1
|
Tang Y, Leng J, Luo Y, Luo F. Focusing on ferroptosis in alveolar bone loss during periodontitis: From mechanisms to therapies. Int Immunopharmacol 2025; 156:114683. [PMID: 40252463 DOI: 10.1016/j.intimp.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Periodontitis is an oral immunoinflammatory disease induced by bacterial infection. During periodontitis, the aggravating destruction of the alveolar bone can result in tooth movement and even tooth loss. Current conventional treatments for periodontitis primarily focus on infection control, but their effectiveness in halting and restoring alveolar bone destruction is limited. To identify additional therapeutic targets, researchers have been dedicated to investigating other pathological mechanisms underlying alveolar bone loss during periodontitis. Recently, findings indicate that ferroptosis plays a role in the development of periodontitis. Ferroptosis is a nonapoptotic type of cell death marked by iron accumulation and lipid peroxidation. Recent investigations have revealed the complex interplay of ferroptosis and inflammation. The positive feedback loop between ferroptosis and inflammation may significantly contribute to the exacerbation of alveolar bone loss. In light of the advancements in research within this field in recent years, this review intends to thoroughly summarize the processes by which ferroptosis aggravates alveolar bone loss during periodontitis, along with relevant ferroptosis-targeted therapeutic agents. By highlighting the latest advancements in this area, we hope this review will inspire researchers to develop novel therapeutic strategies for more effective inflammation control and regeneration of alveolar bone.
Collapse
Affiliation(s)
- Yuting Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyan Leng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of General Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Kang J, Yu H, Xiang X, Ma YQ, Zhang L, Zhang Y, Wang ZT, Yang J, Zhang Z, Zou HR, Wang Y. The Histone Demethylase Inhibitor GSK-J4 Attenuates Periodontal Bone Loss and Inflammation in a Rat Model of Periodontitis. Curr Med Sci 2025; 45:382-390. [PMID: 40048054 DOI: 10.1007/s11596-025-00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE To investigate the treatment effect of the histone demethylase inhibitor GSK-J4, a small molecule that inhibits the demethylase activity of Jumonji domain-containing protein 3 (JMJD3), in the treatment of periodontitis. METHODS Gingival tissues from patients with moderate to severe chronic periodontitis and healthy controls were collected to evaluate JMJD3 expression via real-time quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC). Next, Sprague-Dawley (SD) rats were used to investigate the effect of GSK-J4 in vivo. The experimental periodontitis model was induced by upper first molar ligation and gingival sulcus injection of Porphyromonas gingivalis. The rats were divided into a healthy group, a periodontitis group, periodontitis plus GSK-J4 treatment groups (P + GSK-J4 15 mg/kg or 25 mg/kg), and a periodontitis plus dimethyl sulfoxide (DMSO) group (P + DMSO). After 4 weeks, maxillary molar segments were assessed via micro-computed tomography (CT) and hematoxylin and eosin (HE) staining. Serum tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Higher expression of the Jmjd3 gene and JMJD3 protein was detected in human inflamed gingiva than in healthy gingiva (P < 0.05). GSK-J4 administration reversed alveolar bone absorption [i.e., reduced alveolar bone crest (ABC)-cementoenamel junction (CEJ) distance], reduced inflammatory cell accumulation at the crest of the alveolar bone, and alleviated serum TNF-α levels in rats with periodontitis. Moreover, the number of H3K27me3-positive nuclei was greater in model rats treated with GSK J4 than in model rats. CONCLUSIONS The histone demethylase inhibitor GSK-J4 attenuated periodontal bone loss and inflammation in a rat periodontitis model by targeting JMJD3.
Collapse
Affiliation(s)
- Jian Kang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| | - Huan Yu
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Xu Xiang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
- Department of Oral and Maxillofacial Surgery, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
| | - Yong-Qiang Ma
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Le Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Pathology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Yuan Zhang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Zhi-Tao Wang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jing Yang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Implantology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Zheng Zhang
- Department of Periodontology, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Hui-Ru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Endodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Kozak M, Poniewierska-Baran A, Czerewaty M, Łuczkowska K, Safranow K, Mazurek-Mochol M, Machaliński B, Pawlik A. Effect of Adiponectin on the Expression of Selected Cytokines in Periodontal Ligament Cells. BIOLOGY 2025; 14:321. [PMID: 40282186 PMCID: PMC12024983 DOI: 10.3390/biology14040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Periodontitis is a disease caused by a bacterial infection that causes chronic inflammation. The pathogenesis of periodontitis is mediated by several mediators, including chemokines, cytokines, metalloproteinases, and adipokines. Adiponectin is an adipokine that influences several metabolic processes and numerous immunological processes. In this study, we investigated the effect of adiponectin on the expression in the periodontal ligament of selected cytokines involved in the pathogenesis of periodontitis. Human periodontal ligament cells (hPDLCs) were stimulated with adiponectin and then analyzed for expression (TNF-α, IL-1, IL-6, IL-8, IL-10, IL-17, and IL-18) in cell cultures at the mRNA level and in supernatants at the protein level. The samples were analyzed after 12, 24, and 48 h of adiponectin stimulation. We found no significant effect of adipokine on TNF-α gene expression after 12, 24, and 48 h of stimulation. For IL-1, a statistically significant increase in IL-1 gene expression was found after 12 h of adiponectin stimulation, while the differences were not statistically significant after 24 and 48 h. Adiponectin caused a statistically significant increase in IL-6 gene expression after 12, 24, and 48 h of stimulation. Stimulating periodontal ligament cells with adiponectin significantly increased TNF-α, IL-6, and IL-8 protein levels in supernatants after 12, 24, and 48 h. The levels of IL-1 were statistically significantly increased after 12 and 24 h of adiponectin stimulation. There was no statistically significant effect of adiponectin on IL-10, IL-17, and IL-18 levels. The results of our study suggest that adiponectin may significantly increase the expression of selected cytokines in periodontal ligament cells.
