1
|
Yang Y, Huang J, Hu X, Jing M, Zhang Y, Xu C, Tan W, Liu X, Niu C, Huang Z. Surface prereacted glass-ionomer particles incorporated into resin composites promote biocompatibility for restoration of subgingival dental defects. Mater Today Bio 2025; 31:101499. [PMID: 39925721 PMCID: PMC11803238 DOI: 10.1016/j.mtbio.2025.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Subgingival dental defects are common in clinical practice among patients with deep dental caries and dental fractures. These defects commonly accompany lesions involving marginal alveolar bone loss and gingival recession, and their clinical management is challenging. Restoring gingival adhesion and activating the regeneration of periodontal tissue are important for a better prognosis in these cases. However, there is no effective resin material for complex restorations involving the destruction of subgingival tissue. To achieve greater biocompatibility, resins are generally modified with bioactive particles that can release specific components. Surface prereacted glass ionomer (S-PRG) is a novel glass particle characterized by a three-layered structure and the release of multiple ions with bioactive potential. Therefore, in this study, we incorporated S-PRG filler into resin-based composites to investigate their effectiveness in the restoration of subgingival defects. Resin composites containing 0, 10, 30, 50, or 70 wt% S-RPG filler were fabricated and formed into material discs, where a commercial resin composite served as the control group. The microstructure and elemental distribution were characterized by scanning electronic microscopy and energy-dispersive spectroscopy. The resin composites containing 50 or 70 wt% S-PRG fillers exhibited comprehensively better physicochemical properties, including flexural modulus, compressive strength, and water sorption. The ion release profile and environmental pH of the resins were measured with material extracts. Periodontal ligament stem cells were considered as seed cells that harbored great potential for periodontal regeneration. Cellular experiments suggested that S-PRG promotes cell proliferation and adhesion, induces cell migration, and stimulates vascularized osteogenesis. The feasibility of using S-PRG-containing resin composite to rectify subgingival dental defects was confirmed in vivo. After restoration with the S-PRG-filled resin material, intact epithelial tissue adhered to the resin surface with no visible inflammation. In conclusion, S-PRG-filled resin composites showed some biocompatibility as an alternative material for clinical applications.
Collapse
Affiliation(s)
- Yueyi Yang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jing Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xuchen Hu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Meiling Jing
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yujie Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenci Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wenduo Tan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xiaoyu Liu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
2
|
Belludi SA, Shaik S, Pradhan N, Rema S. Treatment of an endodontic-periodontal lesion using peripheral blood mesenchymal stem cells (PBMSCs) and platelet-rich fibrin matrix (PRFM): A case report. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2025; 17:54-58. [PMID: 40265038 PMCID: PMC12010481 DOI: 10.34172/japid.025.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 01/21/2025] [Accepted: 02/19/2025] [Indexed: 04/24/2025]
Abstract
In the current report, we discuss the available treatment options and present a successfully treated periodontal-endodontic lesion using autogenous peripheral blood mesenchymal stem cells (PBMSCs) and platelet-rich fibrin matrix (PRFM). A patient presented with a complaint of food impaction and bad breath. Clinically, the lower right first molar was non-vital and had a deep periodontal pocket and attachment loss. Radiographically, the distal root had an angular bone loss extending to the apex. The endodontic condition was treated with chemomechanical debridement, calcium hydroxide dressing, and obturation. Later, we reflected a full-thickness mucoperiosteal flap and thoroughly debrided the granulation tissue. We filled the defect with a gel containing PBMSCs and PRFM, prepared from the patient's peripheral blood, and sutured the flap. After nine months, we noticed significant osseous fill and 5 mm of gain in the clinical attachment level. The outcomes of the case show the periodontal regenerative potential of the novel combination.
Collapse
Affiliation(s)
- Sphoorthi Anup Belludi
- Department of Periodontics, K.L.E Society’s Institute of Dental Sciences, Bengaluru, Karnataka, India
| | - Sharaz Shaik
- Lincoln University PhD Program, Lenora Institute of Dental Science, Rajahmundry, Andhra Pradesh, India
| | - Neha Pradhan
- Department of Periodontics, K.L.E Society’s Institute of Dental Sciences, Bengaluru, Karnataka, India
| | - Sreeparvathy Rema
- Department of Periodontics, K.L.E Society’s Institute of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Li B, Li W, Liao Y, Weng Z, Chen Y, Ouchi T, Fan Y, Zhao Z, Li L. Multi-omics approach reveals TGF-β signaling-driven senescence in periodontium stem cells. J Adv Res 2024:S2090-1232(24)00617-9. [PMID: 39743213 DOI: 10.1016/j.jare.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The periodontal ligament (PDL), a dynamic connective tissue that anchors teeth to the alveolar bone, enables tooth retention and facilitates continuous turnover. The integrity of the periodontium is maintained by periodontal ligament stem cells (PDLSCs), whose dysfunction and senescence with age can disrupt tissue homeostasis, hinder injury repair, and lead to tooth loss, ultimately impacting overall health. Transforming growth factor-β1 (TGF-β1) is known for its regenerative properties and as a functional paracrine factor in stem cell therapy, but its precise role in modulating PDLSC activity remains controversial and poorly understood. OBJECTIVES This study aims to clarify the role of TGF-β1 in PDLSC senescence and identify the underlying molecular mechanisms, thereby advancing our understanding of age-related periodontal diseases and informing the development of targeted therapeutic strategies. METHODS We employed spatial transcriptomics to map Tgfb1 mRNA expression in murine jawbone tissues, focusing on its distribution in the periodontium. Pseudotime analysis was performed to assess expression patterns and infer temporal dynamics. Human PDLSCs were used as a model to investigate the effects of TGF-β1 signaling, with assays conducted to examine DNA methylation, senescence phenotypes, cell cycle arrest, and underlying signaling pathways. RESULTS Spatial transcriptomic profiling revealed enriched Tgfb1 expression in the periodontium, with upregulation tendencies. In human PDLSCs, TGF-β1 treatment induced a senescent phenotype marked by G2 phase cell cycle arrest and increased reactive oxygen species (ROS) accumulation. Mechanistically, TGF-β1 triggered ROS production through DNA methylation-mediated silencing of PRKAG2, a gene encoding AMPKγ2, resulting in ROS accumulation, DNA damage, and ATM signaling activation. Importantly, inhibition of ROS with N-acetyl-l-cysteine (NAC) or reversal of PRKAG2 epigenetic silencing with decitabine mitigated PDLSC senescence by suppressing ATM signaling. CONCLUSION Our work presents the first spatially resolved transcriptomic landscape of murine jawbone tissues and uncovers DNA methylation as a crucial mechanism underlying TGF-β1-induced PDLSC senescence. These findings illuminate a previously unrecognized link between TGF-β1 signaling, ROS production, and epigenetic regulation, offering promising avenues for developing stem cell-based therapies to attenuate age-related periodontal diseases and improve systemic health.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China
| | - Yueqi Liao
- Department of Biomedical Engineering, School of Big Health & Intelligent Engineering, Chengdu Medical College, Chengdu 610500, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Inchingolo AM, Inchingolo AD, Nardelli P, Latini G, Trilli I, Ferrante L, Malcangi G, Palermo A, Inchingolo F, Dipalma G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J Funct Biomater 2024; 15:308. [PMID: 39452606 PMCID: PMC11508604 DOI: 10.3390/jfb15100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to their proliferative and differentiative abilities. This systematic review, following PRISMA guidelines, evaluated fifteen studies and identified effective strategies for improving dental, periodontal, and bone tissue regeneration through scaffolds, secretomes, and bioengineering methods. Key advancements include the use of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) to boost cell viability and manage inflammation. Additionally, pharmacological agents like matrine and surface modifications on biomaterials improve stem cell adhesion and promote osteogenic differentiation. By integrating these approaches, regenerative medicine and TE can optimize dental therapies and enhance patient outcomes. This review highlights the potential and challenges in this field, providing a critical assessment of current research and future directions.
