1
|
Abbaszadeh ME, Khezri MR, Ghasemnejad-Berenji M. The Protective Effects of Metformin and Vitamin C and Their Co-Administration in Bleomycin-Induced Pulmonary Fibrosis in Mice. Adv Pharmacol Pharm Sci 2025; 2025:5227142. [PMID: 40231301 PMCID: PMC11994270 DOI: 10.1155/adpp/5227142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/20/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Bleomycin, an antibacterial antibiotic, is used in chemotherapy and is effective against various forms of human carcinomas. However, its use is limited due to its tendency to cause pulmonary fibrosis. Oxidative stress and excessive expression of TGF beta occur in pulmonary fibrosis, leading to cellular death, inflammation, and additional damage to lung tissue. Metformin has the ability to reduce oxidative stress and lower the level of TGF beta by activating AMPK. Additionally, ascorbic acid possesses potent antioxidant characteristics. Consequently, we decided to investigate the effects of these two medications on pulmonary fibrosis and compare with methyl prednisolone. Thirty-six adult mice were categorized into 6 distinct groups: Control, bleomycin (bleo), bleo + methyl prednisolone, bleo + metformin, bleo + ascorbic acid, bleo + metformin + ascorbic acid. Pulmonary fibrosis was induced by the administration of bleomycin in all groups, except for the control group. Subsequently, medications were administered for a duration of 14 days. Ultimately, the mice were sacrificed and lung tissues were obtained for biochemical and histological examination. As shown by biochemical and histological analysis, all treatment groups showed a decrease in oxidative stress factors, inflammation, and lung tissue fibrosis; however, the effects of administering metformin and ascorbic acid together were noticeable. Our study found that administering metformin and ascorbic acid over a period of 14 days, either alone or in combination, may contribute to the repair of pulmonary fibrosis. However, our data indicate that the combined therapy of these drugs provided a better result.
Collapse
Affiliation(s)
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Jung Y, Yim NH, Lee SM, Cho WK, Cha MH, Ma JY. Anti-Fibrosis Effect of Panax ginseng and Inula japonica Formula in Human Pulmonary Fibroblasts. Nutrients 2024; 16:319. [PMID: 38276557 PMCID: PMC10819838 DOI: 10.3390/nu16020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-β1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-β1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Sang Myung Lee
- Division of Food and Pharmaceutical Technology, College of Health and Safety Science, Mokwon University, Daejeon 35349, Republic of Korea;
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Min Ho Cha
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (W.-K.C.); (M.H.C.)
| |
Collapse
|
3
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
4
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Dorababu A, Maraswami M. Recent Advances (2015-2020) in Drug Discovery for Attenuation of Pulmonary Fibrosis and COPD. Molecules 2023; 28:molecules28093674. [PMID: 37175084 PMCID: PMC10179756 DOI: 10.3390/molecules28093674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
A condition of scarring of lung tissue due to a wide range of causes (such as environmental pollution, cigarette smoking (CS), lung diseases, some medications, etc.) has been reported as pulmonary fibrosis (PF). This has become a serious problem all over the world due to the lack of efficient drugs for treatment or cure. To date, no drug has been designed that could inhibit fibrosis. However, few medications have been reported to reduce the rate of fibrosis. Meanwhile, ongoing research indicates pulmonary fibrosis can be treated in its initial stages when symptoms are mild. Here, an attempt is made to summarize the recent studies on the effects of various chemical drugs that attenuate PF and increase patients' quality of life. The review is classified based on the nature of the drug molecules, e.g., natural/biomolecule-based, synthetic-molecule-based PF inhibitors, etc. Here, the mechanisms through which the drug molecules attenuate PF are discussed. It is shown that inhibitory molecules can significantly decrease the TGF-β1, profibrotic factors, proteins responsible for inflammation, pro-fibrogenic cytokines, etc., thereby ameliorating the progress of PF. This review may be useful in designing better drugs that could reduce the fibrosis process drastically or even cure the disease to some extent.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali 583219, India
| | - Manikantha Maraswami
- Department of Chemistry, Abzena LLC., 360 George Patterson Blvd, Bristol, PA 19007, USA
| |
Collapse
|
6
|
Huang TT, Chen CM, Chen LG, Lan YW, Huang TH, Choo KB, Chong KY. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside ameliorates bleomycin-induced pulmonary fibrosis via regulating pro-fibrotic signaling pathways. Front Pharmacol 2022; 13:997100. [PMID: 36267283 PMCID: PMC9577370 DOI: 10.3389/fphar.2022.997100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside (THSG) is the main active ingredient extracted from Polygonum multiflorum Thunb. (PMT), which has been reported to possess extensive pharmacological properties. Nevertheless, the exact role of THSG in pulmonary fibrosis has not been demonstrated yet. The main purpose of this study was to investigate the protective effect of THSG against bleomycin (BLM)-induced lung fibrosis in a murine model, and explore the underlying mechanisms of THSG in transforming growth factor-beta 1 (TGF-β1)-induced fibrogenesis using MRC-5 human lung fibroblast cells. We found that THSG significantly attenuated lung injury by reducing fibrosis and extracellular matrix deposition. THSG treatment significantly downregulated the expression levels of TGF-β1, fibronectin, α-SMA, CTGF, and TGFBR2, however, upregulated the expression levels of antioxidants (SOD-1 and catalase) and LC3B in the lungs of BLM-treated mice. THSG treatment decreased the expression levels of fibronectin, α-SMA, and CTGF in TGF-β1-stimulated MRC-5 cells. Conversely, THSG increased the expression levels of SOD-1 and catalase. Furthermore, treatment of THSG profoundly reduced the TGF-β1-induced generation of reactive oxygen species (ROS). In addition, THSG restored TGF-β1-induced impaired autophagy, accompany by increasing the protein levels of LC3B-II and Beclin 1. Mechanism study indicated that THSG significantly reduced TGF-β1-induced increase of TGFBR2 expression and phosphorylation of Smad2/3, Akt, mTOR, and ERK1/2 in MRC-5 cells. These findings suggest that THSG may be considered as an anti-fibrotic drug for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Ying-Wei Lan