Collapse
Affiliation(s)
- Małgorzata Kozak
- Department of Dental Prosthetics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
5
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
6
|
Hao M, Lv Y, Liu S, Guo W. The New Challenge of Obesity - Obesity-Associated Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1957-1971. [PMID: 38737387 PMCID: PMC11086398 DOI: 10.2147/dmso.s433649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 05/14/2024] Open
Abstract
In recent years, obesity has become one of the major diseases that affect human health and consume human health resources, especially when it causes comorbidities such as hypertension, diabetes, cardiovascular disease and kidney disease. Many studies have demonstrated that obesity is associated with the development of chronic kidney disease and can exacerbate the progression of end-stage renal disease. This review described the mechanisms associated with the development of obesity-associated nephropathy and the current relevant therapeutic modalities, with the aim of finding new therapeutic targets for obesity-associated nephropathy. The mechanisms of obesity-induced renal injury include, in addition to the traditional alterations in renal hemodynamics, the involvement of various mechanisms such as macrophage infiltration in adipose tissue, alterations in adipokines (leptin and adiponectin), and ectopic deposition of lipids. At present, there is no "point-to-point" treatment for obesity-induced kidney injury. The renin-angiotensin-aldosterone system (RAAS) inhibitors, sodium-dependent glucose transporter 2 (SGLT-2) inhibitors and bariatric surgery described in this review can reduce urinary protein to varying degrees and delay the progression of kidney disease. In addition, recent studies on the therapeutic effects of intestinal flora on obesity may reduce the incidence of obesity-related kidney disease from the perspective of primary prevention. Both of these interventions have their own advantages and disadvantages, so the continuous search for the mechanism of obesity-induced related kidney disease will be extremely helpful for the future treatment of obesity-related kidney disease.
Collapse
Affiliation(s)
- Mengjin Hao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Department of Endocrinology, Jining No. 1 People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Siyuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
7
|
Yu X, Zhang N, Wu J, Zhao Y, Liu C, Liu G. Predictive value of adipokines for the severity of acute pancreatitis: a meta-analysis. BMC Gastroenterol 2024; 24:32. [PMID: 38218787 PMCID: PMC10787974 DOI: 10.1186/s12876-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a dangerous condition with a high mortality rate. Many studies have found an association between adipokines and the development of SAP, but the results are controversial. Therefore, we performed a meta-analysis of the association of inflammatory adipokines with SAP. METHODS We screened PubMed, EMBASE, Web of Science and Cochrane Library for articles on adipokines and SAP published before July 20, 2023. The quality of the literature was assessed using QUADAS criteria. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to assess the combined effect. Subgroup analysis, sensitivity analysis and publication bias tests were also performed on the information obtained. RESULT Fifteen eligible studies included 1332 patients with acute pancreatitis (AP). Pooled analysis showed that patients with SAP had significantly higher serum levels of resistin (SMD = 0.78, 95% CI:0.37 to 1.19, z = 3.75, P = 0.000). The difference in leptin and adiponectin levels between SAP and mild acute pancreatitis (MAP) patients were not significant (SMD = 0.30, 95% CI: -0.08 to 0.68, z = 1.53, P = 0.127 and SMD = 0.11, 95% CI: -0.17 to 0.40, z = 0.80, P = 0.425, respectively). In patients with SAP, visfatin levels were not significantly different from that in patients with MAP (SMD = 1.20, 95% CI: -0.48 to 2.88, z = 1.40, P = 0.162). CONCLUSION Elevated levels of resistin are associated with the development of SAP. Resistin may serve as biomarker for SAP and has promise as therapeutic target.
Collapse
Affiliation(s)
- Xuehua Yu
- Hebei North University, Zhangjiakou, 075132, China
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Ning Zhang
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
- Hebei Medical University, Shijiazhuang, 050011, China
| | - Jing Wu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Yunhong Zhao
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Chengjiang Liu
- Department of Gastroenterology, Anhui Medical University, He Fei, 230601, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China.
| |
Collapse
|
8
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
9
|
Gao Y, Yu W, Song J, Nie J, Cui Z, Wen S, Liu B, Liang H. JMJD3 ablation in myeloid cells confers renoprotection in mice with DOCA/salt-induced hypertension. Hypertens Res 2023; 46:1934-1948. [PMID: 37248323 DOI: 10.1038/s41440-023-01312-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Hypertension-induced renal injury is characterized by robust inflammation and tubulointerstitial fibrosis. Jumonji domain containing-3 (JMJD3) is closely linked with inflammatory response and fibrogenesis. Here we examined the effect of myeloid JMJD3 ablation on kidney inflammation and fibrosis in deoxycorticosterone acetate (DOCA)/salt hypertension. Our results showed that JMJD3 is notably induced in the kidneys with hypertensive injury. DOCA/salt stress causes an elevation in blood pressure that was no difference between myeloid specific JMJD3-deficient mice and wild-type control mice. Compared with wild-type control mice, myeloid JMJD3 ablation ameliorated kidney function and injury of mice in response to DOCA/salt challenge. Myeloid JMJD3 ablation attenuated collagen deposition, extracellular matrix proteins expression, and fibroblasts activation in injured kidneys following DOCA/salt treatment. Furthermore, myeloid JMJD3 ablation blunts inflammatory response in injured kidneys after DOCA/salt stress. Finally, myeloid JMJD3 ablation precluded myeloid myofibroblasts activation and protected against macrophages to myofibroblasts transition in injured kidneys. These beneficial effects were accompanied by reduced expression of interferon regulator factor 4. In summary, JMJD3 ablation in myeloid cells reduces kidney inflammation and fibrosis in DOCA salt-induced hypertension. Inhibition of myeloid JMJD3 may be a novel potential therapeutic target for hypertensive nephropathy. Myeloid JMJD3 deficiency reduces inflammatory response, myeloid fibroblasts activation, macrophages to myofibroblasts transition, and delays kidney fibrosis progression.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Wenqiang Yu
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Jinfang Song
- Zhuhai Campus, Zunyi Medical University, Zhuhai, 519041, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Zichan Cui
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Shihong Wen
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China
| | - Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| |
Collapse
|
10
|
Jia R, Zhang Y, Wang Z, Hu B, Wang Z, Qiao H. Association between lipid metabolism and periodontitis in obese patients: a cross-sectional study. BMC Endocr Disord 2023; 23:119. [PMID: 37231396 DOI: 10.1186/s12902-023-01366-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND To investigate the association between clinical periodontal parameters of periodontitis, serum lipid metabolism markers and adipokines' levels in patients with obesity and periodontitis. METHODS A total of 112 patients admitted to Hospital of Xi'an Jiaotong University were included in this study. They were divided into normal body weight group (18.5 < body mass index, BMI < 25, n = 36), overweight group (25 ≤ BMI < 30, n = 38), and obesity group (BMI ≥ 30, n = 38) accordingly. The diagnosis of periodontitis was based on the newest international classification of periodontitis. Full-mouth clinical periodontal measurements included: plaque index, periodontal pocket depth, clinical attachment level, and bleeding on probing. Gingival crevicular fluid samples were analyzed for: Interleukin-1β, tumor necrosis factor-α, Interleukin-6 and C-reactive protein. Serum triglycerides, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol and glycosylated hemoglobin levels were measured. Visfatin, leptin, resistin, and adiponectin levels in serum were also measured. RESULTS The ratio of participants without periodontitis was significantly highest in normal weight group, and the proportion of severe periodontitis (stage III and IV) was highest in obesity group. The periodontal pocket depth, clinical attachment level, and the inflammatory cytokines in gingival crevicular fluid in obesity group and overweight group were higher than those in normal body weight group. The BMI and waist-to-hip ratio (WHR) were significantly positive correlated with periodontal pocket depth and clinical attachment level. Using a Multivariate logistic regression model, periodontitis correlates to BMI, WHR, serum levels of triglyceride, total cholesterol, low density lipoprotein, and adipokines such as visfatin, leptin, and resistin. CONCLUSIONS Obesity is positively correlated with the aggravation of periodontitis. Obesity may aggravate the damage to periodontal tissue by regulating the secretion level of adipokines.