Collapse
Affiliation(s)
- Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| |
Collapse
|
5
|
Li Z, Li J, Dai S, Liu R, Guo Q, Liu F. Research Status and Trends in Periodontal Ligament Stem Cells: A Bibliometric Analysis over the Past Two Decades. Stem Cells Int 2024; 2024:9955136. [PMID: 39372680 PMCID: PMC11452234 DOI: 10.1155/2024/9955136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Currently, the summaries of research on periodontal ligament stem cells (PDLSCs) are mainly reviews, and the systematic evaluation of all relevant studies is lacking. The aim of our study was to reveal the research status and developmental trends of PDLSCs using bibliometric analyses. Methods Publications on PDLSC from 2004 to 2023 in the PubMed database were searched and then screened according to certain inclusion and exclusion criteria. Two researchers browsed the included papers and recorded information such as the research type and research model. The VOSviewer software was used to analyze the distribution of authors, journals, and institutions. The contents and directions of PDLSC research were summarized by analyzing high-frequency keywords. The CiteSpace software was used to monitor burst words, determine hot factors, and indicate developmental trends. Results During the past two decades, the number of studies on PDLSCs increased. China published the most related papers. The primary type of article was basic research. Among core journals, the Journal of Periodontal Research had the highest number of publications. The Fourth Military Medical University (China) was leading in the number of articles on PDLSCs. Research topics mainly included mechanism of periodontal diseases, tissue engineering and regeneration, biological characteristics of PDLSCs, and comparison with other stem cells. Infectious inflammation and mechanical stimulation were important pathological conditions and research topics. Conclusion The research of PDLSCs is still in a rapid development stage. Our study provides new insights into the current research status and future trend in this field.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
6
|
Dipalma G, Inchingolo AM, Latini G, Ferrante L, Nardelli P, Malcangi G, Trilli I, Inchingolo F, Palermo A, Inchingolo AD. The Effectiveness of Curcumin in Treating Oral Mucositis Related to Radiation and Chemotherapy: A Systematic Review. Antioxidants (Basel) 2024; 13:1160. [PMID: 39456414 PMCID: PMC11504953 DOI: 10.3390/antiox13101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Chemotherapy (CT) and radiation therapy (RT), while effective against cancer, often cause severe side effects, such as oral mucositis and other oral diseases. Oral mucositis, characterized by inflammation and ulceration of the oral mucosa, is one of the most painful side effects that can reduce quality of life and limit cancer treatment. Curcumin, a polyphenol from Curcuma longa, has garnered attention for its anti-inflammatory, antioxidant, and anti-carcinogenic properties, which protect the oral mucosa by reducing oxidative stress and modulating inflammation. This study reviews the therapeutic potential of curcumin in preventing and managing oral mucositis caused by CT and RT. Clinical trials show curcumin's effectiveness in reducing the incidence and severity of oral mucositis. Although curcumin supplementation appears to be a promising and cost-effective approach for mitigating oral complications in cancer patients, further clinical trials are needed to confirm its efficacy and optimize dosing strategies.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| |
Collapse
|
7
|
Kaigler D, Misch J, Alrmali A, Inglehart MR. Periodontists and stem cell-based therapy for alveolar bone regeneration: A national survey. J Periodontol 2024; 95:789-798. [PMID: 38196330 DOI: 10.1002/jper.23-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Stem cell-based therapy for bone regeneration has received attention in medical settings but has not yet been used in clinical practice for treating alveolar bone defects. The objectives of this study were to explore whether periodontists had heard about this approach, and if so how, how interested they were to learn about it, which attitudes and behavioral intentions they had related to using stem cell-based grafting, and what they would like to know before using this approach. METHODS Anonymous survey data were collected from 481 members of the American Academy of Periodontology (response rate: 19.41%). RESULTS Responses showed 35.3% had heard about stem cell-based therapy, mostly from publications (9.6%) and meetings (8.3%); 76.1% wanted to learn about it through in-person continuing education (CE) courses, 68.6% in online CE courses, and 57.1% from manuals; 73% considered this approach promising; and 54.9% preferred it to traditional approaches. It was important to them that it would result in more bone volume (93%), better bone quality (90.4%), and accelerated healing (83.2%). Also, 60.1% considered it likely/very likely that they would adopt this approach, 54% that patients would prefer it, and 62.1% that it would benefit their practice. When asked what they would like to know about this approach, information about short- and long-term outcomes, cost, and logistical considerations were most frequently named. CONCLUSIONS These findings provide the basis to develop educational interventions for periodontists about this novel approach and inform future research activities aimed to translate this approach to clinical practice.
Collapse
Affiliation(s)
- Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Misch
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Abdusalam Alrmali
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Medicine, Oral Pathology, Oral and Maxillofacial Surgery, University of Tripoli School of Dentistry, Tripoli, Libya
| | - Marita R Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Psychology, College of Literature, Science and Arts (LS & A), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Dong S, Jia L, Sun S, Hao X, Feng X, Qiu Y, Gu K, Wen Y. TAZ reverses the inhibitory effects of LPS on the osteogenic differentiation of human periodontal ligament stem cells through the NF-κB signaling pathway. BMC Oral Health 2024; 24:733. [PMID: 38926705 PMCID: PMC11210133 DOI: 10.1186/s12903-024-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Human periodontal ligament stem cells (hPDLSCs) are important candidate seed cells for periodontal tissue engineering, but the presence of lipopolysaccharide(LPS) in periodontal tissues inhibits the self-renewal and osteogenic differentiation of hPDLSCs. Our previous studies demonstrated that TAZ is a positive regulator of osteogenic differentiation of hPDLSCs, but whether TAZ can protect hPDLSCs from LPS is still unknown. The present study aimed to explore the regulatory effect of TAZ on the osteogenic differentiation of hPDLSCs in an LPS-induced inflammatory model, and to preliminarily reveal the molecular mechanisms related to the NF-κB signaling pathway. METHODS LPS was added to the culture medium of hPDLSCs. The influence of LPS on hPDLSC proliferation was analyzed by CCK-8 assays. The effects of LPS on hPDLSC osteogenic differentiation were detected by Alizarin Red staining, ALP staining, Western Blot and qRT-PCR analysis of osteogenesis-related genes. The effects of LPS on the osteogenic differentiation of hPDLSCs with TAZ overexpressed or knocked down via lentivirus were analyzed. NF-κB signaling in hPDLSCs was analyzed by Western Blot and immunofluorescence. RESULTS LPS inhibited the osteogenic differentiation of hPDLSCs, inhibited TAZ expression, and activated the NF-κB signaling pathway. Overexpressing TAZ in hPDLSCs partly reversed the negative effects of LPS on osteogenic differentiation and inhibited the activation of the NF-κB pathway by LPS. TAZ knockdown enhanced the inhibitory effects of LPS on osteogenesis. CONCLUSION Overexpressing TAZ could partly reverse the inhibitory effects of LPS on the osteogenic differentiation of hPDLSCs, possibly through inhibiting the NF-κB signaling pathway. TAZ is a potential target for improving hPDLSC-based periodontal tissue regeneration in inflammatory environments.
Collapse
Affiliation(s)
- Shuyi Dong
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaomei Feng
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yunge Qiu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Ke Gu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Hu J, Ou-Yang ZY, Zhao YQ, Zhao J, Tan L, Liu Q, Wang MY, Ye Q, Feng Y, Zhong MM, Chen NX, Su XL, Zhang Q, Feng YZ, Guo Y. Evaluation of the Efficacy of Stem Cells Therapy in the Periodontal Regeneration: A Meta-Analysis and Mendelian Randomization Study. Stem Cell Rev Rep 2024; 20:980-995. [PMID: 38388709 DOI: 10.1007/s12015-024-10690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Stem cell therapy for periodontal defects has shown good promise in preclinical studies. The purpose of this study was to evaluate the impact of stem cell support on the regeneration of both soft and hard tissues in periodontal treatment. PubMed, Cochrane Library, Embase, and Web of Science were searched and patients with periodontal defects who received stem cell therapy were included in this study. The quality of the included articles was assessed using Cochrane's tool for evaluating bias, and heterogeneity was analyzed using the I2 method. An Mendelian randomization investigation was conducted using abstract data from the IEU public databases obtained through GWAS. Nine articles were included for the meta-analysis. Stem cell therapy effectively rebuilds periodontal tissues in patients with periodontal defects, as evidenced by a reduction in probing depth, clinical attachment level and bone defect depth . And delta-like homolog 1 is a protective factor against periodontal defects alternative indicator of tooth loosening. The findings of this research endorse the utilization of stem cell treatment for repairing periodontal defects in individuals suffering from periodontitis. It is recommended that additional extensive clinical investigations be carried out to validate the efficacy of stem cell therapy and encourage its widespread adoption.
Collapse
Affiliation(s)
- Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min-Yuan Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Gu Y, Bai Y. Osteogenic effect of crocin in human periodontal ligament stem cells via Wnt/β-catenin signaling. Oral Dis 2024; 30:1429-1438. [PMID: 36705490 DOI: 10.1111/odi.14523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Crocin is a major class of medicinal components in saffron. This study aimed to determine whether crocin directly promotes the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro and in vivo. MATERIALS AND METHODS CCK8 cell proliferation assay, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis and Alizarin Red staining were performed in PDLSCs using crocin as a stimulant. DKK1 was used to selectively inhibit Wnt/β-catenin signaling, and Western blotting was performed to investigate the underlying mechanism. The PDLSCs were mixed with calcium phosphate cement and implanted into nude mice subcutaneously to study the effect of crocin on PDLSC osteogenic differentiation in vivo. RESULTS The CCK-8 assay showed that crocin did not promote the proliferation of PDLSCs. Treatment with 400 μM crocin significantly promoted PDLSC mRNA levels of ALP, COL1 and OCN; RUNX2 and BMP2 protein expression; mineralized nodule formation in vitro and in vivo; and ALP activity in tissues in vivo. In addition, crocin significantly promoted the phosphorylation of β-catenin and cyclin D1. DKK1 inhibits Wnt/β-catenin activation and partially reverses crocin-mediated promotion of PDLSC osteogenic differentiation. CONCLUSION Crocin may contribute to the regeneration of periodontal bone tissue.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Hussein N, Meade J, Pandit H, Jones E, El-Gendy R. Characterisation and Expression of Osteogenic and Periodontal Markers of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) from Diabetic Knee Joints. Int J Mol Sci 2024; 25:2851. [PMID: 38474098 DOI: 10.3390/ijms25052851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a significant health problem globally and is linked to a number of complications such as cardiovascular disease, bone fragility and periodontitis. Autologous bone marrow mesenchymal stem cells (BM-MSCs) are a promising therapeutic approach for bone and periodontal regeneration; however, the effect of T2DM on the expression of osteogenic and periodontal markers in BM-MSCs is not fully established. Furthermore, the effect of the presence of comorbidities such as diabetes and osteoarthritis on BM-MSCs is also yet to be investigated. In the present study, BM-MSCs were isolated from osteoarthritic knee joints of diabetic and nondiabetic donors. Both cell groups were compared for their clonogenicity, proliferation rates, MSC enumeration and expression of surface markers. Formation of calcified deposits and expression of osteogenic and periodontal markers were assessed after 1, 2 and 3 weeks of basal and osteogenic culture. Diabetic and nondiabetic BM-MSCs showed similar clonogenic and growth potentials along with comparable numbers of MSCs. However, diabetic BM-MSCs displayed lower expression of periostin (POSTN) and cementum protein 1 (CEMP-1) at Wk3 osteogenic and Wk1 basal cultures, respectively. BM-MSCs from T2DM patients might be suitable candidates for stem cell-based therapeutics. However, further investigations into these cells' behaviours in vitro and in vivo under inflammatory environments and hyperglycaemic conditions are still required.