- Division of Pulmonary Biology, The Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, OH, United States
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Kong Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Kowit-Yu Chong,
| |
Collapse
|
7
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Shen WX, Luo RC, Wang JQ, Chen ZS. Features of Cytokine Storm Identified by Distinguishing Clinical Manifestations in COVID-19. Front Public Health 2021; 9:671788. [PMID: 34109148 PMCID: PMC8180556 DOI: 10.3389/fpubh.2021.671788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently spreading all over the world. In this paper, we developed a practical model for identifying the features of cytokine storm, which is common in acute infectious diseases and harmful manifestation of COVID-19, by distinguishing major and minor clinical events. This model is particularly suitable for identifying febrile and infectious diseases like COVID-19. Based on this model, features of cytokine storm and pathogenesis of COVID-19 have been proposed to be a consequence of the disequilibrated cytokine network resulting from increased biological activity of transforming growth factor-β (TGF-β), which induces certain clinical manifestations such as fatigue, fever, dry cough, pneumonia, abatement and losing of olfactory, and taste senses in some patients. Research and clarification of the pathogenesis of COVID-19 will contribute to precision treatment. Various anti-TGF-β therapies may be explored as potential COVID-19 treatment. This novel model will be helpful in reducing the widespread mortality of COVID-19.
Collapse
Affiliation(s)
- Wei-Xi Shen
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Tianyou Medical Institute, Shenzhen, China
| | - Rong-Cheng Luo
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Tianyou Medical Institute, Shenzhen, China
| | - Jing-Quan Wang
- College of Pharmacy and Health Science, St. John's University, New York, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Science, St. John's University, New York, NY, United States
| |
Collapse
|
9
|
Teoh AKY, Corte TJ. Contemporary Concise Review 2020: Interstitial lung disease. Respirology 2021; 26:604-611. [PMID: 33913200 DOI: 10.1111/resp.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
The year 2020 was one like no other, as we witnessed the far-reaching impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Yet despite an unprecedented and challenging year, global research in interstitial lung disease (ILD) continued to break new grounds. Research progress has led to an improved understanding in new diagnostic tools and potential biomarkers for ILD. Studies on the role of antifibrotic therapies, newer therapeutic agents, supportive care strategies and the impact of coronavirus disease 2019 (COVID-19) continue to reshape the management landscape of ILD. In this concise review, we aim to summarize the key studies published in 2020, highlighting their impact on the various aspects of ILD.
Collapse
Affiliation(s)
- Alan K Y Teoh
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,School of Medicine, The University of Sydney, Camperdown, New South Wales, Australia.,Centre of Research Excellence in Pulmonary Fibrosis, Sydney, New South Wales, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,School of Medicine, The University of Sydney, Camperdown, New South Wales, Australia.,Centre of Research Excellence in Pulmonary Fibrosis, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020; 15:124. [PMID: 33292321 PMCID: PMC7683279 DOI: 10.1186/s13020-020-00400-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ginseng (Panax ginseng C. A. Meyer), a representative Chinese herbal medicine, can improve the body’s antioxidant and anti-inflammatory capacity. Recently, scientists have shifted emphasis towards the initial stages of different malignant diseases—corresponding organ fibrosis and explored the essential role of P. ginseng in the treatment of fibrotic diseases. Main body In the first instance, the review generalizes the molecular mechanisms and common therapeutic methods of fibrosis. Next, due to the convenience and safety of individual medication, the research progress of ginseng extract and formulas in treating liver fibrosis, pulmonary fibrosis, myocardial fibrosis, and renal fibrosis has been systematically summarized. Finally, we describe active ingredients isolated from P. ginseng for their outstanding anti-fibrotic properties and further reveal the potential therapeutic prospect and limitations of P. ginseng in fibrotic diseases. Conclusions P. ginseng can be regarded as a valuable herbal medicine against fibrous tissue proliferation. Ginseng extract, derived formulas and monomers can inhibit the abundant deposition of extracellular matrix which caused by repeated damage and provide protection for fibrotic organs. Although the molecular mechanisms such as transforming growth factor β signal transduction have been confirmed, future studies should still focus on exploring the underlying mechanisms of P. ginseng in treating fibrotic disease including the therapeutic targets of synergistic action of multiple components in P. ginseng. Moreover, it is also necessary to carry out clinical trial to evaluate the feasibility of P. ginseng in combination with common fibrosis drugs.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China. .,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
11
|
Chen RR, Li YJ, Chen JJ, Lu CL. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr Polym 2020; 247:116740. [PMID: 32829859 PMCID: PMC7340049 DOI: 10.1016/j.carbpol.2020.116740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.