Collapse
Affiliation(s)
- Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, Shaanxi, 710004, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, Shaanxi, 710004, China
| | - Zhiyu Wang
- Department of Stomatology, Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, Shaanxi, 710004, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenzhen Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, Shaanxi, 710004, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, Shaanxi, 710004, China.
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. Periodontol 2000 2022; 90:125-137. [PMID: 35913702 DOI: 10.1111/prd.12453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nolan M Kavanagh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trang V N Nguyen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine and Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William V Giannobile
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Front Cardiovasc Med 2022; 9:868788. [PMID: 35425818 PMCID: PMC9001883 DOI: 10.3389/fcvm.2022.868788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging research on epigenetics has resulted in many novel discoveries in atherosclerosis (AS), an inflammaging-associated disease characterized by chronic inflammation primarily driven by macrophages. The bulk of evidence has demonstrated the central role of epigenetic machinery in macrophage polarization to pro- (M1-like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic alterations and their modifiers involved in reprogramming macrophages by regulating DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) have been identified. They may act to determine or skew the direction of macrophage polarization in AS lesions, thereby representing a promising target. Here we describe the current understanding of the epigenetic machinery involving macrophage polarization, to shed light on chronic inflammation-driving onset and progression of inflammaging-associated diseases, using AS as a prototypic example, and discuss the challenge for developing effective therapies targeting the epigenetic modifiers against these diseases, particularly highlighting a potential strategy based on epigenetically-governed repolarization from M1-like to M2-like phenotype.
Collapse
Affiliation(s)
- Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
15
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
16
|
Chen M, Chen X, Hu X, Dai J, Sun J. Androgen receptor contributes to microglial/macrophage activation in rats with intracranial hemorrhage by mediating the JMJD3/Botch/Notch1 axis. Neurosci Lett 2021; 765:136283. [PMID: 34624395 DOI: 10.1016/j.neulet.2021.136283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Intracerebral hemorrhage (ICH) is a leading medical problem and has no effective treatment approach up until now. The transcription factor androgen receptor (AR) has been indicated in the cerebrovascular function recently. However, its participation in ICH remains unclear. The present study aims to expound the regulation of AR in microglia/macrophage phenotypes and the secondary brain injury in a rat model with ICH, and to discuss the involved pathway. Following the induction of ICH in rats, we found that ICH led to increased mNSS score, enhanced microglial activity, and promoted levels of inflammatory factors and apoptosis of brain cells. Using microarray analysis, AR was found to be significantly overexpressed in ICH rat brain tissues. AR repressed the transcription of Jumonji d3 (JMJD3, histone 3 demethylase). JMJD3 inhibited the methylation of Botch and promoted the activity of Notch1. JMJD3 hampered microglial activity and ameliorated secondary brain injury in rats, whereas upregulation of AR or downregulation of Botch reversed the protective effects of JMJD3. In conclusion, we found that AR promoted microglial activation and secondary brain injury via transcriptionally repressing JMJD3 and mediating the subsequent Botch/Notch1 pathway, which may provide novel insights into therapeutic options for the treatment of ICH.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xingzhong Hu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Junxia Dai
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jun Sun
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
17
|
Hou Y, Yang D, Wang X, Wang H, Zhang H, Wang P, Liu Y, Gao X, Yang J, Wu C. Pseudoginsenoside-F11 promotes functional recovery after transient cerebral ischemia by regulating the microglia/macrophage polarization in rats. Int Immunopharmacol 2021; 99:107896. [PMID: 34246061 DOI: 10.1016/j.intimp.2021.107896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
The polarization of microglia/macrophages after cerebral ischemia is critical for post-stroke damage/recovery. Previously, we found that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, has neuroprotective effects on permanent and transient cerebral ischemia in rats. This study aimed to investigate the effects and potential mechanisms of PF11 on microglia/macrophage polarization following transient cerebral ischemia in rats. In vivo data showed that oral administration of PF11 (12 mg/kg) significantly attenuated cognitive deficits and sensorimotor dysfunction, infarct volume and brain edema in transient middle cerebral artery occlusion (tMCAO)-treated rats, as well as reduced the loss of neurons and the over-activation of microglia in penumbra of ipsilateral striatum and cortex. Notably, the proportion of M2 microglia/macrophages in the total activated microglia/macrophages peaked on day 14 after tMCAO in rats, while PF11 promoted its peak advancing to day 3 post-tMCAO, which allowing the damaged brain to enter the repair period more quickly. Furthermore, PF11 increased the expression of anti-inflammatory markers and decreased the expression of pro-inflammatory markers in ipsilateral striatum and cortex. In addition, in vitro data showed that PF11 inhibited the induction of M1 microglia by oxygen glucose deprivation/re-oxygenation (OGD/R)-induced neurons, and promoted the polarization of microglia to M2 phenotype in a Jumonji domain-containing protein 3 (Jmjd3)-dependent manner. Moreover, PF11 promoted the protection of M2 microglia and attenuated the exacerbation of M1 microglia on OGD/R-induced neuronal damage. Taken together, these results indicate that PF11 protects ischemic neurons by promoting M2 microglia/macrophage polarization in a Jmjd3-dependent manner, ultimately facilitating the functional recovery following transient cerebral ischemia.