Collapse
Affiliation(s)
- Nancy Hussein
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Josephine Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Reem El-Gendy
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
12
|
Sirisereephap K, Tamura H, Lim JH, Surboyo MDC, Isono T, Hiyoshi T, Rosenkranz AL, Sato-Yamada Y, Domon H, Ikeda A, Hirose T, Sunazuka T, Yoshiba N, Okada H, Terao Y, Maeda T, Tabeta K, Chavakis T, Hajishengallis G, Maekawa T. A novel macrolide-Del-1 axis to regenerate bone in old age. iScience 2024; 27:108798. [PMID: 38261928 PMCID: PMC10797555 DOI: 10.1016/j.isci.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Aging is associated with increased susceptibility to chronic inflammatory bone loss disorders, such as periodontitis, in large part due to the impaired regenerative potential of aging tissues. DEL-1 exerts osteogenic activity and promotes bone regeneration. However, DEL-1 expression declines with age. Here we show that systemically administered macrolide antibiotics and a non-antibiotic erythromycin derivative, EM-523, restore DEL-1 expression in 18-month-old ("aged") mice while promoting regeneration of bone lost due to naturally occurring age-related periodontitis. These compounds failed to induce bone regeneration in age-matched DEL-1-deficient mice. Consequently, these drugs promoted DEL-1-dependent functions, including alkaline phosphatase activity and osteogenic gene expression in the periodontal tissue while inhibiting osteoclastogenesis, leading to net bone growth. Macrolide-treated aged mice exhibited increased skeletal bone mass, suggesting that this treatment may be pertinent to systemic bone loss disorders. In conclusion, we identified a macrolide-DEL-1 axis that can regenerate bone lost due to aging-related disease.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hikaru Tamura
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meircurius Dwi Condro Surboyo
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Andrea L. Rosenkranz
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yurie Sato-Yamada
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
13
|
Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024; 16:e54115. [PMID: 38487109 PMCID: PMC10938178 DOI: 10.7759/cureus.54115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Periodontal disease, characterized by inflammation and infection of the supporting structures of teeth, presents a significant challenge in dentistry and public health. Current treatment modalities, while effective to some extent, have limitations in achieving comprehensive periodontal tissue regeneration. This comprehensive review explores the potential of stem cell therapy in advancing the field of periodontal regeneration. Stem cells, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), hold promise due to their immunomodulatory effects, differentiation potential into periodontal tissues, and paracrine actions. Preclinical studies using various animal models have revealed encouraging outcomes, though standardization and long-term assessment remain challenges. Clinical trials and case studies demonstrate the safety and efficacy of stem cell therapy in real-world applications, especially in personalized regenerative medicine. Patient selection criteria, ethical considerations, and standardized treatment protocols are vital for successful clinical implementation. Stem cell therapy is poised to revolutionize periodontal regeneration, offering more effective, patient-tailored treatments while addressing the systemic health implications of periodontal disease. This transformative approach holds the potential to significantly impact clinical practice and improve the overall well-being of individuals affected by this prevalent oral health concern. Responsible regulatory compliance and a focus on ethical considerations will be essential as stem cell therapy evolves in periodontal regeneration.
Collapse
Affiliation(s)
- Tanvi Bharuka
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Sandra Sari D, Martin M, Maduratna E, Basuki Notobroto H, Mahyudin F, Sudiana K, Ertanti N, Dinaryanti A, Abdul Rantam F. Combination adipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J 2023; 35:960-968. [PMID: 38107047 PMCID: PMC10724358 DOI: 10.1016/j.sdentj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background Periodontal disease is common in both developed and developing countries and affects around 20-50% of the global population, especially in adolescents, adults and the elderly is a public health problem. ADMSCs have the advantage of regenerating damaged tissue with high quality. DDM in the form of slices can improve healing in the mandibular sockets of molar teeth. The combination of ADMSC-DDM is expected to accelerate bone regeneration. Objectives To analyze the combination of ADMSCs-DDM at increasing bone marker expression in periodontitis rats. Methods This research is experimental with a randomized control group post-test-only design. A total of 50 male Wistar rats were divided into four groups: 1) normal group (K); 2) CP model (K + ); 3) CP model and treated with DDM scaffold therapy (K(s)); 4) CP model and treated with ADMSCs-DDM combination therapy (K(sc)). Making a CP model with injected LPS P. gingivalis into interproximal gingiva of the right first and second lower molars. The in vivo research stage was the implantation of the DDM scaffold and the ADMSCs-DDM combination in the rat periodontal pocket. Rats were euthanized on days 7, 14, and 28, and immunohistochemistry of STRO-1, RUNX-2, OSX, COL-I, and OCN was performed. DDM scaffolds are made in 10%, 50% and 100% concentrations for MTT testing. Statistical results were analyzed with Kruskal-Wallis and Mann-Whitney tests. Results The results of the MTT scaffold DDM were significant in the 10%, 50%, and 100% dilution groups (p < 0.05). The results showed there was a substantial difference in the expression of STRO-1 between the study groups (p < 0.05). The (K(sc)) was significantly higher than the (K) in RUNX-2 expression (p < 0.05). OSX expression showed significant results between study groups (p < 0.05). The expression of OCN and COL-I showed a significant difference in all study groups on day 28, where the (K(sc)) was higher than the (K) (p < 0.05). Conclusions Administration of the ADMSCs-DDM combination can accelerate alveolar bone regeneration on day 28. There is a mechanism of alveolar bone regeneration through the STRO-1, RUNX-2, OSX, and the COL-I pathway in periodontitis models.
Collapse
Affiliation(s)
- Desi Sandra Sari
- Department of Periodontics, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Millenieo Martin
- Graduated Student, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Ernie Maduratna
- Department of Periodontics, Faculty of Dentistry Universitas Airlangga, Surabaya 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Demography, Faculty of Public Health, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic & Traumatology, Dr Soetomo General Hospital, Surabaya 60132, Indonesia
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Nora Ertanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Aristika Dinaryanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Fedik Abdul Rantam
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Virology, Microbiology, and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
15
|
Alhasan MA, Tomokiyo A, Hamano S, Sugii H, Ono T, Ipposhi K, Yamashita K, Mardini B, Minowa F, Maeda H. Hyaluronic Acid Induction Promotes the Differentiation of Human Neural Crest-like Cells into Periodontal Ligament Stem-like Cells. Cells 2023; 12:2743. [PMID: 38067170 PMCID: PMC10705959 DOI: 10.3390/cells12232743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.
Collapse
Affiliation(s)
- M. Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Fumiko Minowa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- Department of Endodontology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Bajaj P, Shirbhate U, Dare S. Ligaplants: Uprising Regimen in the Glebe of Implant Dentistry. Cureus 2023; 15:e45968. [PMID: 37900437 PMCID: PMC10600504 DOI: 10.7759/cureus.45968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
A dental implant is an alloplastic framework inserted into the bone, either straight through the alveolar bone or beneath the mucosa or periosteum, to support and hold a permanent or removable dental prosthesis. Osseointegration is a striking phenomenon in which bone directly opposes the implant surface without any interposing collagen or fibroblastic matrix. Although titanium metallic implants were the subject of "osseointegration" at first, it is now used to refer to any biomaterial that can osseointegrate. The science of tissue engineering allows for regenerating complete biological components outside the body for possible replacement treatment or therapy. It uses cells, organic or synthetic scaffold materials, and bioactive molecules. The combination of periodontal ligament (PDL) cells with implant biomaterial is known as Ligaplants. When placed in regions with significant periodontal bone defects, ligaplants can promote the development of new bone. PDL implants, inserted into the missing teeth extraction socket, facilitate surgery. To protect the PDL cell cushion, ligaplants are fitted initially loosely. However, they firmly integrate without interlocking or making direct contact with the bones. Osseointegrated implants affixed directly to the alveolar bone encircling them cannot serve the same purpose as healthy teeth because natural periodontal tissue deteriorates over time. To create a biological connection capable of performing specific physiological tasks, a tissue-engineered PDL must be constructed in conjunction with a dental implant that is well thought out.
