key components of the Trithorax/COMPASS-like and Polycomb group complexes together with histone arginine methylases like PRMT5 and lysine demethylases like JARID1B/KDM5B. Importantly, knockdown of the H3K4me2/3 demethylase JARID1B, but not of the demethylases UTX and NO66, prevents repression of the Runx2 P1 promoter during myogenic differentiation of mesenchymal cells. The epigenetically forced expression of Runx2/p57 and osteocalcin, a classical bone-related target gene, under myoblastic-differentiation is accompanied by enrichment of the H3K4me3 and H3K27ac marks at the Runx2 P1 promoter region. Our results identify JARID1B as a key component of a potent epigenetic switch that controls mesenchymal cell fate into myogenic and osteogenic lineages.
Collapse
Affiliation(s)
- Adriana Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, 8370146, Chile; Faculty of Sciences, Universidad de Chile, Santiago, 7800003, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, 8370146, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Berta Henriquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Jane B Lian
- University of Vermont Medical School, Burlington, Vermont 05405
| | - Janet L Stein
- University of Vermont Medical School, Burlington, Vermont 05405
| | - Gary S Stein
- University of Vermont Medical School, Burlington, Vermont 05405
| | | | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Miguel L Allende
- Faculty of Sciences, Universidad de Chile, Santiago, 7800003, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, 8370146, Chile; FONDAP Center for Genome Regulation, Santiago, Chile.
| |
Collapse
|
15
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Tai PWL, Wu H, Gordon JAR, Whitfield TW, Barutcu AR, van Wijnen AJ, Lian JB, Stein GS, Stein JL. Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene 2014; 550:1-9. [PMID: 24881813 DOI: 10.1016/j.gene.2014.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022]
Abstract
Runx2 is a developmentally regulated gene in vertebrates and is essential for bone formation and skeletal homeostasis. The induction of runx2-P1 isoform transcripts is a hallmark of early osteoblastogenesis. Although previous in vitro studies have defined a minimal Runx2-P1 promoter sequence with well-characterized functional elements, several lines of evidence suggest that transcription of the Runx2-P1 isoform relies on elements that extend beyond the previously defined P1 promoter boundaries. In this study, we examined Runx2-P1 transcriptional regulation in a cellular in vivo context during early osteoblastogenesis of MC3T3-E1 cultures and BMSCs induced towards the bone lineage by multi-layered analysis of the Runx2-P1 gene promoter using the following methodologies: 1) sequence homology among several mammalian species, 2) DNaseI hypersensitivity coupled with massively parallel sequencing (DNase-seq), and 3) chromatin immunoprecipitation of activating histone modifications coupled with massively parallel sequencing (ChIP-seq). These epigenetic features have allowed the demarcation of boundaries that redefine the minimal Runx2-P1 promoter to include a 336-bp sequence that mediates responsiveness to osteoblast differentiation. We also find that an additional level of control is contributed by a regulatory region in the 5'-UTR of Runx2-P1.
Collapse
Affiliation(s)
- Phillip W L Tai
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Hai Wu
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Jonathan A R Gordon
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Troy W Whitfield
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0002, USA.
| | - A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0002, USA.
| | | | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA.
| |
Collapse
|
17
|
Nah GSS, Lim ZW, Tay BH, Osato M, Venkatesh B. Runx family genes in a cartilaginous fish, the elephant shark (Callorhinchus milii). PLoS One 2014; 9:e93816. [PMID: 24699678 PMCID: PMC3974841 DOI: 10.1371/journal.pone.0093816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.
Collapse
Affiliation(s)
- Giselle Sek Suan Nah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhi Wei Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Motomi Osato
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (MO); (BV)
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (MO); (BV)
| |
Collapse
|