Collapse
Affiliation(s)
- Ying Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Depeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xianshi Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Pengwei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yinglu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiaoyun Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
18
|
Jin F, Li J, Guo J, Doeppner TR, Hermann DM, Yao G, Dai Y. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab022. [PMID: 35919269 PMCID: PMC9241575 DOI: 10.1093/ehjopen/oeab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dong Dan Dahua Road, Dong Cheng District, Beijing 100730, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun 130021, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Robert-Koch-Str. 40 37075, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130041, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University, 519 Dong Min Zhu Street, Changchun, Jilin 130061, China
| |
Collapse
|
19
|
Chen MH, Wang YH, Sun BJ, Yu LM, Chen QQ, Han XX, Liu YH. HIF-1α activator DMOG inhibits alveolar bone resorption in murine periodontitis by regulating macrophage polarization. Int Immunopharmacol 2021; 99:107901. [PMID: 34273637 DOI: 10.1016/j.intimp.2021.107901] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.
Collapse
Affiliation(s)
- Mei-Hua Chen
- Department of Periodontology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yu-Hui Wang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Bing-Jing Sun
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Li-Ming Yu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qing-Qing Chen
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xin-Xin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yue-Hua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Hamza SA, Asif S, Khurshid Z, Zafar MS, Bokhari SAH. Emerging Role of Epigenetics in Explaining Relationship of Periodontitis and Cardiovascular Diseases. Diseases 2021; 9:48. [PMID: 34209817 PMCID: PMC8293072 DOI: 10.3390/diseases9030048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases such as ischemic heart diseases or stroke are among the leading cause of deaths globally, and evidence suggests that these diseases are modulated by a multifactorial and complex interplay of genetic, environmental, and lifestyle factors. Genetic predisposition and chronic exposure to modifiable risk factors have been explored to be involved in the pathophysiology of CVD. Environmental factors contribute to an individual's propensity to develop major cardiovascular risk factors through epigenetic modifications of DNA and histones via miRNA regulation of protein translation that are types of epigenetic mechanisms and participate in disease development. Periodontal disease (PD) is one of the most common oral diseases in humans that is characterized by low-grade inflammation and has been shown to increase the risk of CVDs. Risk factors involved in PD and CVD are determined both genetically and behaviorally. Periodontal diseases such as chronic inflammation promote DNA methylation. Epigenetic modifications involved in the initiation and progression of atherosclerosis play an essential role in plaque development and vulnerability. Epigenetics has opened a new world to understand and manage human diseases, including CVDs and periodontal diseases. Genetic medicine has started a new era of epigenetics to overcome human diseases with various new methodology. Epigenetic profiling may aid in better diagnosis and stratification of patients showing potential predisposed states for disease. A better understanding of the exact regulatory mechanisms of epigenetic pathways driving inflammation is slowly emerging and will aid in developing novel tools for the treatment of disease.
Collapse
Affiliation(s)
- Syed Ameer Hamza
- Department of Oral Medicine, University Medical & Dental College, Faisalabad 38000, Pakistan;
| | - Saba Asif
- Department of Periodontology, Sharif Medical & Dental College, Lahore 54000, Pakistan;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwrah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Syed Akhtar Hussain Bokhari
- Department of Dental Public Health, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Wang Z, Chen Z, Fang F, Qiu W. The role of adiponectin in periodontitis: Current state and future prospects. Biomed Pharmacother 2021; 137:111358. [PMID: 33561644 DOI: 10.1016/j.biopha.2021.111358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin (APN), which is an adipokine primarily secreted by adipose tissue into the peripheral blood, exerts anti-inflammatory and metabolic regulatory functions in many systemic inflammatory diseases. Periodontitis is a localized inflammatory disease and is also the sixth-leading complication of diabetes. Uncontrolled periodontal inflammation gradually destructs the periodontal supporting apparatus and leads to the consequent loss of teeth. Recently, emerging evidence has revealed an association between APN and periodontitis. Herein, we summarize the basic information of APN and its receptor agonists. We also overview current studies considering the role of APN in periodontitis and discuss the potential mechanisms in terms of inflammation and bone metabolism. At last, we outline the correlation between APN and systemic diseases related periodontitis. Above all, APN and its agonists are promising candidates for the treatment of periodontitis, while the underlying mechanisms and clinical translational application require further exploration.
Collapse
Affiliation(s)
- Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| |
Collapse
|
22
|
Adipose Tissue T Regulatory Cells: Implications for Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:125-139. [PMID: 33523447 DOI: 10.1007/978-981-15-6407-9_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity dramatically increases the risk of numerous conditions, including type 2 diabetes mellitus and other components of the metabolic syndrome. Pro-inflammatory changes that occur in adipose tissue are critical to the pathogenesis of these obesity-induced complications. Adipose tissue is one of the body's largest endocrine organs, and the cells that comprise the adipose tissue immunoenvironment secrete multiple factors (including adipokines and cytokines) that impact systemic metabolism. In particular, immunosuppressive regulatory T cells (Tregs) decline in obesity, partly in response to its complex interaction with adipocytes, and this decline contributes to disruption of the typical homeostasis observed in lean adipose tissue. Although the regulation of Treg differentiation, function, and enrichment is incompletely understood, factors including various cell-surface co-stimulatory molecules, certain lipid species, and cytokines such as PPARγ, adiponectin, and leptin are important mediators. It is also clear that there may be depot-specific differences in Tregs, rendering adipose tissue Tregs distinct from lymphoid or circulating Tregs, with implications on maintenance and functionality. While most of these findings are derived from studies in murine models, comparatively little is known about the human adipose tissue Treg signature, which requires further investigation.