Collapse
Affiliation(s)
- Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Unnati Shirbhate
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sneha Dare
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
17
|
Wei X, Liu Q, Liu L, Tian W, Wu Y, Guo S. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol 2023; 153:105737. [PMID: 37320885 DOI: 10.1016/j.archoralbio.2023.105737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of periostin in the osteogenic abilities of dental follicle stem cells (DFSCs) and DFSC sheets in the inflammatory microenvironment. DESIGN DFSCs were isolated from dental follicles and identified. A lentiviral vector was used to knock down periostin in DFSCs. 250 ng/ml lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS) was used to construct the inflammatory microenvironment. Osteogenic differentiation was evaluated by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. The formation of extracellular matrix was assessed by qRT-PCR and immunofluorescence. The expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) were measured by western blot. RESULTS Knockdown of periostin inhibited osteogenic differentiation and promoted adipogenic differentiation of DFSCs. In an inflammatory microenvironment, knockdown of periostin attenuated the proliferation and osteogenic differentiation of DFSCs. Knockdown of periostin inhibited the formation of extracellular matrix collagen I (COL-I), fibronectin, and laminin in DFSC sheets, but did not affect the expression of osteogenesis-related markers alkaline phosphatase (ALP) and osteocalcin (OCN). In the inflammatory microenvironment, knocking down periostin inhibited the expression of OCN and OPG in DFSC sheets, and promoted the expression of RANKL. CONCLUSION Periostin played a key role in maintaining the osteogenic abilities of DFSCs and DFSC sheets in the inflammatory microenvironment and might be an important molecule in the process of DFSCs coping with inflammatory microenvironment and promoting periodontal tissues regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Li Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Pharmacological Activation of YAP/TAZ by Targeting LATS1/2 Enhances Periodontal Tissue Regeneration in a Murine Model. Int J Mol Sci 2023; 24:ijms24020970. [PMID: 36674487 PMCID: PMC9866423 DOI: 10.3390/ijms24020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies.
Collapse
|
19
|
Mendoza AH, Balzarini D, Alves T, Rovai ES, Holzhausen M. Potential of Mesenchymal Stem Cell Sheets on Periodontal Regeneration: A Systematic Review of Pre-Clinical Studies. Curr Stem Cell Res Ther 2023; 18:958-978. [PMID: 35794765 DOI: 10.2174/1574888x17666220706092520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cell sheet technique using mesenchymal stem cells is a high-level strategy in periodontal regenerative medicine. Although recent studies have shown the role of MSCSs in increased dental supporting tissues and bone, there is no systematic review focused specifically on assessing periodontal regeneration in orthotopic animal models. OBJECTIVE To evaluate the potential of mesenchymal stem cell sheets (MSCSs) on periodontal regeneration, compared to control, in experimental animal models Methods: Pre-clinical studies in periodontal defects of animal models were considered eligible. The electronic search included the MEDLINE, Web of Science, EMBASE and LILACS databases. The review was conducted according to the Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement guidelines. RESULTS A total of 17 of the 3989 studies obtained from the electronic database search were included. MSCSs included dental follicle (DF) MSCSs, periodontal ligament (PL) MSCSs, dental pulp (DP) MSCSs, bone marrow (BM) MSCSs, alveolar periosteal (AP) MSCSs and gingival (G) MSCSs. Regarding cell sheet inducing protocol, most of the studies used ascorbic acid (52.94%). Others used culture dishes grafted with a temperature-responsive polymer (47.06%). Adverse effects were not identified in the majority of studies. Meta-analysis was not considered because of methodological heterogeneities. PDL-MSCSs were superior for periodontal regeneration enhancement compared to the control, but in an induced inflammatory microenvironment, DF-MSCSs were better. Moreover, DF-MSCSs, DP-MSCSs, and BM-MSCSs showed improved results compared to the control. CONCLUSION MSCSs can improve periodontal regeneration in animal periodontal defect models.
Collapse
Affiliation(s)
- Aldrin Huamán Mendoza
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Danilo Balzarini
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Tomaz Alves
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| | - Emanuel S Rovai
- Division of Periodontology, Dental School, University of Taubaté, Rua dos Operários, 09, Centro, Taubaté, SP, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Liu G, Zhou X, Zhang L, Zou Y, Xue J, Xia R, Abuduxiku N, Xuejing Gan, Liu R, Chen Z, Cao Y, Chen Z. Cell-free immunomodulatory biomaterials mediated in situ periodontal multi-tissue regeneration and their immunopathophysiological processes. Mater Today Bio 2022; 16:100432. [PMID: 36204216 PMCID: PMC9530615 DOI: 10.1016/j.mtbio.2022.100432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.
Collapse
|
21
|
Rakian A, Rakian R, Shay A, Serhan C, Van Dyke T. Periodontal Stem Cells Synthesize Maresin Conjugate in Tissue Regeneration 3. J Dent Res 2022; 101:1205-1213. [PMID: 35428422 PMCID: PMC9403725 DOI: 10.1177/00220345221090879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Periodontal disease is a significant public health problem worldwide. Excess unresolved chronic inflammation destroys the periodontal tissues that surround and support the teeth, and efforts to control inflammation by removal of bacterial deposits on the teeth have limited long-term impact. Likewise, procedures aimed at regeneration of the periodontal tissues have shown limited success. Recent advances in stem cell research have shown promising novel prospects for the use of periodontal ligament stem cells (PDLSCs) in tissue regeneration; however, control of inflammation remains a barrier. Human PDLSCs have been shown to release specialized proresolving lipid mediators (SPMs) that modulate the immune response and promote resolution of inflammation, tissue repair, and regeneration. Studies on stem cell biology in periodontology have also been limited by the lack of a good large animal model. Herein, we describe PDLSC biology of the Yorkshire pig (pPDLSCs). pPDLSCs were isolated and characterized. Using lipid mediator profiling, we demonstrate for the first time that pPDLSCs biosynthesize cysteinyl-containing SPMs (cys-SPMs), specifically, maresin conjugates in tissue regeneration 3 (MCTR3) and its authentication using liquid chromatography/tandem mass spectrometry. The exogenous addition of the n-3 precursor docosahexaenoic acid enhances MCTR3 biosynthesis. Using immunocytochemistry, we show that pPDLSCs express 4 of the SPM biosynthetic pathway enzymes necessary for SPM biosynthesis, including 5-lipoxygenase, 12-lipoxygenase, and 15-lipoxygenase-1. In addition, we identified and quantified the cytokine/chemokine profile of pPDLSCs using a 13-plex immunology multiplex assay and found that the pretreatment of pPDLSCs with MCTR3 in an inflammatory environment reduced the production of acute and chronic proinflammatory cytokines/chemokines. Together, these results suggest that enhancing resolution of inflammation pathways and mediators may be a possible key early event in predictable periodontal regeneration.
Collapse
Affiliation(s)
- A. Rakian
- Department of Applied Oral Science, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - R. Rakian
- Department of Applied Oral Science, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - A.E. Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - C.N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - T.E. Van Dyke
- Department of Applied Oral Science, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Wisitrasameewong W, Champaiboon C, Surisaeng T, Sa-Ard-Iam N, Freire M, Pardi N, Pichyangkul S, Mahanonda R. The Impact of mRNA Technology in Regenerative Therapy: Lessons for Oral Tissue Regeneration. J Dent Res 2022; 101:1015-1024. [PMID: 35319289 DOI: 10.1177/00220345221084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral tissue regeneration following chronic diseases and injuries is limited by the natural endogenous wound-healing process. Current regenerative approaches implement exogenous systems, including stem cells, scaffolds, growth factors, and plasmid DNA/viral vectors, that induce variable clinical outcomes. An innovative approach that is safe, effective, and inexpensive is needed. The lipid nanoparticle-encapsulated nucleoside-modified messenger RNA (mRNA) platform has proven to be a successful vaccine modality against coronavirus disease 2019, demonstrating safety and high efficacy in humans. The same fundamental technology platform could be applied to facilitate the development of mRNA-based regenerative therapy. While the platform has not yet been studied in the field of oral tissue regeneration, mRNA therapeutics encoding growth factors have been evaluated and demonstrated promising findings in various models of soft and hard tissue regeneration such as myocardial infarction, diabetic wound healing, and calvarial and femoral bone defects. Because restoration of both soft and hard tissues is crucial to oral tissue physiology, this new therapeutic modality may help to overcome challenges associated with the reconstruction of the unique and complex architecture of oral tissues. This review discusses mRNA therapeutics with an emphasis on findings and lessons in different regenerative animal models, and it speculates how we can apply mRNA-based platforms for oral tissue regeneration.
Collapse
Affiliation(s)
- W Wisitrasameewong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - C Champaiboon
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - T Surisaeng
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkhla University, Songkhla, Thailand
| | - N Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - M Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
| | - N Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Pichyangkul
- Department of Bacterial and Parasitic Diseases, AFRIMS, Bangkok, Thailand
| | - R Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Zong C, Bronckaers A, Vande Velde G, Willems G, Cadenas de Llano‐Pérula M. In Vivo Micro-Computerized Tomography Tracking of Human Periodontal Ligament Stem Cells Labeled with Gold Nanocomplexes. Adv Healthc Mater 2022; 11:e2101133. [PMID: 34704382 DOI: 10.1002/adhm.202101133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Gold nanocomplexes have been proposed as contrast agents for computerized tomography (CT) and cell tracking, which is especially useful in stem cell therapy. However, their potential for long-term in vivo cell detection is still unknown. This study proposes an optimized approach to labeling human periodontal ligament stem cells (hPDLSCs) with gold nanocomplexes to evaluate their detection with micro-CT after transplantation at four different rat tissues. The gold nanocomplexes of 0.05 mg mL-1 do not affect cell viability nor osteogenic differentiation capacity, but render fluorescent and radiopaque hPDLSCs. Excellent linear correlation with the number of labeled cells is shown over a wide range (r = 0.99, P < 0.01), with a detection limit of ≈1.2 × 103 cells/µL. In vivo, strong, and durable detection of transplanted labeled cells within 5 days at all investigated areas is seen by micro-CT and immunohistochemical assay. This approach confirms the potential of gold nanocomplexes in longitudinal in vivo cell tracking, which may facilitate their application in CT image-guided interventions commonly used in oromaxillofacial or systemic applications of stem cell therapy.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute Faculty of Life Sciences University of Hasselt Diepenbeek 3590 Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven 3000 Belgium
| | - Guy Willems
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| | - Maria Cadenas de Llano‐Pérula
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| |
Collapse
|
24
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
25
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
26
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
27
|
Kukreja BJ, Bhat KG, Kukreja P, Kumber VM, Balakrishnan R, Govila V. Isolation and immunohistochemical characterization of periodontal ligament stem cells: A preliminary study. J Indian Soc Periodontol 2021; 25:295-299. [PMID: 34393399 PMCID: PMC8336774 DOI: 10.4103/jisp.jisp_442_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Context: It is a known fact that periodontal tissue regeneration can be achieved by the use of periodontal ligament stem cells (PDLSCs). Current mainstay of periodontal treatment is focusing on stem cell tissue engineering as an effective therapy, making it important to isolate PDLSCs from periodontal tissues. Aims: The present research endeavor was undertaken to elucidate a technique for isolating PDLSCs for in vivo reconstructing the natural PDL tissue. Settings and Design: The study design involves In vitro prospective study. Materials and Methods: Premolar teeth were extracted from 12 patients who were under orthodontic treatment. PDL cells were scraped from their roots. Using 10 ml of Dulbecco's modified Eagle's medium with pH 7.2, the specimens of the periodontal tissue were transferred to laboratory where cell culture was done. Isolated stem cells were grown on 24-well microtiter plates-containing cover slips. They were incubated overnight at approximately 37°C in 95% air and 5% humidification. Anti-CD 45, CD73, CD90, CD105, and CD146 antibodies were used. After staining, cells were observed under phase-contrast microscopy and in inverted microscope. Results: The cells showed a marked growth and 90% confluence at day 6. Cells presented thin and long fibroblastic spindle morphology. Isolated PDLSCs showed colony-forming ability at the 14th day after seeding. Immunohistochemical staining of PDLSCs showed positive uptake for CD146, CD90, CD73, CD105, and negative uptake for CD45. Conclusions: The human PDLSCs can be clearly isolated and characterized by using CD90, CD73, CD146, and CD105 markers of stem cells.