Collapse
|
12
|
Nagilactone D ameliorates experimental pulmonary fibrosis in vitro and in vivo via modulating TGF-β/Smad signaling pathway. Toxicol Appl Pharmacol 2020; 389:114882. [PMID: 31953203 DOI: 10.1016/j.taap.2020.114882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is a prototypic chronic progressive lung disease with high morbidity and mortality worldwide. Novel effective therapeutic agents are urgently needed owing to the limited treatment options in clinic. Herein, nagilactone D (NLD), a natural dinorditerpenoid obtained from Podocarpus nagi, was found to suppress transforming growth factor-β1 (TGF-β1)-mediated fibrotic process in vitro and bleomycin (BLM)-induced pulmonary fibrosis in vivo. NLD attenuated TGF-β1-induced expression of fibrotic markers including type I and III collagen, fibronectin, α-SMA, and CTGF in human pulmonary fibroblasts (WI-38 VA-13 and HLF-1 cells). Mechanism study indicated that NLD suppressed TGF-β1-induced up-regulation of TβR I, and Smad2 phosphorylation, nuclear translocation, and transcriptional activation. Moreover, NLD ameliorated BLM-induced histopathological abnormalities in the lungs of experimental fibrotic mice, suppressed synthesis of relative fibrotic markers and fibroblast-to-myofibroblast transition, as well as BLM-induced up-regulation of TβR I expression and Smad signaling in mouse lungs. These data collectively support NLD to be a potential therapeutic agent for pulmonary fibrosis.
Collapse
|
13
|
Li L, Zhao J, Zhou L, Chen J, Ma Y, Yu Y, Cheng J. Tenofovir alafenamide fumarate attenuates bleomycin-induced pulmonary fibrosis by upregulating the NS5ATP9 and TGF-β1/Smad3 signaling pathway. Respir Res 2019; 20:163. [PMID: 31331325 PMCID: PMC6647111 DOI: 10.1186/s12931-019-1102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary fibrosis is a progressive and irreversible disease for which therapeutic options are currently limited. A recent in vivo study showed that tenofovir, a nucleotide analogue reverse transcriptase inhibitor, had direct antifibrotic effects on skin and liver fibrosis. Another study in vitro revealed that NS5ATP9 inhibited the activation of human hepatic stellate cells. Because of the similarity of fibrotic diseases, we hypothesized that tenofovir alafenamide fumarate (TAF), the prodrug of tenofovir, and NS5ATP9, is related to and plays a role in the suppression of pulmonary fibrosis. Methods We investigated the influence of NS5ATP9 on fibrosis in vitro. Human lung fibroblasts (HFL1) were transfected with short interfering RNAs or overexpression plasmids of NS5ATP9 before stimulation by human recombinant transforming growth factor-β1. The effect of TAF was evaluated in a bleomycin-induced fibrosis murine model. Male C57BL/6 mice were treated with bleomycin on day 0 by intratracheal injection and intragastrically administered TAF or vehicle. Left lung sections were fixed for histological analysis, while homogenates of the right lung sections and HFL1 cells were analyzed by western blotting and quantitative reverse transcription polymerase chain reaction. Results NS5ATP9 suppressed the activation of lung fibroblasts. Upregulation of collagen type 3 (α 1 chain) and α-smooth muscle actin was observed in HFL1 cells when NS5ATP9 was silenced, and vice-versa. TAF also showed anti-fibrotic effects in mice, as demonstrated by histological analysis of fibrosis and expression of extracellular matrix components in the lung sections. Additionally, TAF inhibited transforming growth factor-β1 and phosphorylated-Smad3 synthesis in HFL1 cells and the murine model, which was accompanied by upregulation of NS5ATP9. Conclusions Our results suggest that NS5ATP9 forms a negative feedback pathway in pulmonary fibrosis and TAF has anti-fibrotic properties as it upregulates the expression level of NS5ATP9. As TAF has been shown to be safe and well-tolerated in humans, TAF and NS5ATP9 may be useful for developing novel therapeutics for pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-019-1102-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingxia Li
- Department of Infectious Diseases, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jing Zhao
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Zhou
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China.,Department of Infectious Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jie Chen
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China.,Department of Infectious Disease, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuanyuan Ma
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China. .,Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No.8 East Jingshun Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
14
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
15
|
Effect of phlorotannins on myofibroblast differentiation and ECM protein expression in transforming growth factor β1‑induced nasal polyp‑derived fibroblasts. Int J Mol Med 2018; 42:2213-2220. [PMID: 30015862 DOI: 10.3892/ijmm.2018.3770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
Phlorotannins (PTNs), a group of phenolic compounds from seaweeds, have diverse bioactivities. However, there has been no report on their antifibrotic effects during nasal polyp (NP) formation. In the present study, the effect of PTNs on transforming growth factor (TGF)‑β1‑induced profibrotic responses in nasal polyp‑derived fibroblasts (NPDFs) were determined and the relevant signaling pathways were investigated. The expression levels of collagen type‑1 (Col‑1) and fibronectin in NP tissues were measured by western blot analysis and immunohistochemistry. The NPDFs were treated with TGF‑β1 (1 ng/ml) in the presence or absence of PTNs (5‑30 µg/ml). The expression levels of α‑smooth muscle actin (α‑SMA), Col‑1, fibronectin, and phosphorylated‑small mothers against decapentaplegic (Smad)2/3 in NPDFs were measured by western blot analysis. The contractile activity of the NPDFs was determined by a collagen gel contraction assay. Col‑1 and fibronectin proteins were found to be expressed in NP tissues. PTNs had no significant cytotoxic effect on TGF‑β1‑induced NPDFs. TGF‑β1 induced the expression α‑SMA, Col‑1 and fibronectin, and stimulated fibroblast‑mediated contraction of collagen gel. However, pre‑treatment with PTNs inhibited the expression of these proteins. The inhibitory effects were mediated through the suppression of Smad2/3 signaling pathways in TGF‑β1‑induced NPDFs. These resulted suggested that PTNs may be important in inhibiting myofibroblast differentiation and extracellular matrix protein accumulation in NP formation through the Smad2/3 signaling pathway.