Collapse
|
23
|
H3K27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:622-633. [PMID: 33981480 PMCID: PMC8076647 DOI: 10.1016/j.omtn.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/17/2021] [Indexed: 01/03/2023]
Abstract
Lysine demethylase 6B (KDM6B) is a histone H3 lysine 27 (H3K27) demethylase that serves as a key mediator of gene transcription. Although KDM6B has been reported to modulate neuroinflammation after ischemic stroke, its role in ischemic brain injury is yet to be well elucidated. Therefore, this study aimed to thoroughly demonstrate the molecular mechanism underlying the effect of KDM6B on neurological function and astrocyte response in post-ischemic brain injury. Middle cerebral artery occlusion/reperfusion (MCAO) mouse models were constructed, while the oxygen-glucose deprivation/reperfusion (OGD/R) model was developed in astrocytes to mimic injury conditions. KDM6B was upregulated post-MCAO in mice and in astrocytes following the induction of OGD/R. Silencing of KDM6B resulted in suppressed neurological deficit, reduced cerebral infarction volume, attenuated neuronal cell apoptosis, and disrupted inflammation. Dual-luciferase reporter gene and chromatin immunoprecipitation-quantitative polymerase chain reaction assays revealed that KDM6B inhibited H3K27 trimethylation in the interferon regulatory factor 4 (IRF4) promoter region, resulting in the upregulation of IRF4 expression, which in turn bound to the Notch2 promoter region to induce its downstream factor SRY-related high-mobility group box 9 (SOX9). SOX9 knockdown reversed the effects of KDM6B overexpression on ischemia-triggered brain damage. Based on these findings, we concluded that KDM6B-mediated demethylation of IRF4 contributes to aggravation of ischemic brain injury through SOX9 activation.
Collapse
|
24
|
Effects of chronic stress on depressive-like behaviors and JMJD3 expression in the prefrontal cortex and hippocampus of C57BL/6 and ob/ob mice. J Psychiatr Res 2021; 133:142-155. [PMID: 33340793 DOI: 10.1016/j.jpsychires.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Depression is a psychiatric disorder which is accompanied by neuroinflammatory responses. Obesity is considered as a low-grade inflammatory state. Studies have found that obese individuals are more likely to suffer from depression, but its possible mechanism has not been specifically illuminated. The Jumonji domain protein 3 (JMJD3) is a specific histone demethylase of trimethylation at lysine 27 of histone-H3 (H3K27me3). Over-expressions of JMJD3 induces the demethylation of H3K27me3 and results in the expression of pro-inflammatory genes, while its upregulation may be limited by adiponectin (APN). However, the role of JMJD3 in susceptibility to neuroinflammation and depression in obesity has not been clarified. METHODS Chronic unpredictable mild stress (CUMS) was selected to build depression model in C57BL/6 and ob/ob mice. Sucrose preference test, tail suspension test, open field test and Morris water maze test were used to detect depressive-like behaviors and memory impairment. Microglial activation, pro-inflammatory cytokines, APN, NF-ĸB, JMJD3 and H3K27me3 expressions in the serum, prefrontal cortex (PFC) and hippocampus (HIP) were examined in C57BL/6 and ob/ob mice. Meanwhile, GSK-J4 was used to inhibit JMJD3 expression. RESULTS CUMS led to depressive-like behaviors and memory impairment, microglial activation, increased expressions of pro-inflammatory cytokines, NF-κB and JMJD3, decreased expression of H3K27me3 in the PFC and HIP in C57BL/6 and ob/ob mice. Meanwhile, ob/ob mice showed worse behavioral injury and memory impairment, microglial excessively activation, over-expression of pro-inflammatory cytokines and NF-ĸB and decreased H3K27me3 levels than C57BL/6 mice. CUMS also decreased the APN levels in the serum and brain tissues in ob/ob mice compared to C57BL/6 mice. But GSK-J4 could relieve these alterations. CONCLUSIONS JMJD3 might be involved in the susceptibility to depressive-like behaviors and neuroinflammation of obese mice by the demethylation of H3K27me3, and decreased levels of APN could reduce Enhancer of zeste homolog 2 (EZH2) binding with H3K27me3. The role of JMJD3 in severer inflammatory state in the comorbidity of obesity and depression was considered.
Collapse
|
25
|
Qiu W, Wu H, Hu Z, Wu X, Tu M, Fang F, Zhu X, Liu Y, Lian J, Valverde P, Van Dyke T, Steffensen B, Dong LQ, Tu Q, Zhou X, Chen J. Identification and characterization of a novel adiponectin receptor agonist adipo anti-inflammation agonist and its anti-inflammatory effects in vitro and in vivo. Br J Pharmacol 2020; 178:280-297. [PMID: 32986862 DOI: 10.1111/bph.15277] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Adiponectin (APN) is an adipokine secreted from adipocytes that binds to APN receptors AdipoR1 and AdipoR2 and exerts an anti-inflammatory response through mechanisms not fully understood. There is a need to develop small molecules that activate AdipoR1 and AdipoR2 and to be used to inhibit the inflammatory response in lipopolysaccharide (LPS)-induced endotoxemia and other inflammatory disorders. EXPERIMENTAL APPROACH We designed 10 new structural analogues of an AdipoR agonist, AdipoRon (APR), and assessed their anti-inflammatory properties. Bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PEMs) were isolated from mice. Levels of pro-inflammatory cytokines were measured by reverse transcription and real-time quantitative polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and microarray in LPS-induced endotoxemia mice and diet-induced obesity (DIO) mice in which systemic inflammation prevails. Western blotting, immunohistochemistry (IHC), siRNA interference and immunoprecipitation were used to detect signalling pathways. KEY RESULTS A novel APN receptor agonist named adipo anti-inflammation agonist (AdipoAI) strongly suppresses inflammation in DIO and endotoxemia mice, as well as in cultured macrophages. We also found that AdipoAI attenuated the association of AdipoR1 and APPL1 via myeloid differentiation marker 88 (MyD88) signalling, thus inhibiting activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and c-Maf pathways and limiting the production of pro-inflammatory cytokines in LPS-induced macrophages. CONCLUSION AND IMPLICATIONS AdipoAI is a promising alternative therapeutic approach to APN and APR to suppress inflammation in LPS-induced endotoxemia and other inflammatory disorders via distinct signalling pathways.