Collapse
Affiliation(s)
- Bhavna Jha Kukreja
- Department of Periodontology, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Kishore Gajanan Bhat
- Department of Microbiology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Pankaj Kukreja
- Department of Biomedical Dental Sciences, Faculty of Dentistry, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Vijay Mahadev Kumber
- Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Maratha Mandal's Central Research Laboratory, Belagavi, Karnataka, India
| | - Rajkumar Balakrishnan
- Department of Conservative Dentistry and Endodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Vivek Govila
- Department of Periodontology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Huang JP, Wu YM, Liu JM, Zhang L, Li BX, Chen LL, Ding PH, Tan JY. Decellularized matrix could affect the proliferation and differentiation of periodontal ligament stem cells in vitro. J Periodontal Res 2021; 56:929-939. [PMID: 34173232 DOI: 10.1111/jre.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE AND BACKGROUND Recently, decellularized matrix (DCM) is considered as a new biomaterial for tissue regeneration. To explore the possible application of DCM in periodontal regeneration, the effect of DCM from three different cells on the proliferation and differentiation of human periodontal ligament stem cells (PDLSCs) was investigated. METHODS DCM derived from human periodontal ligament cells (PDLCs), dental pulp cells (DPCs), and gingival fibroblasts (GFs) were fabricated using Triton X-100/NH4 OH combined with DNase I. Allogeneic PDLSCs were cultured on PDLC-DCM, DPC-DCM, and GF-DCM, respectively. The proliferative capacity of PDLSCs was evaluated by PicoGreen assay kit. The expression of alkaline phosphatase (ALP), runt-related transcription factor-2 (RUNX2), osteocalcin (OCN), collagen I (COL1), periostin (POSTN), and cementum protein 1 (CEMP1) were detected by qRT-PCR and western blotting. RESULTS PDLC-DCM, DPC-DCM, and GF-DCM had similar and integrated networks of extracellular matrix, as well as significantly decreased DNA content. Compared with control group in which PDLSCs were directly seeded in culture plates, PDLC-DCM, DPC-DCM, and GF-DCM promoted the proliferation of re-seeded PDLSCs. Additionally, PDLSCs on DCM exhibited higher mRNA and protein expression levels of ALP, RUNX2, OCN, and COL1. The expression of POSTN in PDLC-DCM group was significantly higher than control group at both mRNA and protein levels. CONCLUSIONS PDLC-DCM, DPC-DCM, and GF-DCM could enhance the proliferation of PDLSCs. PDLC-DCM facilitated osteogenic differentiation and periodontal ligament differentiation of PDLSCs, while DPC-DCM and GF-DCM promoted osteogenic differentiation.
Collapse
Affiliation(s)
- Jia-Ping Huang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, The Affiliated Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Min Wu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Mei Liu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Lan Zhang
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Bo-Xiu Li
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Li Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Hui Ding
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, The Affiliated Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Yi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Yu B, Hu J, Li Q, Wang F. CircMAP3K11 Contributes to Proliferation, Apoptosis and Migration of Human Periodontal Ligament Stem Cells in Inflammatory Microenvironment by Regulating TLR4 via miR-511 Sponging. Front Pharmacol 2021; 12:633353. [PMID: 33679417 PMCID: PMC7930627 DOI: 10.3389/fphar.2021.633353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Growing number of studies regarding the role of circRNAs in the development of various diseases have emerged in recent years, but the role of circRNAs in periodontitis pathogenesis remains obscure. Human periodontal ligament stem cells (hPDLSCs) play a critical role in periodontal remodeling, regeneration and repair processes, and their regenerative capacity could be prohibited in local periodontal inflammatory microenvironment. Herein, we sought to uncover the molecular mechanisms of periodontitis pathogenesis by investigating the role of circMAP3K11 (hsa_circ_002284) for regenerative capacity of hPDLSCs under an inflammatory condition. The hPDLSCs isolated from periodontitis patients were used as a cell model of inflammatory microenvironment to study the effect of the circMAP3K11/miR-511-3p/TLR4 axis on the proliferation, apoptosis and migration of hPDLSCs under inflammatory conditions. Compared to the periodontal tissues from normal subjects, those from periodontitis patients exhibited higher expression levels of circMAP3K11 and TLR4, and lower expression level of miR-511-3p. Both the expressions of circMAP3K11 and TLR4 were negatively correlated with the expressions of miR-511-3p in periodontitis. In vitro studies demonstrated that circMAP3K11 is capable of enhancing hPDLSCs proliferation and migration, and reducing the apoptosis of hPDLSCs. We also found that circMAP3K11 could up-regulate the expression of transcription factors that are closely related to periodontal regeneration (Runx2, OSX, ATF4, and BSP). RT-PCR and western blot showed that the inhibitory role of miR-511-3p on TLR4 expression could be reversed by circMAP3K11, which was in line with the results of bioinformatics tools and luciferase reporter assay. Meanwhile, both in vitro and in vivo studies indicated that circMAP3K11 could reverse the effects of miR-511-3p in periodontitis, which further confirmed that circMAP3K11 functioned as a ‘sponge’ of miR-511-3p to positively regulate the expression of TLR4. Taken together, our study preliminarily uncovered a circMAP3K11/miR-511-3p/TLR4 axis that regulates the function of hPDLSCs in periodontitis, providing novel insight and scientific base in the treatment of periodontal tissue regeneration based on stem cells.
Collapse
Affiliation(s)
- Bohan Yu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiahui Hu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qin Li
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fang Wang
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
30
|
Li L, Zhang Y, Wang M, Zhou J, Zhang Q, Yang W, Li Y, Yan F. Gold Nanoparticles Combined Human β-Defensin 3 Gene-Modified Human Periodontal Ligament Cells Alleviate Periodontal Destruction via the p38 MAPK Pathway. Front Bioeng Biotechnol 2021; 9:631191. [PMID: 33585435 PMCID: PMC7876295 DOI: 10.3389/fbioe.2021.631191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with plaques as the initiating factor, which will induce the destruction of periodontal tissues. Numerous studies focused on how to obtain periodontal tissue regeneration in inflammatory environments. Previous studies have reported adenovirus-mediated human β-defensin 3 (hBD3) gene transfer could potentially enhance the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and bone repair in periodontitis. Gold nanoparticles (AuNPs), the ideal inorganic nanomaterials in biomedicine applications, were proved to have synergetic effects with gene transfection. To further observe the potential promoting effects, AuNPs were added to the transfected cells. The results showed the positive effects of osteogenic differentiation while applying AuNPs into hPDLCs transfected by adenovirus encoding hBD3 gene. In vivo, after rat periodontal ligament cell (rPDLC) transplantation into SD rats with periodontitis, AuNPs combined hBD3 gene modification could also promote periodontal regeneration. The p38 mitogen-activated protein kinase (MAPK) pathway was demonstrated to potentially regulate both the in vitro and in vivo processes. In conclusion, AuNPs can promote the osteogenic differentiation of hBD3 gene-modified hPDLCs and periodontal regeneration via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Zhou
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Stomatological Hospital, Zhejiang University School of Medicine, Zhejiang University School of Stomatology, Hangzhou, China
| | - Qian Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
31
|
PELP1 promotes the expression of RUNX2 via the ERK pathway during the osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2021; 124:105078. [PMID: 33607589 DOI: 10.1016/j.archoralbio.2021.105078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to determine the physiological function and mechanism of proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) at the molecular level in vitro. DESIGN During the osteogenic differentiation of hPDLSCs, the change of PELP1 and the osteogenic commitment markers runt-related transcription factor 2(RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) were monitored by quantitative real-time PCR (qRT-PCR) and western blots. To elucidate how PELP1 regulates RUNX2, the expression of RUNX2, the phosphorylation of extracellular regulated protein kinases (ERK) and subcellular location of PELP1 were detected under conditions that PELP1 was either knockdown by specific siRNA or overexpressed. A pharmacological inhibitor of ERK, U0126 was used while PELP1 was overexpressed, and the expression of RUNX2 was monitored by qRT-PCR. RESULTS PELP1 was upregulated during the osteogenic differentiation of hPDLSCs. Knockdown of PELP1 suppressed the expression of RUNX2, whereas overexpression of PELP1 increased RUNX2 expression. Moreover, PELP1 knockdown resulted in reduced ERK phosphorylation and RUNX2 expression, and PELP1 overexpression induced RUNX2 expression was inhibited by U0126 in the hPDLSCs. CONCLUSIONS PELP1 regulates the expression of RUNX2 during the osteogenic differentiation of hPDLSCs and that the ERK pathway is involved in this process.
