1
|
Wu J, Ren W, Liu J, Bai X. CUL1 exacerbates glucocorticoid-induced osteoporosis by enhancing ASAP1 ubiquitination. Hormones (Athens) 2025; 24:259-274. [PMID: 39287759 DOI: 10.1007/s42000-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis is a leading secondary cause of osteoporosis. Cullin-1 (CUL1) levels are abnormally elevated in patients with osteoporosis, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the mechanism of action of CUL1 in a glucocorticoid (dexamethasone, Dex)-induced osteoporosis model. METHODS C57BL/6J mice were intraperitoneally injected with Dex to establish an osteoporosis model. Mouse femur bone injury and bone formation were detected using hematoxylin-eosin or Masson staining. Apoptosis and cell cycle distribution were determined by flow cytometry. Alkaline phosphatase (ALP) activity and calcified nodules were monitored using ALP and Alizarin Red S staining. The molecular mechanism was validated by co-immunoprecipitation (Co-IP) and ubiquitination assays. RESULTS CUL1 expression was enhanced in the Dex-induced osteoporosis mouse model. CUL1 silencing moderated the Dex-induced cell proliferation and osteogenesis inhibition. Moreover, CUL1 promoted the ubiquitination and degradation of ASAP1 via the SKP1-CUL1-F-box (SCF)-FBXW7 complex. CUL1 induced apoptosis and repressed osteogenesis by ASAP1. CUL1 silencing alleviated the Dex-induced osteoporosis in mice. CONCLUSION CUL1 suppressed osteoblast proliferation and osteogenesis by promoting ASAP1 ubiquitination via the SCF-FBXW7 complex in glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Jun Wu
- Dalian Medical University, No. 9, West Section of Lushun South Road, Dalian, 116041, Liaoning, P.R. China
- Department of Orthopaedics, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Weijian Ren
- Department of Orthopaedics, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jun Liu
- Department of Orthopaedics, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
3
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Wang X, Chen C, Vuong D, Rodriguez-Rodriguez S, Lam V, Roleder C, Wang JH, Thiruvengadam SK, Berger A, Pennock N, Torka P, Hernandez-Ilizaliturri F, Siddiqi T, Wang L, Xia Z, Danilov AV. Pharmacologic targeting of Nedd8-activating enzyme reinvigorates T-cell responses in lymphoid neoplasia. Leukemia 2023; 37:1324-1335. [PMID: 37031300 PMCID: PMC10244170 DOI: 10.1038/s41375-023-01889-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Neddylation is a sequential enzyme-based process which regulates the function of E3 Cullin-RING ligase (CRL) and thus degradation of substrate proteins. Here we show that CD8+ T cells are a direct target for therapeutically relevant anti-lymphoma activity of pevonedistat, a Nedd8-activating enzyme (NAE) inhibitor. Pevonedistat-treated patient-derived CD8+ T cells upregulated TNFα and IFNγ and exhibited enhanced cytotoxicity. Pevonedistat induced CD8+ T-cell inflamed microenvironment and delayed tumor progression in A20 syngeneic lymphoma model. This anti-tumor effect lessened when CD8+ T cells lost the ability to engage tumors through MHC class I interactions, achieved either through CD8+ T-cell depletion or genetic knockout of B2M. Meanwhile, loss of UBE2M in tumor did not alter efficacy of pevonedistat. Concurrent blockade of NAE and PD-1 led to enhanced tumor immune infiltration, T-cell activation and chemokine expression and synergistically restricted tumor growth. shRNA-mediated knockdown of HIF-1α, a CRL substrate, abrogated the in vitro effects of pevonedistat, suggesting that NAE inhibition modulates T-cell function in HIF-1α-dependent manner. scRNA-Seq-based clinical analyses in lymphoma patients receiving pevonedistat therapy demonstrated upregulation of interferon response signatures in immune cells. Thus, targeting NAE enhances the inflammatory T-cell state, providing rationale for checkpoint blockade-based combination therapy.