Collapse
Affiliation(s)
- Wei Qiu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhekai Hu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xingwen Wu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Maxwell Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Fuchun Fang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Yao Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Junxiang Lian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Paloma Valverde
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas Van Dyke
- Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA.,Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Bjorn Steffensen
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res 2020; 69:883-895. [PMID: 32647933 PMCID: PMC7347666 DOI: 10.1007/s00011-020-01378-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Macrophages are highly plastic cells. Under different stimuli, macrophages can be polarized into several different subsets. Two main macrophage subsets have been suggested: classically activated or inflammatory (M1) macrophages and alternatively activated or anti-inflammatory (M2) macrophages. Macrophage polarization is governed by a highly complex set of regulatory networks. Many recent studies have shown that macrophages are key orchestrators in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and that regulation of macrophage polarization may improve the prognosis of ALI/ARDS. A further understanding of the mechanisms of macrophage polarization is expected to be helpful in the development of novel therapeutic targets to treat ALI/ARDS. Therefore, we performed a literature review to summarize the regulatory mechanisms of macrophage polarization and its role in the pathogenesis of ALI/ARDS. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning macrophages, macrophage polarization, and ALI/ARDS. RESULTS In this review, we discuss the origin, polarization, and polarization regulation of macrophages as well as the role of macrophage polarization in various stages of ARDS. According to the current literature, regulating the polarized state of macrophages might be a potential therapeutic strategy against ALI/ARDS.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Weizheng Shuai
- Department of ICU, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100037, China
| | - Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, China.
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese, PLA General Hospital, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
27
|
Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, Li S, Zhang L, Yang C, Yang P. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol 2020; 21:32. [PMID: 32503416 PMCID: PMC7275413 DOI: 10.1186/s12865-020-00355-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophage M1 polarization plays a pivotal role in inflammatory diseases. Progranulin (PGRN) has potential anti-inflammation action, however, the effect of PGRN on macrophage M1 polarization has been poorly studied. Our study aimed to investigate the effect of PGRN on lipopolysaccharide (LPS)-induced macrophage M1 polarization and clarify the underlying mechanisms. METHODS RAW264.7 cells were polarized to M1 macrophage by LPS with or without recombinant PGRN (rPGRN) and tumor necrosis factor alpha antibody (anti-TNF-α). A cell counting kit-8 assay (CCK-8), flow cytometry, Quantitative Real-Time PCR assay (q-PCR), Western blot assay and enzyme-linked immunosorbent assay (ELISA) were used to determine the effect of different treatments on cell proliferation, expression of surface phenotype marker and expressions and secretion of inflammatory cytokines. The activation of NF-κB/mitogen-activated protein kinase (MAPK) pathways and the nuclear translocation of NF-κB p65 were detected by Western blot and immunofluorescence respectively. THP-1 and primary bone marrow-derived monocytes (BMDMs) were also used to demonstrate effect of PGRN on expressions and secretion of inflammatory cytokines induced by LPS. RESULTS In RAW264.7 cells, rPGRN at concentrations below 80 ng/ml significantly promoted cell proliferation in dose dependent fashion. rPGRN significantly inhibited LPS-induced change of phenotype (CD86/CD206 ratio) and function (tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) expressions). LPS-stimulated secretion of TNF-α and activated phosphorylation of IKKα/β, IкBα, p65, JNK and p38 and the nucleus translocation of NF-кB p65 were also significantly downregulated by rPGRN. In addition, recombinant TNF-α (rTNF-α) significantly boosted TNF-α and iNOS expression vs the control group. Moreover, anti-TNF-α significantly inhibited LPS-induced TNF-α and iNOS expression. In THP-1 and BMDM cells, reversing effect of rPGRN on LPS-enhanced expressions of TNF-α and iNOS and secretion of TNF-α was further demonstrated. CONCLUSIONS PGRN down-regulates LPS-induced macrophage M1 polarization in phenotype and function via NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Aimei Song
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yu Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shanshan Jin
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shutong Li
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Liguo Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| |
Collapse
|
28
|
Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int J Mol Sci 2020; 21:ijms21041219. [PMID: 32059381 PMCID: PMC7072842 DOI: 10.3390/ijms21041219] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases. This review summarizes the current roles of adiponectin in metabolic disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Hyung Muk Choi
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
| | - Hari Madhuri Doss
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9619
| |
Collapse
|
29
|
Song R, Lin L. Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Ameliorates the Inflammatory Response in Periodontal Disease. Inflammation 2020; 42:1170-1178. [PMID: 30793225 DOI: 10.1007/s10753-019-00977-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that can modulate osteoblasts and bone mineralization. Periodontal disease (PD) is characterized by gum inflammation, alveolar bone resorption, and tooth loss. In this study, we found that GPNMB is highly expressed in inflamed periodontal tissue through microarray and immunohistochemistry (IHC) assays. The role of GPNMB in the pathogenesis of PD was evaluated with primary human periodontal ligament cells (hPDLCs) treated with lipopolysaccharide (LPS) and a GPNMB-expressing lentivirus (lenti-GP). In the hPDLCs treated with LPS and lenti-GP, the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 was suppressed and that of IL-10 was upregulated. GPNMB significantly decreased apoptosis in the hPDLCs treated with LPS. GPNMB could upregulate the expression of Jumonji domain-containing protein 3 (Jmjd3), a histone 3 lysine 27 (H3K27) demethylase that is linked to the modulation of the inflammatory response and apoptosis. Taken together, our data find that GPNMB is highly expressed in gum tissue with PD and may be an anti-inflammatory player in the pathogenesis of PD.