Collapse
|
32
|
Yamato H, Sanui T, Yotsumoto K, Nakao Y, Watanabe Y, Hayashi C, Aihara R, Iwashita M, Tanaka U, Taketomi T, Fukuda T, Nishimura F. Combined application of geranylgeranylacetone and amelogenin promotes angiogenesis and wound healing in human periodontal ligament cells. J Cell Biochem 2021; 122:716-730. [PMID: 33529434 DOI: 10.1002/jcb.29903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Amelogenin directly binds to glucose-regulated protein 78 (Grp78). Cell migration activity is expected to increase when human periodontal ligament cells (hPDLCs) overexpressing Grp78 are treated with amelogenin. Geranylgeranylacetone (GGA) is a drug that induces the expression of heat shock protein and is routinely used to treat gastric ulcers. Here, we investigated the changes in the properties and behavior of hPDLCs in response to treatment with GGA and the synergistic effects of amelogenin stimulation in hPDLCs pretreated with GGA for the establishment of a novel periodontal tissue regenerative therapy. We observed that GGA treatment increased Grp78 protein expression in hPDLCs and enhanced cell migration. Microarray analysis demonstrated that increased Grp78 expression triggered the production of angiopoietin-like 4 and amphiregulin, which are involved in the enhancement of angiogenesis and subsequent wound healing via the activation of hypoxia-inducible factor 1α and peroxisome proliferator-activated receptors as well as the phosphorylation of cAMP response element-binding protein and protein kinase A. Moreover, the addition of recombinant murine amelogenin (rM180) further accelerated hPDLC migration and tube formation of human umbilical vein endothelial cells due to the upregulation of interleukin-8 (IL-8), monocyte chemotactic protein 1, and IL-6, which are also known as angiogenesis-inducing factors. These findings suggest that the application of GGA to gingival tissue and alveolar bone damaged by periodontal disease would facilitate the wound healing process by inducing periodontal ligament cells to migrate to the root surface and release cytokines involved in tissue repair. Additionally, supplementation with amelogenin synergistically enhanced the migratory capacity of these cells while actively promoting angiogenesis. Therefore, the combined application of GGA and amelogenin may establish a suitable environment for periodontal wound healing and further drive the development of novel therapeutics for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hiroaki Yamato
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryosuke Aihara
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Iwasaki K, Akazawa K, Nagata M, Komaki M, Peng Y, Umeda M, Watabe T, Morita I. Angiogenic Effects of Secreted Factors from Periodontal Ligament Stem Cells. Dent J (Basel) 2021; 9:dj9010009. [PMID: 33467531 PMCID: PMC7829795 DOI: 10.3390/dj9010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontal disease is a chronic inflammation of tooth-supporting tissues, and the destruction of these tissues results in tooth loss. Regeneration of periodontal tissues is the ultimate goal of periodontal treatment. We previously reported that transplantation of conditioned medium (CM) of periodontal ligament stem cells (PDLSCs) demonstrated the enhancement of periodontal tissue regeneration, compared to CM from fibroblasts (Fibroblast-CM). We hypothesized that the angiogenic effects of PDLSC-CM might participate in the enhanced wound healing of periodontal tissues. The aim of this study was to investigate the effect of PDLSC-CM on the functions of endothelial cells. PDLSCs were cultured from periodontal ligament tissues obtained from healthy volunteers. Human gingival epithelial cells, dermal fibroblasts, osteoblasts, and umbilical vein endothelial cells (HUVECs) were purchased from commercial sources. The functions of endothelial cells were examined using immunostaining of Ki67, observation of nuclear fragmentation and condensation (apoptosis), and network formation on Matrigel. Vascular endothelial cell growth factor (VEGF) level was measured using an ELISA kit. HUVECs demonstrated higher cell viability in PDLSC-CM when compared with those in Fibroblast-CM. HUVECs demonstrated a higher number of Ki67-positive cells and lower apoptosis cells in PDLSC-CM, compared to Fibroblast-CM. Additionally, HUVECs formed more capillary-like structures in PDLSC-CM than Fibroblast-CM. PDLSC-CM contained higher levels of angiogenic growth factor, VEGF, than Fibroblast-CM. Our results showed that PDLSC-CM increased cell viability, proliferation, and capillary formation of HUVECs compared to Fibroblast-CM, suggesting the angiogenic effects of PDLSC-CM, and the effect is a potential regenerative mechanism of periodontal tissues by PDLSC-CM.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka 573-1121, Japan
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (K.A.); (M.N.)
- Correspondence: ; Tel.: +81-72-864-3125
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (K.A.); (M.N.)
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (K.A.); (M.N.)
| | - Motohiro Komaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Yokohama Clinic, Kanagawa Dental University, Yokohama Clinic, Kanagawa, Yokohama 221-0835, Japan
| | - Yihao Peng
- Graduate School of Dentistry, Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan;
| | - Ikuo Morita
- Ochanomizu University, Tokyo 112-8610, Japan;
| |
Collapse
|
34
|
Aveic S, Craveiro RB, Wolf M, Fischer H. Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue. Adv Healthc Mater 2021; 10:e2001269. [PMID: 33191670 PMCID: PMC11469331 DOI: 10.1002/adhm.202001269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that in physiological and therapeutic conditions a continuous remodeling of the tooth root cementum and the periodontal apparatus is required to maintain tissue strength, to prevent damage, and to secure teeth anchorage. Within the tooth's surrounding tissues, tooth root cementum and the periodontal ligament are the key regulators of a functional tissue homeostasis. While the root cementum anchors the periodontal fibers to the tooth root, the periodontal ligament itself is the key regulator of tissue resorption, the remodeling process, and mechanical signal transduction. Thus, a balanced crosstalk of both tissues is mandatory for maintaining the homeostasis of this complex system. However, the mechanobiological mechanisms that shape the remodeling process and the interaction between the tissues are largely unknown. In recent years, numerous 2D and 3D in vitro models have sought to mimic the physiological and pathophysiological conditions of periodontal tissue. They have been proposed to unravel the underlying nature of the cell-cell and the cell-extracellular matrix interactions. The present review provides an overview of recent in vitro models and relevant biomaterials used to enhance the understanding of periodontal crosstalk and aims to provide a scientific basis for advanced regenerative strategies.
Collapse
Affiliation(s)
- Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
- Neuroblastoma LaboratoryPediatric Research Institute Fondazione Città della SperanzaPadova35127Italy
| | | | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalAachen52074Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
| |
Collapse
|
35
|
Mathew A, Babu AS, Keepanasseril A. Biomimetic Properties of Engineered Periodontal Ligament/Cementum in Dental Implants. Contemp Clin Dent 2020; 11:301-310. [PMID: 33850394 PMCID: PMC8035849 DOI: 10.4103/ccd.ccd_196_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
The conventional concept of osseointegrated dental implants based on direct connection to alveolar bone lacks a structured periodontal ligament (PDL) as in natural tooth. This limits the physiologic and functional efficiency of the implant in cushioning occlusal overload, orthodontic tooth movement, and proprioception. Development of bio-mimetic implants that can satisfy the bio-functional requirements of the natural tooth will be an innovative approach and preliminary researches in this area has been reported. This review includes in vivo studies which reported structural features and functional efficiency of an artificial PDL or cementum developed around dental implants. The electronic search identified 12 animal studies and one human trial which utilized retained or adjacent natural tooth roots, exogenous scaffold materials, dental progenitor cells derived from PDL of extracted tooth root as PDL substitutes. The result of the review is dominated by bio-hybrid implants that used dental follicles separated on the particular embryonic day and cell sheets from immortalized human cells. A summary of the currently available research on artificial PDL/cementum around dental implants highlights the potential need of autologous cell-derived tissues to bioengineer a fully functional implant design
Collapse
Affiliation(s)
- Anil Mathew
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Anna Serene Babu
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arun Keepanasseril
- Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
36
|
Kim EN, Kim TY, Park EK, Kim JY, Jeong GS. Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis. Antioxidants (Basel) 2020; 9:E1221. [PMID: 33287198 PMCID: PMC7761716 DOI: 10.3390/antiox9121221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side effects of anti-inflammatory drugs. Therefore, here, we assessed whether Panax ginseng fruit extract (PGFE) is a new therapeutic agent for periodontitis in vitro and in vivo. According to the results, PGFE suppressed pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and pro-inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2 through heme oxygenase-1 expression in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, the osteogenic induction of human periodontal ligament cells was inhibited by PG-LPS, and protein and mRNA levels of osteogenic markers such as alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2) were increased. The efficacy of PGFE for inhibiting periodontitis in vitro was demonstrated in a representative in vitro model of periodontitis induced by ligature and PG-LPS. Subsequently, hematoxylin and eosin staining and micro-computed tomography of the euthanized experimental animal model confirmed suppressed periodontal inflammation, which is an important strategy for treating periodontitis and for recovering the resulting alveolar bone loss. Therefore, PGFE is a potential, novel therapeutic agent for periodontal diseases.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; (T.-Y.K.); (J.-Y.K.)