Collapse
|
16
|
Zhang H, Yang Y, Wang Y, Wang B, Li R. Renal-protective effect of thalidomide in streptozotocin-induced diabetic rats through anti-inflammatory pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:89-98. [PMID: 29386886 PMCID: PMC5765978 DOI: 10.2147/dddt.s149298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Diabetic nephropathy (DN) is a major microvascular complication in diabetes. An increasing body of evidence has shown that DN is related to chronic inflammation, kidney hypertrophy, and fibrosis. While thalidomide has been shown to have anti-inflammatory and antifibrotic effects, the effects of thalidomide on the pathogenesis of DN are unclear. This study was undertaken to explore whether thalidomide has renal-protective effects in diabetic rats. Methods Male Sprague Dawley rats were injected intraperitoneally with 50 mg/kg streptozotocin to induce diabetes. Diabetic rats were treated with thalidomide (200 mg/kg/d) for 8 weeks, and then blood and urine were collected for measurement of renal function-related parameters. Histopathology, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot analyses were performed to assess renal proinflammatory cytokines, fibrotic protein, and related signaling pathways. Results Diabetic rats exhibited obvious renal structural and functional abnormalities, as well as renal inflammation and fibrosis. Compared with diabetic control rats, those treated with thalidomide showed significantly improved histological alterations and biomarkers of renal function, as well as reduced expression of renal inflammatory cytokines, including NF-κB and MCP-1. Furthermore, renal fibrotic proteins, such as TGF-β1, TβRII, TβRI, smad3, collagen IV, and fibronectin were also remarkably suppressed. Treatment with thalidomide markedly stimulated the phosphorylation of AMPKα. Conclusion In this study, thalidomide suppressed the inflammatory and fibrotic processes in DN. These effects were partly mediated by the activation of AMPKα, and inhibition of the NF-κB/MCP-1 and TGF-β1/Smad signaling pathways. These results suggest that thalidomide may have therapeutic potential in diabetic renal injury through the anti-inflammatory pathway.
Collapse
Affiliation(s)
| | - Yanlan Yang
- Department of Endocrinology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Gamad N, Malik S, Suchal K, Vasisht S, Tomar A, Arava S, Arya DS, Bhatia J. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms. Biomed Pharmacother 2018; 97:1544-1553. [DOI: 10.1016/j.biopha.2017.11.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
|
18
|
Zhou Q, Qin S, Zhang J, Zhon L, Pen Z, Xing T. 1,25(OH) 2 D 3 induces regulatory T cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol Immunol 2017; 91:156-164. [DOI: 10.1016/j.molimm.2017.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022]
|
19
|
Shin NR, Park JW, Lee IC, Ko JW, Park SH, Kim JS, Kim JC, Ahn KS, Shin IS. Melatonin suppresses fibrotic responses induced by cigarette smoke via downregulation of TGF-β1. Oncotarget 2017; 8:95692-95703. [PMID: 29221159 PMCID: PMC5707053 DOI: 10.18632/oncotarget.21680] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke (CS) is the most important risk factor in the development of chronic obstructive pulmonary disease (COPD). Pulmonary fibrosis is an irreversible response and important feature of COPD. In this study, we investigated the effects of melatonin on fibrotic response in development of COPD using a CS and lipopolysaccharide (LPS) induced COPD model and cigarette smoke condensate (CSC)-stimulated NCI-H292 cells, a human mucoepidermoid cell line. Mice were exposed to CS for 1 h per day (8 cigarettes per day) from day 1 to day 7 and were treated intranasally with LPS on day 4. Melatonin (10 or 20 mg/kg) was injected intraperitoneally 1 h before CS exposure. Melatonin decreased the inflammatory cell counts in bronchoalveolar lavage fluid (BALF), with a reduction in transforming growth factor (TGF)-β1. Melatonin inhibited the expression of TGF-β1, collagen I and SMAD3 phosphorylation in lung tissue exposed to CS and LPS. In CSC-stimulated H292 cells, melatonin suppressed the elevated expression of fibrotic mediators induced by CSC treatment. Melatonin reduced the expression of TGF-β1, collagen I, SMAD3 and p38 phosphorylation in CSC-stimulated H292 cells. In addition, cotreatment with melatonin and TGF-β1 inhibitors significantly limited fibrotic mediators, with greater reductions in the expression of TGF-β1, collagen I, SMAD3 and p38 phosphorylation than those of H292 cells treated with TGF-β1 inhibitor alone. Taken together, melatonin effectively inhibited fibrotic responses induced by CS and LPS exposure, which was related to the downregulation of TGF-β1. Therefore, our results suggest that melatonin may suppress the pulmonary fibrotic response induced by CS.