Collapse
Affiliation(s)
- Rong Song
- Department of Prosthodontics, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
30
|
Liu P, Cui L, Shen L. Expression characteristics of adiponectin and receptor activator of nuclear factor kappa B ligand in the alveolar bone of rats with periodontitis and its effect. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1796829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Peng Liu
- Department of Stomatology, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Lijun Cui
- Cui Lijun Stomatological Clinic, Datong, People’s Republic of China
| | - Lifang Shen
- Meiyuan Stomatological Hospital, Datong, People’s Republic of China
| |
Collapse
|
31
|
Akabori H, Tani M, Kitamura N, Maehira H, Imashuku Y, Tsujita Y, Shimizu T, Kitagawa H, Eguchi Y. Perioperative tight glycemic control using artificial pancreas decreases infectious complications via suppression of inflammatory cytokines in patients who underwent pancreaticoduodenectomy: A prospective, non-randomized clinical trial. Am J Surg 2019; 220:365-371. [PMID: 31836178 DOI: 10.1016/j.amjsurg.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We sought to investigate the efficacy of perioperative tight glycemic control (TGC) in reducing of postoperative infectious complications (POICs) and study its impact on early inflammatory mediators in patients who underwent pancreaticoduodenectomy. METHODS In this non-randomized trial, the artificial pancreas (AP) group received TGC (target glucose range of 80-110 mg/dL; n = 14), while the control group received conventional glycemic control (range of 80-180 mg/dL; n = 15). The primary endpoint was POICs. RESULTS The AP group had a markedly decreased POIC rate (28.6% vs. 73.3%; P = 0.027), mean glycemic variability (13.5 ± 3.5% vs. 16.4 ± 5.9%; P = 0.038), and plasma interleukin-6 level (26.3 ± 33.8 vs 98.3 ± 89.1 pg/ml; P = 0.036) compared to the control group, but insulin dosage (27.0 ± 13.4 vs. 10.2 ± 16.2 U; P = 0.002) and the adiponectin ratio (i.e., postoperative/preoperative adiponectin; 0.8 ± 0.2 vs. 0.6 ± 0.3; P = 0.021) were markedly higher in the AP group. CONCLUSIONS Among patients undergoing PD with impaired glucose tolerance, AP facilitated strict glycemic control and resulted in a reduction of anti-inflammatory mediators and POICs. SUMMARY Perioperative hyperglycemia increases postoperative infectious complications; however, tight glycemic control using artificial pancreas can reduce them via a dual effect. Artificial pancreas facilitates strict and safe glycemic control while reducing anti-inflammatory mediators, including adiponectin, following pancreaticoduodenectomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasuyuki Tsujita
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | | | - Yutaka Eguchi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
32
|
Allegra A, Innao V, Gerace D, Allegra AG, Vaddinelli D, Bianco O, Musolino C. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention. Eur J Intern Med 2018; 53:12-20. [PMID: 29859797 DOI: 10.1016/j.ejim.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Oriana Bianco
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| |
Collapse
|
33
|
Li Z, Lu C, Qiu J, Liu S, Liu X, Ma S, Lai R. Correlation of serum adipocytokine levels with glycolipid metabolism and inflammatory factors in obese patients with periodontal disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1620-1628. [PMID: 31938261 PMCID: PMC6958146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To analyze the correlation of serum levels of visfatin, leptin, resistin, and adiponectin (APN) with glycolipid metabolism and inflammatory factors in obese patients with periodontal disease. METHODS 116 obese adults (OB), of whom 78 participants were diagnosed with different degrees of chronic periodontitis (CP), and 50 healthy adults were recruited into the study. Fasting peripheral venous blood was extracted to determine serum levels of adipocytokines (e.g., visfatin, leptin, resistin, and APN), glucolipid metabolism (e.g., fasting blood glucose (FBG), fasting insulin (FINS), C-peptide (C-P), cortisol (Cor), homeostasis model of assessment for insulin resistance index (HOMA-IR), glycosylated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and non-high-density lipoprotein cholesterol (non-HDL)), and micro-inflammation-related indexes like C-reactive protein (CRP), interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α. Correlation between levels of adipocytokines and levels of glucolipid metabolism and inflammatory factors was further analyzed. RESULTS Assays for plasma levels of adipocytokines showed that both the OB group and the OB with CP group had significantly higher serum levels of visfatin, leptin, and resistin than the normal control group and significantly lower serum levels of ANP than the normal control group (P<0.05). Detection of serum glucolipid metabolism levels showed that FBG, FINS, C-P, Cor, HOMA-IR, TG, TC, LDL-C, HDL-C, Non-HDL-C of OB group, and OB with CP patients were significantly higher than those of normal patients (P<0.05). Assay for plasma levels of inflammatory factors showed that both the OB group and the OB with CP group had significantly higher serum levels of CRP, IL-1β, IL-6, and TNF-α than the normal control group and significantly lower serum levels of IL-10 than the normal control group. Spearman's correlation analysis revealed that serum levels of visfatin, leptin, resistin, and APN were significantly correlated with concentrations of FBG, FINS, C-P, Cor, TG, TC, LDL-C, HDL-C, Non-HDL-C, CRP, IL-1β, IL-6, IL-10, and TNF-α. CONCLUSIONS There were high expression levels of inflammatory factors and glucolipid metabolism disorder in obese patients with periodontal disease and excessively expressed adipocytokines may be important factors of persistent and worsened obesity and of periodontitis.
Collapse
Affiliation(s)
- Zejian Li
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Chunting Lu
- Department of Endocrinology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
- Department of Science and Education Office, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Jiayu Qiu
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Shengwen Liu
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Xiaoqi Liu
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Shuyuan Ma
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Renfa Lai
- Department of Stomatology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| |
Collapse
|
34
|
Al Mamun A, Chauhan A, Yu H, Xu Y, Sharmeen R, Liu F. Interferon regulatory factor 4/5 signaling impacts on microglial activation after ischemic stroke in mice. Eur J Neurosci 2018; 47:140-149. [PMID: 29131464 PMCID: PMC5771847 DOI: 10.1111/ejn.13778] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/03/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
Microglial activation is a key element in initiating and perpetuating inflammatory responses to stroke. Interferon regulatory factor 5 (IRF5) and IRF4 signaling have been found critical in mediating macrophage pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, respectively, in peripheral inflammation. We hypothesize that the IRF5/4 regulatory axis also mediates microglial activation after stroke. C57BL6 mice of 8-12 weeks were subject to a 90-min middle cerebral artery occlusion, and the brains evaluated at 24 h, 3, 10 and 30 days after reperfusion. Flow cytometry was utilized to examine microglial activation and cytokine expression. RT-PCR was performed for mRNA levels of IRF5/4 in sorted microglia. Microglial expression of IRF5/4 was examined by immunohistochemistry, and brain cytokine levels were determined by ELISA. Our results revealed that the IRF5 mRNA level in sorted microglia increased at 3 days of stroke; whereas IRF4 mRNA level exhibited biphasic increases, with a transient rise at 24 h and a peak at 10 days. The same pattern was seen in IRF5/4 protein colocalization with Iba-1+ cells by IHC. Intracellular levels of TNF-α and IL-1β in microglia peaked at 3 days of stroke, and IL-4+ IL-10+ double-positive microglia significantly increased at day 10. Brain levels of these cytokines were consistent with microglial cytokine changes. Worse behavior test results were seen at 3 days vs. 10 days of stroke. We conclude that microglia phenotypes are dynamic to ischemic stroke, and IRF5/4 signaling may regulate microglial M1/M2 activation and impact on stroke outcomes.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Anjali Chauhan
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Haifu Yu
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
- Department of NeurologyShanghai Fengxian District Central HospitalShanghaiChina
| | - Yan Xu
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Romana Sharmeen
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Fudong Liu
- Department of NeurologyThe University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| |
Collapse
|
35
|
Sarode GS, Sarode SC, Maniyar N, Sharma NK, Patil S. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncol Rev 2017; 11:343. [PMID: 29285321 PMCID: PMC5733395 DOI: 10.4081/oncol.2017.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.