| | - Eui Kyun Park
- Departments of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; (T.-Y.K.); (J.-Y.K.)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| |
Collapse
|
37
|
Maeda H. Mass acquisition of human periodontal ligament stem cells. World J Stem Cells 2020; 12:1023-1031. [PMID: 33033562 PMCID: PMC7524700 DOI: 10.4252/wjsc.v12.i9.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 8128582, Japan
| |
Collapse
|
38
|
MEST Regulates the Stemness of Human Periodontal Ligament Stem Cells. Stem Cells Int 2020; 2020:9672673. [PMID: 32724317 PMCID: PMC7366229 DOI: 10.1155/2020/9672673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal ligament (PDL) stem cells (PDLSCs) have been reported as a useful cell source for periodontal tissue regeneration. However, one of the issues is the difficulty of obtaining a sufficient number of PDLSCs for clinical application because very few PDLSCs can be isolated from PDL tissue of donors. Therefore, we aimed to identify a specific factor that converts human PDL cells into stem-like cells. In this study, microarray analysis comparing the gene profiles of human PDLSC lines (2-14 and 2-23) with those of a cell line with a low differentiation potential (2-52) identified the imprinted gene mesoderm-specific transcript (MEST). MEST was expressed in the cytoplasm of 2-23 cells. Knockdown of MEST by siRNA in 2-23 cells inhibited the expression of stem cell markers, such as CD105, CD146, p75NTR, N-cadherin, and NANOG; the proliferative potential; and multidifferentiation capacity for osteoblasts, adipocytes, and chondrocytes. On the other hand, overexpression of MEST in 2-52 cells enhanced the expression of stem cell markers and PDL-related markers and the multidifferentiation capacity. In addition, MEST-overexpressing 2-52 cells exhibited a change in morphology from a spindle shape to a stem cell-like round shape that was similar to 2-14 and 2-23 cell morphologies. These results suggest that MEST plays a critical role in the maintenance of stemness in PDLSCs and converts PDL cells into PDLSC-like cells. Therefore, this study indicates that MEST may be a therapeutic factor for periodontal tissue regeneration by inducing PDLSCs.
Collapse
|
39
|
Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020; 21:ijms21124389. [PMID: 32575639 PMCID: PMC7352407 DOI: 10.3390/ijms21124389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.
Collapse
|
40
|
Human β-defensin 3 gene modification promotes the osteogenic differentiation of human periodontal ligament cells and bone repair in periodontitis. Int J Oral Sci 2020; 12:13. [PMID: 32350241 PMCID: PMC7190824 DOI: 10.1038/s41368-020-0078-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control inflammation and achieve better tissue repair in the treatment of periodontitis have been ongoing for years. Human β-defensin 3, a broad-spectrum antimicrobial peptide has been proven to have a variety of biological functions in periodontitis; however, relatively few reports have addressed the effects of human periodontal ligament cells (hPDLCs) on osteogenic differentiation. In this study, we evaluated the osteogenic effects of hPDLCs with an adenoviral vector encoding human β-defensin 3 in an inflammatory microenvironment. Then human β-defensin 3 gene-modified rat periodontal ligament cells were transplanted into rats with experimental periodontitis to observe their effects on periodontal bone repair. We found that the human β-defensin 3 gene-modified hPDLCs presented with high levels of osteogenesis-related gene expression and calcium deposition. Furthermore, the p38 MAPK pathway was activated in this process. In vivo, human β-defensin 3 gene-transfected rat PDLCs promoted bone repair in SD rats with periodontitis, and the p38 mitogen-activated protein kinase (MAPK) pathway might also have been involved. These findings demonstrate that human β-defensin 3 accelerates osteogenesis and that human β-defensin 3 gene modification may offer a potential approach to promote bone repair in patients with periodontitis.
Collapse
|
41
|
Lipopolysaccharide inhibits osteogenic differentiation of periodontal ligament stem cells partially through toll-like receptor 4-mediated ephrinB2 downregulation. Clin Oral Investig 2020; 24:3407-3416. [DOI: 10.1007/s00784-020-03211-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
|
42
|
Lee JH, Kim DH, Jeong SN. Adjunctive use of enamel matrix derivatives to porcine-derived xenograft for the treatment of one-wall intrabony defects: Two-year longitudinal results of a randomized controlled clinical trial. J Periodontol 2019; 91:880-889. [PMID: 31811645 PMCID: PMC7497188 DOI: 10.1002/jper.19-0432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Background The purpose of this study was to evaluate the potential advantages of adjunctive use of enamel matrix protein derivative (EMD) in combination with demineralized porcine bone matrix (DPBM) for the treatment of one‐wall intrabony defects in the molar regions, in comparison with the use of DPBM alone, through a randomized controlled clinical trial. Methods Forty‐two participants were randomly assigned to two groups: one where DPBM with the adjunctive use of EMD (test group, n = 20) was applied and the other without EMD (control group, n = 22). Changes in the clinical and radiographic parameters from baseline at 6, 12, and 24 months were measured (probing pocket depth, clinical attachment loss, defect depth, and defect width). Postoperative discomfort (severity/duration of pain and swelling) and early soft tissue wound healing (dehiscence/fenestration, persistent swelling, spontaneous bleeding, and ulceration) were also assessed. Results Both treatment modalities, with and without EMD, resulted in significant improvement of clinical and radiographic outcomes without any severe adverse events. However, no statistically significant differences in any of the measured parameters were found when the two groups were compared. Early wound healing outcomes and the severity of swelling did not differ between the groups, but the severity of pain (P = 0.046), duration (P = 0.033), and swelling (P = 0.022) were significantly lower in the test group. Conclusions DPBM has been verified for biocompatibility and can be used as a scaffold to enhance the clinical and radiographic outcomes of periodontal regeneration of one‐wall intrabony defects. In particular, the adjunctive use of EMD significantly reduced the postoperative discomfort.
Collapse
Affiliation(s)
- Jae-Hong Lee
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Do-Hyung Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| |
Collapse
|
43
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
44
|
Duan Y, An W, Wu H, Wu Y. Salvianolic Acid C Attenuates LPS-Induced Inflammation and Apoptosis in Human Periodontal Ligament Stem Cells via Toll-Like Receptors 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit 2019; 25:9499-9508. [PMID: 31831723 PMCID: PMC6929551 DOI: 10.12659/msm.918940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that causes gingival detachment and disintegration of alveolar bone. Salvianolic acid C (SAC) is a polyphenol compound with anti-inflammatory and antioxidant activities that is isolated from Danshen, a traditional Chinese medicine made from the roots of Salvia miltiorrhiza Bunge. The aim of this study was to investigate the mechanisms of underlying its protective effects and its inhibition effect on inflammation and apoptosis in human periodontal ligament stem cells (hPDLSCs). MATERIAL AND METHODS LPS-induced hPDLSCs, as a model mimicking an inflammatory process of periodontitis in vivo, were established to investigate the therapeutic effect of SAC in periodontitis. The inflammatory cytokines secretion and oxidative stress status were measured by use of specific commercial test kits. The hPDLSCs viability was analyzed by Cell Counting Kit-8 assay. The cell apoptosis and cell cycle were assayed with flow cytometry. Expressions levels of proteins involved in apoptosis, osteogenic differentiation, and TLR4/NF-kappaB pathway were evaluated by Western blotting. Alkaline phosphatase (ALP) activity was detected by ALP assay kit and ALP staining. The mineralized nodules formation of hPDLSCs was checked by Alizarin Red S staining. RESULTS Our results showed that LPS induced increased levels of inflammatory cytokines and oxidative stress and mediated the phosphorylation and nuclear translocation of NF‑kappaB p65 in hPDLSCs. SAC reversed the abnormal secretion of inflammatory cytokines and inhibited the TLR4/NF‑kappaB activation induced by LPS. SAC also upregulated cell viability, ALP activity, and the ability of osteogenic differentiation. The anti-inflammation and TLR4/NF‑kappaB inhibition effects of SAC were reversed by TLR4 overexpression. CONCLUSIONS Taken together, our results revealed that SAC effectively attenuates LPS-induced inflammation and apoptosis via the TLR4/NF-kappaB pathway and that SAC is effective in treating periodontitis.