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 363-883, Republic of Korea
| | - In-Chul Lee
- Natural Product Research Center, Jeonbuk Branch, Korea Research Institute of Biosciences and Biotechnology, Jeongeup 580-185, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Joong-Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 363-883, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
20
|
Ginsenoside Rg1 Attenuates Cigarette Smoke-Induced Pulmonary Epithelial-Mesenchymal Transition via Inhibition of the TGF- β1/Smad Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7171404. [PMID: 29104873 PMCID: PMC5572594 DOI: 10.1155/2017/7171404] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process associated with airway remodeling in chronic obstructive pulmonary disease (COPD), which leads to progressive pulmonary destruction. Panax ginseng is a traditional herbal medicine that has been shown to improve pulmonary function and exercise capacity in patients with COPD. Ginsenoside Rg1 is one of the main active components and was shown to inhibit oxidative stress and inflammation. The present study investigated the hypothesis that ginsenoside Rg1 attenuates EMT in COPD rats induced by cigarette smoke (CS) and human bronchial epithelial (HBE) cells exposed to cigarette smoke extract (CSE). Our data showed that CS or CSE exposure increased expression of the mesenchymal marker α-smooth muscle actin (α-SMA) and decreased expression of the epithelial marker epithelial cadherin (E-cad) in both lung tissues and HBE cells, which was markedly suppressed by ginsenoside Rg1. Importantly, CS-induced upregulation of TGF-β1/Smad pathway components, including TGF-β1, TGF-βR1, phospho-Smad2, and phospho-Smad3, was also inhibited by ginsenoside Rg1. Additionally, ginsenoside Rg1 mimicked the effect of SB525334, a TGF-βR1-Smad2/3 inhibitor, on suppression of EMT in CSE-induced HBE cells. Collectively, we concluded that ginsenoside Rg1 alleviates CS-induced pulmonary EMT, in both COPD rats and HBE cells, via inhibition of the TGF-β1/Smad pathway.
Collapse
|
21
|
Speck NE, Schuurmans MM, Benden C, Robinson CA, Huber LC. Plasma and bronchoalveolar lavage samples in acute lung allograft rejection: the potential role of cytokines as diagnostic markers. Respir Res 2017; 18:151. [PMID: 28784117 PMCID: PMC5547481 DOI: 10.1186/s12931-017-0634-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
The role of differential cytology patterns in peripheral blood and bronchoalveolar lavage samples is increasingly investigated as a potential adjunct to diagnose acute and chronic allograft dysfunction after lung transplantation. While these profiles might facilitate the diagnosis of acute cellular rejection, low sensitivity and specificity of these patterns limit direct translation in a clinical setting. In this context, the identification of other biomarkers is needed. This review article gives an overview of cytokine profiles of plasma and bronchoalveolar lavage samples during acute cellular rejection. The value of these cytokines in supporting the diagnosis of acute cellular rejection is discussed. Current findings on the topic are highlighted and experimental settings for future research projects are identified.
Collapse
Affiliation(s)
- Nicole E Speck
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Macé M Schuurmans
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Christian Benden
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Cécile A Robinson
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Lars C Huber
- Clinic for Internal Medicine, City Hospital Triemli, Birmensdorferstrasse 497, CH-8063, Zurich, Switzerland.