Collapse
Affiliation(s)
- Gargi Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nikunj Maniyar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
36
|
Jia SJ, Gao KQ, Zhao M. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc Ther 2017; 35. [PMID: 28371472 DOI: 10.1111/1755-5922.12262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Su-Jie Jia
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ke-Qin Gao
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
37
|
McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, Bone, and Myeloma: Contributions from the Microenvironment. Calcif Tissue Int 2017; 100:433-448. [PMID: 27343063 PMCID: PMC5396178 DOI: 10.1007/s00223-016-0162-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide (Podar et al. in Expert Opin Emerg Drugs 14:99-127, 2009). Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90 % of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes, and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies.
Collapse
Affiliation(s)
- Michelle M McDonald
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, NSW, 2010, Australia.
| | - Heather Fairfield
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Carolyne Falank
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
38
|
Mamun AA, Liu F. Role of IRF4-Mediated Inflammation: Implication in Neurodegenerative Diseases. NEUROLOGY & NEUROTHERAPY OPEN ACCESS JOURNAL 2017; 2:107. [PMID: 39473489 PMCID: PMC11521387 DOI: 10.23880/nnoaj-16000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Neuro-inflammation is a common feature of various central nervous system (CNS) disorders, including stroke, Alzheimer's disease, Multiple sclerosis, etc., and has a significant impact on the outcomes. Regulation of the immune response has therapeutic value. Interferon regulatory factor 4 (IRF4) is a hemopoietic transcription factor critical for activation of microglia/macrophages and modulation of inflammatory responses. The effects of IRF4 signaling on inflammation are pleiotropic, and vary depending on immune cell types and the pathological microenvironment that is regulated by both pro- and anti-inflammatory cytokines. Mechanistically, IRF4 is a quintessential 'context-dependent' transcription factor that regulates distinct groups of inflammatory mediators in a differential manner depending on their activation in different cell types including phagocytes, T-cell subtypes, and neuronal cells. In this review, we summarized the recent findings of IRF4 in the context of immune responses in different cell types with diverse pathological conditions. The primary goal of this review is to understand the signaling pathways and beneficial functions of IRF4, in hope of developing effective therapeutic strategies targeting the immune responses to neurodegenerative diseases.
Collapse
Affiliation(s)
- AA Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| | - F Liu
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| |
Collapse
|
39
|
Kellesarian SV, Malmstrom H, Abduljabbar T, Vohra F, Kellesarian TV, Javed F, Romanos GE. "Low Testosterone Levels in Body Fluids Are Associated With Chronic Periodontitis". Am J Mens Health 2016; 11:443-453. [PMID: 27645514 PMCID: PMC5675296 DOI: 10.1177/1557988316667692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is a debate over the association between low testosterone levels in body fluids and the occurrence of chronic periodontitis (CP). The aim of the present systematic review was to assess whether low testosterone levels in body fluids reflect CP. In order to identify studies relevant to the focus question: “Is there a relationship between low testosterone levels in body fluids and CP?” an electronic search without time or language restrictions was conducted up to June 2016 in indexed databases using different keywords: periodontitis, chronic periodontitis, periodontal diseases, testosterone, and gonadal steroid hormones. A total of eight studies were included in the present systematic review. The number of study participants ranged from 24 to 1,838 male individuals with ages ranging from 15 to 95 years. Seven studies measured testosterone levels in serum, two studies in saliva, and one study in gingiva. Four studies reported a negative association between serum testosterone levels and CP. Two studies reported a positive association between decreased testosterone levels in serum and CP. Increased levels of salivary testosterone among patients with CP were reported in one study; whereas one study reported no significant difference in the concentration of salivary testosterone between patients with and without CP. One study identified significant increase in the metabolism of testosterone in the gingiva of patients with CP. Within the limits of the evidence available, the relationship between low testosterone levels and CP remains debatable and further longitudinal studies and control trials are needed.
Collapse
Affiliation(s)
| | | | | | - Fahim Vohra
- 2 King Saud University, Riyadh, Saudi Arabia
| | | | - Fawad Javed
- 1 University of Rochester, Rochester, NY, USA
| | - Georgios E Romanos
- 4 University of Frankfurt, Frankfurt, Germany.,5 Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Kang MK, Mehrazarin S, Park NH, Wang CY. Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 2016; 23:709-720. [PMID: 27514027 DOI: 10.1111/odi.12569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.
Collapse
Affiliation(s)
- M K Kang
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - S Mehrazarin
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - N-H Park
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The activation of inflammatory response is dependent upon genetic factors and epigenetic control mechanisms. This overview will highlight recent advances in the understanding of epigenetic dynamics during cellular inflammation. RECENT FINDINGS There is a growing body of evidence indicating that alterations of the chromatin state associate with an increased risk of chronic disease development and inflammation. Epigenetic alterations respond rapidly to environmental changes and have a profound effect on gene regulatory cross-wirings and transcriptional regulation. SUMMARY Systematic dissection of the mechanisms underlying epigenetic effects during inflammatory response is a critical step toward elucidation of the cell's molecular processes and holds potential for the development of novel therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
42
|
Falank C, Fairfield H, Reagan MR. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells. Front Endocrinol (Lausanne) 2016; 7:67. [PMID: 27379019 PMCID: PMC4911365 DOI: 10.3389/fendo.2016.00067] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Collapse
Affiliation(s)
- Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Heather Fairfield
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, USA
- School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- *Correspondence: Michaela R. Reagan,
| |
Collapse
|