Collapse
Affiliation(s)
- Yan Duan
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Wei An
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Hongmei Wu
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Yunxia Wu
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
45
|
Xu Y, Wang Y, Pang X, Li Z, Wu J, Zhou Z, Xu T, Gobin Beharee R, Jin L, Yu J. Potassium dihydrogen phosphate promotes the proliferation and differentiation of human periodontal ligament stem cells via nuclear factor kappa B pathway. Exp Cell Res 2019; 384:111593. [PMID: 31487508 DOI: 10.1016/j.yexcr.2019.111593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissues. Potassium dihydrogen phosphate (KH2PO4) has recently been applied as a component of the mineralization inducing medium (MM), which can be used to induce osteogenic differentiation of dental stem cells. However, whether KH2PO4 has effects on PDLSCs has not been studied. MATERIALS AND METHODS PDLSCs were isolated by magnetic activated cell sorting and cultured. Alkaline phosphatase (ALP) activity and ALP protein expression of PDLSCs treated with different concentrations of KH2PO4 were examined to make sure the optimal concentration of KH2PO4 for the following experiments. The effects of KH2PO4 on the proliferation and differentiation of PDLSCs were investigated by flow cytometry, cell counting kit-8 assay, alizarin red staining, real-time RT-PCR, and Western blot. The involvement of nuclear factor kappa B (NF-κB) pathway in KH2PO4-treated PDLSCs was analyzed by Western blot and alizarin red staining. RESULTS ALP activity assay and ALP protein expression examination revealed that 1.8 mmol/L KH2PO4 was the optimal concentration for the induction of hPDLSCs by KH2PO4. The proliferation and mineralization capacity of PDLSCs treated with KH2PO4 were enhanced as compared with the control group. PDLSCs treated with KH2PO4 showed an improved proliferation capacity in logarithmic growth phase at day 7. As PDLSCs were treated with KH2PO4, the expression of odonto/osteogenic markers (OCN/OCN, DSP/DSPP, OSX/OSX, RUNX2/RUNX2, and ALP/ALP) in cells were up-regulated at day 3 or 7. Moreover, the expression of IκBα in cytoplasm was down-regulated, along with an increased expression of p-P65 in cytoplasm and an up-regulated expression of P65 in nucleus. When treated with BMS345541 (the specific NF-κB inhibitor), the odonto/osteogenic differentiation of KH2PO4-treated PDLSCs was significantly attenuated. CONCLUSION KH2PO4 can improve the proliferation and odonto/osteogenic differentiation capacity of PDLSCs via NF-κB pathway, and thus represents a potential target involved in the regeneration of periodontium for clinical treatments.
Collapse
Affiliation(s)
- Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 61 Beizhi Street, Changzhou, Jiangsu 213000, China; Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Xiyao Pang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Zhou Zhou
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Tao Xu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Romila Gobin Beharee
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Lin Jin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Nantong Stomatological Hospital, 36 South Yuelong Road, Nantong, Jiangsu 226001, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
46
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
47
|
Lu L, Liu Y, Zhang X, Lin J. The therapeutic role of bone marrow stem cell local injection in rat experimental periodontitis. J Oral Rehabil 2019; 47 Suppl 1:73-82. [PMID: 31220354 DOI: 10.1111/joor.12843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell therapy brings hope for regenerating damaged periodontal tissues. The present study aimed to investigate the therapeutic role of local bone marrow stem cell (BMSC) injection in ligation-induced periodontitis and the underlying mechanisms. Alveolar bone lesion was induced by placing ligatures subgingivally around the bilateral maxillary second molars for 28 days. The alveolar bone lesion was confirmed by micro-CT analysis and bone histomorphometry. Allogeneic BMSC transplantation was carried out at 28 day after ligation. The survival state of the transplanted BMSC was observed by bioluminescent imaging. The implantation of the BMSC into the gingival tissues and periodontal ligament was confirmed by green fluorescent protein (GFP) immunohistochemical staining. The expression level of pro-inflammatory, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues were evaluated by immunohistochemical staining and real-time PCR. Significant reverse of alveolar bone lesion was observed after BMSC transplantation. The expression of TNF-α and IL-1β was down-regulated by BMSC transplantation. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the periodontal ligament was reduced, and the increased RANKL expression and decreased OPG expression were also reversed after BMSC transplantation. It is concluded that allogeneic BMSC local injection could inhibit the inflammation of the periodontitis tissue and promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Stomatology, Technology Innovation Park, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jiang Lin
- Department of Periodontology, the Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Ramenzoni LL, Russo G, Moccia MD, Attin T, Schmidlin PR. Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells. PLoS One 2019; 14:e0219181. [PMID: 31269072 PMCID: PMC6609032 DOI: 10.1371/journal.pone.0219181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC. Therefore this study investigated whether proliferation, migration, inflammatory cytokines expression and transcriptional profile would be affected by exposure to endotoxins from bacterial species found in the subgingival plaque. PDLSC were cultured with the following bacterial supernatants: S. mutans, S. anginosus, P. intermedia, F. nucleatum, P. gingivalis and T. denticola. These supernatants were prepared in dilutions of 1:1000, 1:500, 1:300 and 1:50. Using quantitative RT-PCR, gene expression of selected inflammatory cytokines (IL-6, IL-8 and IL-1β) and cell-surface receptors (TLR2, TLR4) showed upregulation of ≈2.0- to 3.0-fold, when exposed to P. intermedia, F. nucleatum, P. gingivalis and T. denticola. However, supernatants did not affect proliferation (MTT) and migration (wound scratch assays) of PDLSC. Next generation RNA sequencing confirmed modified lineage commitment of PDLSC by stimulating chondrogenesis, adipogenesis and inhibition of osteogenesis under P. gingivalis supernatant treatment compared to control. Taken together, this study shows stem cell immunomodulatory response to different periodontal bacteria supernatant and suggests that stem cell transcriptional capacity, migration/proliferation and osteogenesis may differ in the presence of those pathogens. These results bring into question stem cell contribution to periodontal tissue regeneration and onset of inflammation.
Collapse
Affiliation(s)
- Liza L. Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Maria D. Moccia
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Xu X, Li X, Wang J, He X, Sun H, Chen F. Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations. Stem Cells Transl Med 2019; 8:392-403. [PMID: 30585445 PMCID: PMC6431686 DOI: 10.1002/sctm.18-0181] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a widespread disease characterized by inflammation-induced progressive damage to the tooth-supporting structures until tooth loss occurs. The regeneration of lost/damaged support tissue in the periodontium, including the alveolar bone, periodontal ligament, and cementum, is an ambitious purpose of periodontal regenerative therapy and might effectively reduce periodontitis-caused tooth loss. The use of stem cells for periodontal regeneration is a hot field in translational research and an emerging potential treatment for periodontitis. This concise review summarizes the regenerative approaches using either culture-expanded or host-mobilized stem cells that are currently being investigated in the laboratory and with preclinical models for periodontal tissue regeneration and highlights the most recent evidence supporting their translational potential toward a widespread use in the clinic for combating highly prevalent periodontal disease. We conclude that in addition to in vitro cell-biomaterial design and transplantation, the engineering of biomaterial devices to encourage the innate regenerative capabilities of the periodontium warrants further investigation. In comparison to cell-based therapies, the use of biomaterials is comparatively simple and sufficiently reliable to support high levels of endogenous tissue regeneration. Thus, endogenous regenerative technology is a more economical and effective as well as safer method for the treatment of clinical patients. Stem Cells Translational Medicine 2019;8:392-403.
Collapse
Affiliation(s)
- Xin‐Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Hai‐Hua Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of StomatologyFourth Military Medical UniversityXi'anPeople's Republic of China
| |
Collapse
|
50
|
Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés MÁ. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent 2019; 11:e373-e381. [PMID: 31110618 PMCID: PMC6522106 DOI: 10.4317/jced.55574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The main objective is to evaluate the way to graft the dental pulp stem cells (DPSC) in periodontal defects that best regenerate periodontal tissues. Numerous procedures have been done to promote periodontal regeneration. Bone grafts show good gains clinically and radiographically but histologically seem to have minimal osteoinductive capacity. Another option that exceeds conventional surgery in reducing probing depth and increasing insertion is guided tissue regeneration and tissue engineering that could be an alternative approach to help in the regeneration of living functional bone and peri-dental structures. MATERIAL AND METHODS A search was carried out in Cochrane, PubMed-MEDLINE and Scopus databases with keywords: "dental pulp stem cells", "periodontal regeneration", "guided tissue regeneration, periodontal", "tissue regeneration", "periodontal bone defects", "periodontal tissue engineering" and "periodontal defect". Inclusion criteria were articles in English, maximum 10 years old, in which DPSC were used to regenerate a periodontal defect. Exclusion criteria were studies not published in English, case reports, case series, literature reviews, and studies in which periodontal defect was caused by dental extraction. RESULTS Out of the 185 articles identified, 101 after excluding duplicates, of which 94 were discarded when reading the title and abstract. 7 articles were obtained for the full text reading: a case report and a case series were eliminated. The systematic review is performed with 5 animal testing studies in vivo. The DPSC sheets regenerate a greater amount of bone than the injection. If HGF (hepatocyte growth factor) is added, the maximum bone volume regenerated (69.3 ± 3.9 mm3; p<0.01) is achieved. Similar results were obtained in all carriers tested except in the controls. The periodontal ligament stem cells (PDLSC) formed more new bone, compared to DPSC (p<0.001). The presence of new cementum and periodontal ligament induced by CMLPs, was detected histologically but DPSC cannot achieve it alone. CONCLUSIONS Cementum or PDL regeneration does not depend only on DPSC but on other unknown factors. PDLSC has better periodontal regeneration than DPSC. DPSC significantly favours the regeneration of periodontal bone tissue but has few advantages over other grafts. It is necessary to study which growth factors or matrices can enhance their capacity for periodontal regeneration. Key words:Dental pulp, stem cells, periodontal guided tissue regeneration, periodontal bone loss.
Collapse
Affiliation(s)
- Sara Amghar-Maach
- Dentistry Student, Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Cosme Gay-Escoda
- MD, DDS, MS, PhD, EBOS, OMFS, Chairman and Professor of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Barcelona. Director of Master's Degree Program in Oral Surgery and Implantology (EHFRE International University/FUCSO). Coordinator/Researcher of the IDIBELL Institute. Head of Oral and Maxillofacial Surgery Department of the Teknon Medical Center, Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- MD, DDS, PhD, Aggregate Professor of Oral Surgery. Master's Degree Program in Oral Surgery and Implantology, School of Dentistry, University of Barcelona, Barcelona. Researcher of the IDIBELL Institute, Barcelona, Spain
| |
Collapse
|