| |
Collapse
|
22
|
Ma SY, Park WS, Lee DS, Choi G, Yim MJ, Lee JM, Jung WK, Park SG, Seo SK, Park SJ, Han IY, Choi YH, Choi IW. Fucoxanthin inhibits profibrotic protein expression in vitro and attenuates bleomycin-induced lung fibrosis in vivo. Eur J Pharmacol 2017. [PMID: 28642129 DOI: 10.1016/j.ejphar.2017.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary fibrosis, a potentially fatal disease, results from acute and chronic interstitial lung diseases. Fucoxanthin (Fx), a carotenoid found in brown seaweed, shows a wide range of pharmacological activities. In this study, we investigated the antifibrotic effects of fucoxanthin and their underlying molecular mechanisms in transforming growth factor-beta1 (TGF-β1)-stimulated human pulmonary fibroblasts (HPFs). Thus, the effects of Fx on TGF-β1-induced expression of fibrotic factors, such as alpha-smooth muscle actin (α-SMA), type 1 collagen, fibronectin, and interleukin-6 (IL-6), in HPFs were investigated. We performed an enzyme-linked immunosorbent assay (ELISA), and a western blot analysis to elucidate the mechanisms underlying the antifibrotic effects of Fx in TGF-β1-stimulated cells. The contractile activity of HPFs was measured using a collagen gel contraction assay. We also investigated the effects of Fx on inflammation and fibrosis in bleomycin (BLM)-induced pulmonary fibrosis mouse model. We observed that Fx inhibited the TGF-β1-induced expression of α-SMA, type 1 collagen, fibronectin, and IL-6 in HPFs. Similarly, markedly inhibition of TGF-β1-induced phosphorylation of p-38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Smad2/Smad3 (Smad2/3) was observed after Fx treatment. Collagen contraction also significantly decreased on fucoxanthin treatment. Intraperitoneal injection of Fx (10mg/kg) in mice inhibited BLM-induced lung fibrosis and type I collagen protein expression. Overall, our findings suggest that Fx may be effective in the treatment of pulmonary fibrosis owing to its potent antifibrotic activity.
Collapse
Affiliation(s)
- Sun Young Ma
- Department of Radiation Oncology, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Grace Choi
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Sae Gwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busanjin-gu, Busan 47392, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busanjin-gu, Busan 47392, Republic of Korea
| | - Sung Jae Park
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Il Yong Han
- Department of Thoracic and Cardiovascular Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busanjin-gu, Busan 47392, Republic of Korea.
| |
Collapse
|
23
|
Ginsenoside Rg1 Ameliorates Cigarette Smoke-Induced Airway Fibrosis by Suppressing the TGF- β1/Smad Pathway In Vivo and In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6510198. [PMID: 28421197 PMCID: PMC5379083 DOI: 10.1155/2017/6510198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Small airway fibrosis is a key pathological process accompanying chronic obstructive pulmonary disease (COPD) and includes fibroblast/myofibroblast transdifferentiation and excessive extracellular matrix deposition. Ginsenoside Rg1, one of the main active ingredients of Panax ginseng, has been shown to exert an antifibrotic effect in many tissues. However, little is known about the underlying mechanism and whether ginsenoside Rg1 can exert an effect on small airway fibrosis. We investigated the anti-small airway fibrosis effects of ginsenoside Rg1 in human embryonic lung fibroblasts and in COPD rats. We found that ginsenoside Rg1 effectively reduced the degree of pulmonary fibrosis, decreased the expression of α-smooth muscle actin, collagen I, and matrix metalloproteinase 9, and maintained the ratio of matrix metalloproteinase 9 to tissue inhibitor of metalloproteinase 1. Importantly, ginsenoside Rg1 significantly attenuated cigarette smoke extract-induced upregulation of transforming growth factor β1, TGF-β receptor I, phospho-Smad2, and phospho-Smad3. In addition, ginsenoside Rg1 mimicked the effect of SB525334, a TGF-β receptor I-Smad2/3 inhibitor. Collectively, these results suggest that ginsenoside Rg1 may suppress cigarette smoke-induced airway fibrosis in pulmonary fibroblasts and COPD rats by inhibiting the TGF-β1/Smad signaling pathway.
Collapse
|
24
|
Cheng L, Li R, Zhou M, Li F, Chang Q, Li C, Lu X. MOXIBUSTION HAS A POSITIVE EFFECT ON PULMONARY FIBROSIS: AN ALTERNATIVE APPROACH. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:125-129. [PMID: 28573228 PMCID: PMC5446435 DOI: 10.21010/ajtcam.v14i2.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND An increasing number of people suffered idiopathic fibrosis (IPF) and the current treatment was far from clinical satisfaction. Moxibustion, another effective and safe unconventional therapy, had been introduced to treat this refractory disease. The study aimed to investigate the effect of moxibustion on a bleomycin A5-induced pulmonary fibrosis model. MATERIALS AND METHODS Sprague-dawley (SD) rats were randomly allocated to the blank group, model group, moxibustion group, and prednisone group, for which they received no treatment, modeling, moxibustion treatment and prednisone treatment. After four-week treatment, the rats were euthanized for Hematoxylin and Eosin (H.E.) staining, and TGF-β1 and IFN-γ protein and mRNA detection in lungs. RESULTS In the model group, TGF-β1 was significantly increased and IFN-γ was significantly decreased at both protein and mRNA levels in comparison to the blank group. In the moxibustion and prednisone group, however, TGF-β1 was decreased and IFN-γ was increased at both protein and mRNA levels in comparison to the model groups. Compared with prednisone, moxibustion showed comparable effect in lowing TGF-β1 (P>0.05) and better effect in up-regulating IFN-γ (P>0.05). CONCLUSION The study concludes moxibustion protected pulmonary fibrosis by downregulating TGF-β1 and upregulating IFN-γ cytokines at both mRNA and protein levels, and the effect was comparable to prednisone. Moxibustion could be used as a therapeutic alternative treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong, P. R. China
| | - Rong Li
- School of Acupuncture & Moxibustion, Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| | - Mijuan Zhou
- School of Acupuncture & Moxibustion, Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| | - Fuhong Li
- School of Acupuncture & Moxibustion, Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| | - Quanying Chang
- School of Acupuncture & Moxibustion, Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| | - Cuixia Li
- School of Acupuncture & Moxibustion, Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| | - Xuejing Lu
- National Diabetes Mellitus Clinical Research Base of TCM, the First Teaching Hospital of Chengdu University of TCM, Chengdu 610075, Sichuan, P.R. of China
| |
Collapse
|
25
|
Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo. Sci Rep 2015; 5:15282. [PMID: 26497260 PMCID: PMC4620496 DOI: 10.1038/srep15282] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis.