Collapse
Affiliation(s)
| | - Canping Chen
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Dan Vuong
- City of Hope National Medical Center, Duarte, CA, USA
| | | | - Vi Lam
- City of Hope National Medical Center, Duarte, CA, USA
| | - Carly Roleder
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jing H Wang
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Nathan Pennock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pallawi Torka
- Division of Hematology & Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, CA, USA
| | - Lili Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Xia
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
6
|
Zhao L, Wang Y, Jaganathan A, Sun Y, Ma N, Li N, Han X, Sun X, Yi H, Fu S, Han F, Li X, Xiao K, Walsh MJ, Zeng L, Zhou M, Cheung KL. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation. EMBO J 2023; 42:e111473. [PMID: 36719036 PMCID: PMC10015369 DOI: 10.15252/embj.2022111473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
BRD4 is a well-recognized transcriptional activator, but how it regulates gene transcriptional repression in a cell type-specific manner has remained elusive. In this study, we report that BRD4 works with Polycomb repressive complex 2 (PRC2) to repress transcriptional expression of the T-helper 2 (Th2)-negative regulators Foxp3 and E3-ubiqutin ligase Fbxw7 during lineage-specific differentiation of Th2 cells from mouse primary naïve CD4+ T cells. Brd4 binds to the lysine-acetylated-EED subunit of the PRC2 complex via its second bromodomain (BD2) to facilitate histone H3 lysine 27 trimethylation (H3K27me3) at target gene loci and thereby transcriptional repression. We found that Foxp3 represses transcription of Th2-specific transcription factor Gata3, while Fbxw7 promotes its ubiquitination-directed protein degradation. BRD4-mediated repression of Foxp3 and Fbxw7 in turn promotes BRD4- and Gata3-mediated transcriptional activation of Th2 cytokines including Il4, Il5, and Il13. Chemical inhibition of the BRD4 BD2 induces transcriptional de-repression of Foxp3 and Fbxw7, and thus transcriptional downregulation of Il4, Il5, and Il13, resulting in inhibition of Th2 cell lineage differentiation. Our study presents a previously unappreciated mechanism of BRD4's role in orchestrating a Th2-specific transcriptional program that coordinates gene repression and activation, and safeguards cell lineage differentiation.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Yiqi Wang
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Anbalagan Jaganathan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Yifei Sun
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ning Ma
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ning Li
- The Institute of Genetics and Cytology, Northeast Normal UniversityChangchunChina
| | - Xinye Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xueying Sun
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Huanfa Yi
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Shibo Fu
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Fangbin Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xue Li
- Department of ChemistryMichigan State UniversityEast LansingMIUSA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence and Center for Clinical Mass SpectrometryAllegheny Health Network Cancer InstitutePittsburghPAUSA
- Department of Pharmacology and Chemical Biology, School of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Martin J Walsh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Lei Zeng
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ka Lung Cheung
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
7
|
Wang X, Best S, Danilov AV. Neddylation and anti-tumor immunity. Oncotarget 2021; 12:2227-2230. [PMID: 34676055 PMCID: PMC8522835 DOI: 10.18632/oncotarget.28019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Contrary to chemotherapy, novel targeted therapies are associated with diverse immunomodulatory effects. Nedd8 is a small ubiquitin-like modifier that is involved in regulation of protein degradation. Neddylation is a promising target in cancer. Pevonedistat, a small molecule inhibitor of the Nedd8-activating enzyme, demonstrates pre-clinical activity in multiple tumor types. Recent studies have revealed that neddylation is important in immunity. We and others have shown that interfering with neddylation causes downstream immunomodulatory effects potentially leading to enhanced anti-tumor immunity. Thus, Nedd8 is a promising target in immuno-oncology.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Hematology and Hematopoietic Stem Cell Transplant, City of Hope National Medical Center, Duarte, CA, USA
| | - Scott Best
- Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Stem Cell Transplant, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Xu M, Wang S, Wang Y, Wu H, Frank JA, Zhang Z, Luo J. Role of p38γ MAPK in regulation of EMT and cancer stem cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3605-3617. [PMID: 30251680 DOI: 10.1016/j.bbadis.2018.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK-mediated tumor promotion.
Collapse
Affiliation(s)
- Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
10
|
Li X, Jin J, Yang S, Xu W, Meng X, Deng H, Zhan J, Gao S, Zhang H. GATA3 acetylation at K119 by CBP inhibits cell migration and invasion in lung adenocarcinoma. Biochem Biophys Res Commun 2018; 497:633-638. [PMID: 29453984 DOI: 10.1016/j.bbrc.2018.02.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
GATA3 is a transcriptional factor involved in the development of multiple organs. Post translational modifications of GATA3 are critical to its function. Here, we report that GATA3 interacts with and is acetylated by the acetyltransferase CBP. Class I deacetylases HDAC1, HDAC2 and HDAC3 deacetylate GATA3. The major acetylated site of GATA3 in lung adenocarcinoma cells was determined at lysine 119 (AcK119). Functionally, GATA3-acetylation mimics K119Q mutant was found to inhibit lung adenocarcinoma cell migration and invasion with concomitant downregulation of EMT-controlling transcriptional factors Slug, Zeb1 and Zeb2. Taken together, we demonstrated that GATA3 acetylation at lysine 119 by CBP hinders the migration and invasion of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Xueying Li
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaqi Jin
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Siyuan Yang
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Weizhi Xu
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostic, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, MOE Key Laboratory of Carcinogenesis and Translational Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|