Collapse
|
26
|
Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1. Shock 2015; 43:201-7. [PMID: 25394239 DOI: 10.1097/shk.0000000000000273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caveolin-1 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. We previously showed that fluorofenidone (FD), a novel pyridine agent, can attenuate bleomycin-induced experimental pulmonary fibrosis and restore the production of caveolin-1. In this study, we explore mainly whether caveolin-1 plays a critical role in the anti-pulmonary fibrosis effects of FD in vitro. The normal human lung fibroblasts (NHLFs) were cultured with transforming growth factor-β1 (TGF-β1) and then were treated with FD. Subsequently, NHLFs transfected with cav-1-siRNA were treated with TGF-β1 and/or FD. The expressions of α-smooth muscle actin (α-SMA), fibronectin, collagen I, caveolin-1, phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated P38 were measured by Western blot and/or real-time polymerase chain reaction. Fluorofenidone attenuated TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I; inhibited phosphorylation of ERK, JNK, and P38; and restored caveolin-1 protein expression but cannot increase caveolin-1 mRNA level in vitro. After caveolin-1 was silenced, FD could not downregulate TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I or phosphorylation of ERK, JNK, and P38. These studies demonstrate that FD, a potential antifibrotic agent, may attenuate TGF-β1-induced activation of NHLFs by restoring the expression of caveolin-1.
Collapse
|
27
|
Abstract
Transforming growth factor-β (TGF-β) functions as an immune suppressor by influencing immune cells' development, differentiation, tolerance induction and homeostasis. In human diseases, TGF-β has been revealed as an essential regulator of both innate and adaptive functions in autoimmune diseases. Furthermore, it plays a significant role in cancer by inhibiting immunosurveillance in the tumor-bearing host. A variety of TGF-β neutralizing anti-cancer therapies have been investigated based on the role of TGF-β in immunosuppression. New studies are focusing on combining TGF-β blockade with tumor vaccinations and immunogene therapies.
Collapse
Affiliation(s)
- Jingyi Sheng
- Department of Surgery (RMH), The University of Melbourne , Parkville, Victoria , Australia and
| | | | | |
Collapse
|
28
|
Jang SS, Kim HG, Han JM, Lee JS, Choi MK, Huh GJ, Son CG. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother Res 2015; 29:201-209. [PMID: 25219493 DOI: 10.1002/ptr.5223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.
Collapse
Affiliation(s)
- Seong Soon Jang
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang C, Dai J, Sun Z, Shi C, Cao H, Chen X, Gu S, Li Z, Qian W, Han X. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process. Exp Cell Res 2015; 331:115-122. [DOI: 10.1016/j.yexcr.2014.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/16/2022]
|
30
|
Chung Y, Fu E, Chin YT, Tu HP, Chiu HC, Shen EC, Chiang CY. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fibroblast. J Clin Periodontol 2015; 42:29-36. [PMID: 25385493 DOI: 10.1111/jcpe.12333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Cyclosporine-A (CsA)-induced gingival overgrowth may arise from an alteration in stoma matrix homeostasis. Sonic hedgehog (Shh) plays a key role during embryogenic development and fibrotic progression, and may be involved in CsA-altered gingival matrix homeostasis. METHODS Using the reverse transcription-polymerase chain reaction and Western blot analysis, we investigated the mRNA and protein expressions of Shh, type 1 collagen (COL1), alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) in human gingival fibroblasts after CsA treatments. The effect of Shh on CsA-induced alterations was further evaluated by the extra-supplement or inhibition of Shh or TGF-β. RESULTS Cyclosporine-A enhanced COL1, α-SMA, Shh and TGF-β expressions in human gingival fibroblasts. The exogenous Shh/TGF-β augmented the expression of COL1 and α-SMA, and the Shh/TGF-β inhibition suppressed the CsA-enhanced COL1 and α-SMA expressions. Moreover, Shh mRNA and protein expressions increased if extra-supplementing the exogenous TGF-β, whereas the CsA-upregulated Shh was mitigated by the TGF-β pathway inhibitor. However, neither exogenous Shh nor the Shh pathway inhibitor alters TGF-β expression or CsA-up-regulated TGF-β expression. CONCLUSIONS Shh, regulated by TGF-β, mediates CsA-altered gingival matrix homeostasis.
Collapse
Affiliation(s)
- Yi Chung
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Shergis JL, Di YM, Zhang AL, Vlahos R, Helliwell R, Ye JM, Xue CC. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med 2014; 22:944-53. [PMID: 25440386 DOI: 10.1016/j.ctim.2014.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a major global health burden and will become the third largest cause of death in the world by 2030. It is currently believed that an exaggerated inflammatory response to inhaled irritants, in particular cigarette smoke, cause progressive airflow limitation. This inflammation, where macrophages, neutrophils and lymphocytes are prominent, leads to oxidative stress, emphysema, airways fibrosis and mucus hypersecretion. COPD responds poorly to current anti-inflammatory treatments including corticosteroids, which produce little or no benefit. Panax ginseng has a long history of use in Chinese medicine for respiratory conditions, including asthma and COPD. OBJECTIVES In this perspective we consider the therapeutic potential of Panax ginseng for the treatment of COPD. RESULTS Panax ginseng and its compounds, ginsenosides, have reported effects through multiple mechanisms but primarily have anti-inflammatory and anti-oxidative effects. Ginsenosides are functional ligands of glucocorticoid receptors and appear to inhibit kinase phosphorylation including MAPK and ERK1/2, NF-κB transcription factor induction/translocation, and DNA binding. They also inhibit pro-inflammatory mediators, TNF-α, IL-6, IL-8, ROS, and proteases such as MMP-9. Panax ginseng protects against oxidative stress by increasing anti-oxidative enzymes and reducing the production of oxidants. CONCLUSION Given that Panax ginseng and ginsenosides appear to inhibit processes related to COPD pathogenesis, they represent an attractive therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- J L Shergis
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - Y M Di
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - A L Zhang
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - R Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - R Helliwell
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - J M Ye
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia
| | - C C Xue
- Traditional and Complementary Medicine Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
32
|
Effects of Chinese Medicine Tong xinluo on Diabetic Nephropathy via Inhibiting TGF- β 1-Induced Epithelial-to-Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:123497. [PMID: 24864150 PMCID: PMC4016864 DOI: 10.1155/2014/123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.
Collapse
|
33
|
Fluorofenidone Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice Via Restoring Caveolin 1 Expression and Inhibiting Mitogen-Activated Protein Kinase Signaling Pathway. Shock 2012; 38:567-73. [DOI: 10.1097/shk.0b013e31826fe992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Zi Z, Chapnick DA, Liu X. Dynamics of TGF-β/Smad signaling. FEBS Lett 2012; 586:1921-8. [PMID: 22710166 PMCID: PMC4127320 DOI: 10.1016/j.febslet.2012.03.063] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 01/08/2023]
Abstract
The physiological responses to TGF-β stimulation are diverse and vary amongst different cell types and environmental conditions. Even though the principal molecular components of the canonical and the non-canonical TGF-β signaling pathways have been largely identified, the mechanism that underlies the well-established context dependent physiological responses remains a mystery. Understanding how the components of TGF-β signaling function as a system and how this system functions in the context of the global cellular regulatory network requires a more quantitative and systematic approach. Here, we review the recent progress in understanding TGF-β biology using integration of mathematical modeling and quantitative experimental analysis. These studies reveal many interesting dynamics of TGF-β signaling and how cells quantitatively decode variable doses of TGF-β stimulation.
Collapse
Affiliation(s)
- Zhike Zi
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Douglas A. Chapnick
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
35
|
Jiang S, Tang Q, Rong R, Tang L, Xu M, Lu J, Jia Y, Ooi Y, Hou J, Guo J, Yang B, Zhu T. Mycophenolate mofetil inhibits macrophage infiltration and kidney fibrosis in long-term ischemia-reperfusion injury. Eur J Pharmacol 2012; 688:56-61. [PMID: 22609232 DOI: 10.1016/j.ejphar.2012.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/22/2012] [Accepted: 05/04/2012] [Indexed: 01/06/2023]
Abstract
Immunosuppressants have been widely used in renal transplantation, in which ischemia-reperfusion injury is inevitable. Mycophenolate mofetil (MMF) is a relative novel immunosuppressant and also attenuates ischemia-reperfusion injury in the acute phase, but its long-term effects are still obscure. Unilateral renal ischemia-reperfusion injury model was established in Sprague-Dawley rats and 30 mg/kg/day MMF or natural saline was administered a day before the surgery. Renal function was monitored, and histological changes and fibrosis in the kidney were evaluated in both short and long terms. TGF-β1 secretion and MCP-1 expression were determined by immunohistochemistry and real-time PCR respectively. The infiltration of macrophages in renal tissues was also assessed by fluorescence activated cell sorting (FACS). MMF treatment significantly improved renal function in ischemia-reperfusion injury rats in the short and long-term and also effectively prevented interstitial fibrosis. TGF-β1 secretion and MCP-1 expression in the renal tissue of MMF-treated rats were much lower than those in natural saline-treated rats, with much less macrophage infiltration as well. MMF treatment effectively prevented the deterioration of renal function and interstitial fibrosis in ischemia-reperfusion injury rats, which may be associated with decreased TGF-β1, MCP-1 and macrophages. These results provide evidence for the choice of MMF in the renal transplant patients not only for acute renal injury but also for long-term survival of renal allograft.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|